13. A stream of air at 100 kPa pressure and 300 K is flowing on the top surface of a thin flat sheet of solid naphthalene of length 0.2 m with a velocity of 20 m/sec. The other data are:

Mass diffusivity of naphthalene vapor in air = $6 * 10^{-6}$ m 2 /sec Kinematic viscosity of air = $1.5 * 10^{-5}$ m 2 .sc Concentration of naphthalene at the air-solid naphthalene interface = $1 * 10^{-5}$

⁵ kmol/m³

Calculate:

- (a) the overage mass transfer coefficient over the flat plate
- (b) the rate of loss of naphthalene from the surface per unit width

Note: For heat transfer over a flat plate, convective heat transfer coefficient for laminar flow can be calculated by the equation.

$$Nu = 0.664 \text{ Re}_{I}^{1/2} \text{ Pr}^{1/3}$$

you may use analogy between mass and heat transfer.

Solution:

Given: Correlation for heat transfer

$$Nu = 0.664 \text{ Re}_{I}^{1/2} \text{ Pr}^{1/3}$$

The analogous relation for mass transfer is

$$Sh = 0.664 \text{ Re}_L^{1/2} Sc^{1/3}$$
 -----(1)

where

 $Sh = Sherwood number = kL/D_{AB}$

 $Re_L = Reynolds number = Lvp/\mu$

Sc = Schmidt number = $\mu / (\rho D_{AB})$

k = overall mass transfer coefficient

L = length of sheet

 D_{AB} = diffusivity of A in B

v = velocity of air

 μ = viscosity of air

 ρ = density of air, and

 $\mu\rho$ = kinematic viscosity of air.

Substituting for the known quantities in equation (1)

$$\frac{k(0.2)}{6*10^{-6}} = 0.664 \left(\frac{(0.2)(20)}{1.5*10^{-5}}\right)^{1/2} \left(\frac{1.5*10^{-5}}{6*10^{-6}}\right)^{1/3}$$

$$k = 0.014 \text{ m/sec}$$

Rate of loss of naphthalene = k (C $_{Ai}$ – C $_{A\infty}$) = 0.014 (1 * 10 $^{-5}$ – 0) = 1.4024 * 10 $^{-7}$ kmol/m 2 sec

Rate of loss per meter width = $(1.4024 * 10^{-7}) (0.2) = 2.8048 * 10^{-8} \text{ kmol/m.sec}$ = 0.101 gmol/m.hr