Experiment 7 # Complexometric titration using EDTA (Chelatometry) ## In Complexometric titration - ** The formation of a colored complex is used to indicate the end point of a titration. - ** It's particularly useful for the determination of a mixture of different metal ions in solution. - ** A simple ion is transformed into a complex ion and the equivalent point is determined by using metal indicators #### What is EDTA? Ethylenediaminetetraacetic acid #### What is EDTA? - ** The most titrant used. - ** It has four carboxyl groups and two amine groups that can act as electron pair donors. - **EDTA is tetraprotic and hexadentate ligand - **EDTA forms stable, water soluble 1:1 ratio complex with metal. - **EDTA can be obtained as H₄Y or H₂Y ²⁻ - **H₂Y ²⁻ can form only 4 coordinate covalent bonds. - ** EDTA is extensively used to standardize metal (2+) cations • $$M^{n+} + H_2Y^{2-} \longrightarrow MY^{n-4} + 2H^+$$ - as stability of the complex decreases the pH of the solution needs to be higher. - It's advisable to use buffer solution (a mixture of weak acid and it's conjugate base OR vice versa) - Using buffer will control pH to be nearly constant value #### For reactions with M2+ - H₄Y needs NaOH to be added in aqueous solution to make it dissolved. - Na₂H₂Y is dissolved in aqueous solution - $M^{2+} + H_4Y \implies MH_2Y + 2H^+$ - ** If the formation constant is very high and thus equilibrium lies to right #### What is the media of reaction? - ** The reaction should be in a buffer medium (WHY?) - **using basic solution (buffer) will remove H+ as it's formed so equil. goes to right favoring EDTA-metal complex. - **higher the acidity of the solution leads to reduce the stability of formed complex #### Complexometric Indicators: - Organic dyes form complex with metal weaker than the complex formed by the metal with EDTA - These indicators possess acid-base indicator properties - At the end point indicator will be displaced completely by EDTA, thus the free indicator serves as end point indicator - Example: <u>Murexide</u> and <u>Eriochrome</u> black T ### Indicator that will be used in our exp.: - **Eriochrome black T: - the color changes from wine red to pure blue - **Murexide: - the color changes from pink to purple ## Objectives: Calculate of water hardness (amount of dissolved Ca²⁺ and Mg²⁺ in water Calculate conc. of Ca²⁺ and Mg²⁺ in an unknown sample in ppm (mg/L) # a) Standardization of EDTA against ZnSO₄.7H₂O as primary standard $$M ZnSO4.7H20 = \frac{\frac{m}{Mw}}{v}, \quad v = 0.1 L$$ $$(M \times V) EDTA = (M \times V) ZnSO_4.7H_2O$$ ## b) Determination of water hardness due to presence of CaCO₃ and MgCO, EDTA (V1) EDTA (V2) 50 ml tap water 50 ml tap water The color changes from wine red to pure blue 2 ml buffer 5 drops Eriochrome black T The color changes from pink to purple 1 ml NaOH 5 drops Mureoxide V1=volume of EDTA corresponding to Ca2+ and Mg2+ V2= volume of EDTA corresponding to Ca²⁺ only V1-V2 =volume of EDTA corresponding to Mg²⁺ because Mg²⁺ + OH⁻ → Mg(OH)₂ $$(M \times V_1)$$ EDTA = $(M \times V)$ Ca²⁺ and Mg²⁺ $(M \times V_2)$ EDTA = $(M \times V)$ Ca²⁺ $M \times (V_1-V_2)$ EDTA = $(M \times V)$ Mg²⁺ Conc g/L= M x Mw Water hardness In terms of CaCO₃ $= M Ca^{2+} mol/L \times 100 \times 1000$ Determination of the concentration of Ca²⁺ and Mg²⁺ in an unknown solution $$M \times V_2$$) EDTA = $(M \times V) Ca^{2+}$ $$M \times (V_1 - V_2) EDTA = (M \times V) Mg^{2+}$$