
Text Box
INSTRUCTOR'S
SOLUTIONS
MANUAL



2-1 

Chapter 2 
 
 
 
 
 2.1 
 
 

a) Overall mass balance: 
 

 321
)( www

dt
Vd

−+=
ρ  (1) 

 
Energy balance: 
 

 

( )
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1 1 2 2

3 3

ρ ( )
( ) ( )ref

ref ref

ref

d V T T
C w C T T w C T T

dt
w C T T

 −  = − + −

− −

  (2)      

  Because ρ = constant and  VV = = constant, Eq. 1 becomes: 
 

 213 www +=  (3)  
 

b) From Eq. 2, substituting Eq. 3 
 

     
( ) ( )

3 3
1 1 2 2

1 2 3

( )
ρ ρ ( ) ( )ref

ref ref

ref

d T T dTCV CV w C T T w C T T
dt dt

w w C T T

−
= = − + −

− + −
 (4) 

 
Constants C and Tref  can be cancelled: 
 

 3212211
3 )( TwwTwTw

dt
dTV +−+=ρ  (5) 

 
The simplified model now consists only of Eq. 5. 
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Degrees of freedom for the simplified model: 
 

Parameters : ρ, V  
 
Variables : w1, w2, T1, T2, T3 
NE = 1 
NV = 5 

 
Thus, NF = 5 – 1 = 4 
 
Because w1, w2, T1 and T2 are determined by upstream units, we assume 
they are known functions of time: 
 
  w1 = w1(t) 

w2 = w2 (t)  
T1  = T1(t) 
T2  = T2(t) 

 
Thus, NF is reduced to 0. 
 
 

 
 2.2   
 
 
 Energy balance: 
 

ρ ( )
( ) ( ) ( )ref

p p i ref p ref s a

d V T T
C wC T T wC T T UA T T Q

dt

 −  = − − − − − +  

 
Simplifying 
 

ρ ( )p p i p s a
dTVC wC T wC T UA T T Q
dt

= − − − +  

ρ ( ) ( )p p i s a
dTVC wC T T UA T T Q
dt

= − − − +  

 
 

b)       T increases if Ti increases and vice versa. 
 

T decreases if w increases and vice versa if (Ti – T) < 0. In other words, if 
Q > UAs(T-Ta), the contents are heated, and T >Ti. 
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 2.3 
 
 

a) Mass Balances: 
 

 321
1

1 www
dt
dhA −−=ρ  (1) 

 

 2
2

2 w
dt

dhA =ρ  (2) 

 
Flow relations: 
 
 Let P1 be the pressure at the bottom of tank 1. 
 
 Let P2 be the pressure at the bottom of tank 2. 
 
 Let Pa be the ambient pressure. 
 

Then  )( 21
22

21
2 hh

Rg
g

R
PPw

c

−
ρ

=
−

=  (3) 

 

         1
33

1
3 h

Rg
g

R
PPw

c

a ρ
=

−
=  (4) 

 
b) Seven parameters: ρ, A1, A2, g, gc, R2, R3 

 
Five variables : h1, h2, w1, w2, w3 
  
Four equations 
 
Thus NF = 5 – 4 = 1 
 
         1 input = w1 (specified function of time) 
         4 outputs = h1, h2, w2, w3 
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 2.4 
 
 

Assume constant liquid density, ρ . The mass balance for the tank is 
 

)(
)(

qq
dt

mAhd
i

g −ρ=
+ρ

 

 
Because ρ, A, and mg are constant, this equation becomes 

 

qq
dt
dhA i −=         (1) 

 
The square-root relationship for flow through the control valve is 

 
2/1









−

ρ
+= a

c
gv P

g
ghPCq       (2) 

 
From the ideal gas law, 

 

)(
)/(
hHA
RTMm

P g
g −
=        (3) 

  
where T is the absolute temperature of the gas. 

 
Equation 1 gives the unsteady-state model upon substitution of q from Eq. 2 and 
of Pg from Eq. 3: 

 
1/ 2( / )

( )
g

i v a
c

m M RTdh ghA q C P
dt A H h g

ρ 
= − + − − 

    (4) 

   
Because the model contains Pa, operation of the system is not independent of Pa. 
For an open system Pg = Pa and Eq. 2 shows that the system is independent of Pa. 
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 2.5 
 
 
 a)            For linear valve flow characteristics,  
  

 
a

d
a R

PP
w 1−

= ,    
b

b R
PPw 21 −= ,    

c

f
c R

PP
w

−
= 2  (1) 

Mass balances for the surge tanks 
 

 ba ww
dt

dm
−=1 ,     cb ww

dt
dm

−=2  (2) 

 
where m1 and m2 are the masses of gas in surge tanks 1 and 2, 
respectively. 

 
If the ideal gas law holds, then 

 

 1
1

11 RT
M
mVP = ,     2

2
22 RT

M
mVP =  (3) 

 
where  M is the molecular weight of the gas 

   T1 and T2 are the temperatures in the surge tanks. 
 

Substituting for m1 and m2 from Eq. 3 into Eq. 2, and noticing that V1, T1, 
V2, and T2 are constant, 

 

 ba ww
dt
dP

RT
MV

−=1

1

1   and   cb ww
dt

dP
RT

MV
−=2

2

2  (4) 

 
The dynamic model consists of Eqs. 1 and 4. 
 

       b) For adiabatic operation, Eq. 3 is replaced by 
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Substituting Eq. 6 into Eq. 2 gives,  
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 cb ww
dt

dPP
C
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−=


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as the new dynamic model. If the ideal gas law were not valid, one would 
use an appropriate equation of state instead of Eq. 3. 
 
 
 
 

 
 
 2.6 
 
 

a) Assumptions: 
 

1.  Each compartment is perfectly mixed. 
2.  ρ and C are constant. 
3.  No heat losses to ambient. 

 
  Compartment 1: 
  Overall balance (No accumulation of mass): 
 

 0 = ρq − ρq1       thus       q1 = q (1) 
 
  Energy balance (No change in volume): 
 

 1
1 1 1 2ρ ρ ( ) ( )i

dTV C qC T T UA T T
dt

= − − −  (2) 

 
  Compartment 2: 
 
  Overall balance: 
 

 0 = ρq1 − ρq2       thus       q2 = q1= q (3) 
 
  Energy balance: 
 

 2
2 1 2 1 2 2ρ ρ ( ) ( ) ( )c c c

dTV C qC T T UA T T U A T T
dt

= − + − − −  (4) 

 
b) Eight parameters: ρ, V1, V2, C, U, A, Uc, Ac 

Five variables: Ti, T1, T2, q, Tc 
Two equations: (2) and (4) 
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Thus NF = 5 – 2 = 3 
 
          2 outputs = T1, T2 
          3 inputs = Ti, Tc, q (specify as functions of t) 

 
 

c) Three new variables: ci, c1, c2  (concentration of species A). 
Two new equations: Component material balances on each compartment. 
c1 and c2 are new outputs. ci must be a known function of time. 

 
 
 
 2.7 

 
 

As in Section 2.4.2, there are two equations for this system: 
 

  
( )

1 ( )i

i
i

dV w w
dt

wdT QT T
dt V VC

ρ

ρ ρ

= −

= − +
 

  
Results: 

  
(a) Since w  is determined by hydrostatic forces, we can substitute for this 

variable in terms of the tank volume as in Section 2.4.5 case 3. 
  

( )

1
i v

i
i

dV Vw C
dt A

wdT QT T
dt V VC

ρ

ρ ρ

 
= −  

 

= − +

 

 
This leaves us with the following: 
   
 5 variables: , , , ,i iV T w T Q  
 4 parameters: , , ,vC C Aρ  

2 equations 
 
The degrees of freedom are 5 2 3− = . To make sure the system is specified, we 
have: 
  
 2 output variables: ,T V  
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 2 manipulated variables: , iQ w  
 1 disturbance variable: iT  
 
(b) In this part, two controllers have been added to the system. Each controller 

provides an additional equation. Also, the flow out of the tank is now a 
manipulated variable being adjusted by the controller. So, we have 

 
4 parameters: , , ,sp spC T Vρ  
6 variables: , , , , ,i iV T w T Q w  
4 equations 

 
The degrees of freedom are 6 4 2− = . To specify the two degrees of freedom, we 
set the variables as follows: 

   
  2 output variables: ,T V  
  2 manipulated variables (determined by controller equations): ,Q w  
  2 disturbance variables: ,i iT w  

 
 

 2.8 
 
 

Additional assumptions: 
 

 (i)  Density of the liquid, ρ, and density of the coolant, ρJ, are constant. 
 (ii) Specific heat of the liquid, C, and of the coolant, CJ, are constant. 

 
Because V is constant, the mass balance for the tank is: 

  

 0=−=ρ qq
dt
dV

F ;  thus q = qF 

 
Energy balance for tank: 

 

 )()( 8.0
JJFF TTAKqTTCq

dt
dTVC −−−ρ=ρ  (1) 

 
Energy balance for the jacket: 

 

 )()( 8.0
JJJiJJJ

J
JJJ TTAKqTTCq

dt
dTCV −+−ρ=ρ  (2) 

 
where A is the heat transfer area (in ft2) between the process liquid and the 
coolant. 
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Eqs.1 and 2 comprise the dynamic model for the system. 

 
 
 
 
 2.9 
 
 

Assume that the feed contains only A and B, and no C. Component balances for 
A, B, C over the reactor give. 

 

 1 /
1

E RTA
i Ai A A

dcV q c qc Vk e c
dt

−= − −  (1) 

 

 1 2/ /
1 2( )E RT E RTB

i Bi B A B
dcV q c qc V k e c k e c
dt

− −= − + −  (2) 

  

 2 /
2

E RTC
C B

dcV qc Vk e c
dt

−= − +  (3) 

 
An overall mass balance over the jacket indicates that qc = qci because the volume 
of coolant in jacket and the density of coolant are constant. 

 
Energy balance for the reactor: 

 
( ) ( ) ( )A A A B B B C C C

i Ai A A i Bi B B i
d Vc M S Vc M S Vc M S T

q c M S q c M S T T
dt

 + +  = + −  

 1 2/ /
1 1 2 2( ) ( ) ( )E RT E RT

c A BUA T T H Vk e c H Vk e c− −− − + −∆ + −∆   (4) 
 

where  MA, MB, MC are molecular weights of A, B, and C, respectively 
   SA, SB, SC are specific heats of A, B, and C. 
   U is the overall heat transfer coefficient 
   A is the surface area of heat transfer 
 

Energy balance for the jacket: 
 

 ρ ρ ( ) ( )c
j j j j j ci ci c c

dTS V S q T T UA T T
dt

= − + −  (5) 

where:   
 ρj, Sj   are density and specific heat of the coolant. 

               Vj        is the volume of coolant in the jacket. 
 

Eqs. 1 - 5 represent the dynamic model for the system. 
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 2.10 
 

 The plots should look as shown below: 

   

 

 

Notice that the functions are only good for t = 0 to t = 18, at which point the tank 
is completely drained.  The concentration function blows up because the volume 
function is negative. 
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 2.11 
 
 
 a)   

 
   

Note that the only conservation equation required to find h is an overall 
mass balance: 

 

1 2
( )dm d Ah dhA w w w

dt dt dt
ρ

= = ρ = + −    (1) 

 
   

  Valve equation:  w = hCh
g
gC v
c

v =
ρ′     (2) 

                  where 
c

vv g
gCC ρ′=     (3) 

 
  Substituting the valve equation into the mass balance, 
 

   )(1
21 hCww

Adt
dh

v−+
ρ

=      (4) 

 
  Steady-state model: 
 
    0 = hCww v−+ 21      (5) 
 

b) 1 2
1/2

2.0 1.2 3.2 kg/s2.13
1.52.25 mv

w wC
h

+ +
= = = =  

 
 

 
      c) Feedforward control 
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Rearrange Eq. 5 to get the feedforward (FF) controller relation, 
 
 12 whCw Rv −=        where 2.25 mRh =   
  

112 2.3)5.1)(13.2( www −=−=     (6) 
 
  Note that Eq. 6, for a value of w1 = 2.0, gives  
 

w2 = 3.2 –1.2 = 2.0 kg/s which is the desired value. 
 

If the actual FF controller follows the relation, 12 1.12.3 ww −=   (flow 
transmitter 10% higher), 2w will change as soon as the FF controller is 
turned on, 
 
 w2 = 3.2 –1.1 (2.0) = 3.2 – 2.2 = 1.0 kg/s 

 
      (instead of the correct value, 1.2 kg/s) 

 
Then  0.10.213.2 +== hhCv  
  

 or 408.1
13.2
3

==h    and h = 1.983 m (instead of 2.25 m) 

 
 

  Error in desired level = 2.25 1.983 100% 11.9%
2.25
−

× =  
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The sensitivity does not look too bad in the sense that a 10% error in flow 
measurement gives ~12% error in desired level. Before making this 
conclusion, however, one should check how well the operating FF 
controller works for a change in w1 (e.g., ∆w1 = 0.4 kg/s). 

 
 
 
 2.12 
 
 

a) Model of tank (normal operation): 
 

1 2 3
dhA w w w
dt

ρ = + −   (Below the leak point) 

2
2(2) 3.14 m

4
A π π= = =  

 

(800)(3.14) 20200100120 =−+=
dt
dh  

  
20 0.007962 m/min

(800)(3.14)
dh
dt

= =  

 
Time to reach leak point (h = 1 m) = 125.6 min. 

 
 

b) Model of tank with leak and 321 ,, www  constant: 
 

4ρ 20 20 ρ(0.025) 1dhA q h
dt

d= − = − − = 20 − 20 1−h    ,   h ≥ 1 

 
To check for overflow, one can simply find the level hm at which dh/dt = 
0. That is the maximum value of level when no overflow occurs. 
 

0 = 20 − 20 1−mh   or      hm = 2 m 
 

Thus, overflow does not occur for a leak occurring because hm < 2.25 m. 
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 2.13          
  
  

Model of process 
 
  Overall material balance: 
 

  321 www
dt
dhAT −+=ρ  = hCww v−+ 21     (1) 

 
  Component: 
 

  332211
3 )( xwxwxw

dt
hxdAT −+=ρ  

 

  3322113
3 xwxwxw

dt
dhxA

dt
dxhA TT −+=ρ+ρ  

 
  Substituting for dh/dt  (Eq. 1) 
 

  =−++ρ )( 3213
3 wwwx

dt
dxhAT 332211 xwxwxw −+  

 

  )()( 322311
3 xxwxxw

dt
dxhAT −+−=ρ      (2) 

 

  or       [ ])()(1
322311

3 xxwxxw
hAdt

dx

T

−+−
ρ

=    (3) 

 
a) At initial steady state , 
 

Kg/min220100120213 =+=+= www  

Cv = 3.166
75.1

220
=  

 
b) If x1 is suddenly changed from 0.5 to 0.6 without changing flowrates, then 

level remains constant and Eq.3 can be solved analytically or numerically 
to find the time to achieve 99% of the x3 response. From the material 
balance, the final value of x3 = 0.555. Then, 

 

  [ ]3
3 3

1 120(0.6 ) 100(0.5 )
(800)(1.75)

dx x x
dt

= − + −
π
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         [ ]3
1 (72 50) 220 )

(800)(1.75)
x= + −

π
  

 
         30.027738 0.050020x= −  
 
  Integrating, 

  
3

3

3

3 00.027738 0.050020

f

o

x t

x

dx dt
x
=

−∫ ∫      

 
    where   x3o=0.5   and    x3f =0.555 – (0.555)(0.01) = 0.549 
 
  Solving,  
 
          t = 47.42 min 
 

c) If w1 is changed to 100 kg/min without changing any other input variables, 
then x3 will not change and Eq. 1 can be solved to find the time to achieve 
99% of the h response. From the material balance, the final value of the 
tank level is h =1.446 m. 

 

800π 100 100 v
dh C h
dt

= + −  

 

        1 200 166 3
800

dh . h
dt

 = − π
 

 
              0 079577 0 066169. . h= −  
 

    where  ho=1.75   and    hf =1.446  + (1.446)(0.01) = 1.460 
 

 By using the MATLAB command ode45 , 
 

   t = 122.79  min  
 
Numerical solution of the ode is shown in Fig. S2.13 
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 Figure S2.13.  Numerical solution of the ode for part c) 
 

d) In this case, both h and x3 will be changing functions of time. Therefore, 
both Eqs. 1 and 3 will have to be solved simultaneously. Since 
concentration does not appear in Eq. 1, we would anticipate no effect on 
the h response. 

 
 
 
2.14 
 
 
 a) The dynamic model for the chemostat  is given by: 
 

  Cells:      FXVr
dt
dXV g −=        or        (1) 

 

  Product:   FPVr
dt
dPV p −=       or      P

V
Fr

dt
dP

p 





−=   (2) 

 

  Substrate:    )( SSF
dt
dSV f −=

/

1
g

X S
Vr

Y
−    

 
  or 

 P
SP

g
SX

r
Y

r
Y //

11
−−  (3) 

 
b) At steady state, 

 

0 50 100 150 200 250 300
1.4

1.5

1.6

1.7

1.8

time (min)

 h(m)

X
V
Fr

dt
dX

g 





−=

)( SS
V
F

dt
dS

f −





=
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 0=
dt
dX         ∴         DXrg =   

  then, 
 X DXµ =     ∴           D = µ  (4) 

 
  A simple feedback strategy can be implemented where the growth rate  
  is controlled by manipulating the mass flow rate, F, so that  F/V stays  
  constant. 
  
 c) Washout occurs if dX/dt  is negative for an extended period of time;  
  that is, 
 
     0<− DXrg         or       D µ>  
 
  Thus, if D µ>  the cells will be washed out. 
 

d) At steady state, the dynamic model given by Eqs. 1, 2 and 3 becomes: 
 

0 = rg  - DX DX = rg (5) 
 
0 = rp - DP DP = rp (6) 
 
0 = 𝐷𝐷�𝑆𝑆𝑓𝑓 − 𝑆𝑆� − 1

𝑌𝑌𝑋𝑋/𝑆𝑆 
 𝑟𝑟𝑔𝑔     (7) 

 

 

          
  From Eq. 5,    

 grDX =  (8) 
  From Eq. 7 

 

  
  Substituting Eq. 9 into Eq. 8, 

 

  
   
  From Eq. 4 

 
max

SDKS
Dµ

=
−

 

 

 
 

  
f S X  

 

 
D                 (10)  S S Y DX 

 

 
/ ) ( − = 

 
  

 
f S X g  

 

 
D S S Y r 

 
        (9) / ) (  − = 
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  Substituting these two equations into Eq. 10,  
 

 /
max

S
X S f

DKDX Y S D
Dµ

 
= − −     

(11) 

 
For Yx/s = 0.5, Sf = 10, Ks = 1, X = 2.75, μmax = 0.2, the following plot can be 
generated based on Eq. 11. 
 

 
    
 Figure S2.14. Steady-state cell production rate DX as a function of dilution rate D. 
 
 From Figure S2.14, washout occurs at D = 0.18 h-1 while the maximum 
 production occurs at  D = 0.14 h-1. Notice that maximum and washout points 
 are dangerously close to each other, so special care must be taken when   
 increasing cell productivity by increasing the dilution rate. 
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2.15 
 
 

a) We can assume that ρ  and h are approximately constant. The dynamic 
model is given by: 

 

         (1) 

  Notice that: 

       ∴    
dt
dV

dt
dM

ρ=     (2)  

 

   hrV 2π=   ∴    
dt
drA

dt
drrh

dt
dV

=π= )2(   (3) 

  Substituting (3) into (2) and then into (1), 
 

   skAc
dt
drA =ρ−       ∴       skc

dt
dr

=ρ−  

  Integrating, 
 

   
0ρo

r ts
r

kcdr dt= −∫ ∫    ∴ t
kc

rtr s
o ρ
−=)(   (4) 

 
  Finally,       
 
    2hrVM ρπ=ρ=    
 
   then 

    
 

 
b) The time required for the pill radius r to be reduced by 90% is given by 

Eq. 4: 
 

          t
kc

rr s
oo ρ
−=1.0           ∴     54

)5.0)(016.0(
)2.1)(4.0)(9.0(9.0
==

ρ
=

s

o

kc
r

t min 

   
  Therefore, 54min .t =  
 
 
 
 
 

sd kAc
dt

dMr =−=

VM ρ=

2

)( 







ρ

−ρπ= t
kc

rhtM s
o
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2.16 
 

For V = constant and F = 0, the simplified dynamic model is: 
 

 X
SK

Sr
dt
dX

s
g +

µ== max  

 

 X
SK

SYr
dt
dP

s
XPp +
µ== max/  

 

 P
XP

g
SX

r
Y

r
Ydt

dS

//

11
−−=  

 
Substituting numerical values: 

 

 
S

SX
dt
dX

+
=

1
2.0  

 

 
S

SX
dt
dP

+
=

1
)2.0)(2.0(  

 

 



 −−

+
=

1.0
2.0

5.0
1

1
2.0

S
SX

dt
dS

 
 

By using MATLAB, this system of differential equations can be solved. The time 
to achieve a 90% conversion of S is t = 22.15 h. 

 
Figure S2.16. Fed-batch bioreactor dynamic behavior. 



2-21 

2.17  
 

 
 
 (a) Using a simple volume balance, for the system when the drain is closed 
 (q = 0) 

          𝐴𝐴 𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

= 𝑞𝑞1                                                                                  (1)    

Solving this ODE with the given initial condition gives a height that is increasing 
at a rate of 0.25 ft/min. 

So the height in this time range will look like: 

 

 (b)        the drain is opened for 15 mins; assume a time constant in a linear 
transfer function of 3 mins, so a steady state is essentially reached. (3 < t < 18).  
Assume that the process will return to its previous steady state in an exponential 
manner, reaching 63.2% of the response in three minutes. 
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 (c)        the inflow rate is doubled for 6 minutes (18 < t < 24)  

The height should rise exponentially towards a new steady state value double that 
of the steady state value in part b), but it should be apparent that the height does 
not reach this new steady state value at t = 24 min..  The new steady state would 
be 1 ft. 

  

(d)        the inflow rate is returned to its original value for 16 minutes (24 < t < 40) 
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The graph should show an exponential decrease to the previous steady state of 0.5 
ft.  The initial value should coincide with the final value from part (c).   

  

Putting all the graphs together would look like this: 
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2.18 
 

 

Parameters (fixed by design process): m, C, me, Ce, he, Ae.  

 

CVs: T and Te.  

 

Input variables (disturbance): w, Ti. Input variables (manipulated): Q. 

 

Degrees of freedom =  (11-6) (number of variables) – 2 (number of equations) = 3 

 

The three input variables (w, Ti, Q) are assigned and the resulting system has zero 
degrees of freedom. 
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 2.19 
 
  

(a) First we simulate a step change in the vapor flow rate from 0.033 to 0.045 
m3/s. 
The resulting plots of xD and xB are shown below. 

 
Figure: Plot of xD, xB, and V versus time for a step change in V from 0.033 to 0.045 
m3/s. 
 

By examining the resulting data, we can find the steady-state values of xD and xB 
before and after the step change in V.  

 
 
 
 

 
 

 
(b) Next we simulate a step change in the feed composition (zF) from 0.5 to 0.55. 

Note that the vapor flow rate, V, is still set at 0.045 m3/s. 

 Start End Change 

xD 0.85 0.73 -0.12 

xB 0.15 0.0050 -0.145 
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Figure: Plot of xD, xB, and zF versus time for a step change in zF from 0.5 to 0.55 
 

By examining the resulting data, we can find the steady-state values of xD and xB 
before and after the step change in zF.  

  
 
 
 
 
 
 

(c) Increasing V causes xD and xB to decrease, while increasing zF causes both 
xD and xB to increase. The magnitude of the effect is greater for changing V 
than for changing zF. When changing V, xB changes more quickly than xD.  

 

 

 

 Start End Change 

xD 0.73 0.80 +0.066 

xB 0.0050 0.0068 +0.0018 
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2.20 
 

(a) First we simulate a step change in the Fuel Gas Purity (FG_pur) from 1 to 
0.95. 
The resulting plots of Oxygen Exit Concentration (C_O2) and Hydrocarbon 
Outlet Temperature (T_HC) are shown below. 

 
Figure: Plot of C_O2, T_HC, and FG_pur versus time for a step change in FG_pur from 1 
to 0.95. 
 

By examining the resulting data, we can find the steady-state values of C_O2 and 
T_HC before and after the step change in FG_pur.  

 
 
 
 

 
 

 
(b) Next we simulate a step change in the Hydrocarbon Flow Rate (F_HC_sp) 

from 0.035 to 0.0385. Note that the Fuel Gas Purity, FG_pur, is still set at 
0.95. 

 Start End Change 

C_O2 0.92 1.06 0.14 

T_HC 609 595 -14 
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Figure: Plot of C_O2, T_HC, and F_HC_sp versus time for a step change in F_HC_sp 
from 0.035 to 0.0385. 
 

By examining the resulting data, we can find the steady-state values of C_O2 and 
T_HC before and after the step change in F_HC_sp.  

  
 
 
 
 
 
 
 
 

(c) Decreasing FG_pur causes C_O2 to increase, while T_HC decreases. 
Increasing F_HC_sp causes T_HC to decrease while C_O2 stays the same. 
The change in T_HC occurs more quickly when changing F_HC_sp versus 
changing FG_pur. 

 

 

 Start End Change 

C_O2 1.06 1.06 0 

T_HC 595 572 -23 
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2.21 

 

 

 

The key to this problem is solving the mass balance of the tank in each part. 
  
 Mass balance: 
 

   ( ) i o
d Ah q q
dt

ρ ρ ρ= −  

 
 -  ρ  (density) and A (tank cross-sectional area) are constants, therefore: 
 

   i o
dhA q q
dt

= −  

 
 - The problem specifies oq  is linearly related to the tank height 
 

     1
oq h

R
=  

 

   1
i

dhA q h
dt R

= −  

 
 
 - Next, we can obtain R (valve constant) from the steady state information in the 
  problem 
 

   0   at steady statedh
dt

=  

 

   10 iq h
R

= −  

 

   10 2 (1)
R

= −  

 

    
21 ft 2   0.5   

min
R

R
∴ = =  

 
 - In addition, we can find that 
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    ( ) 14 2
2

ARτ  = = = 
 

 min 

 
 

Part a 
 

  i o
dhA q q
dt

= −   (Mass Balance) 

 

 4 2dh
dt

=    (Separable ODE) 

 

 1  
2

dh dt=∫ ∫  

 

 1( )           (0) 1
2

h t t C h= + =  

 

 1( ) 1          0 3
2

h t t t= + ≤ <  
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Part b 
 

 1
i

dhA q h
dt R

= −   (Mass Balance) 

 

 4 2 2dh h
dt

= −  

 

 1 1
2 2

dh h
dt

+ =   (Solution by integrating factor = / 2te ) 

 

 t/ 2 / 21( )   
2

td e h e dt=∫ ∫  

 
 / 2 / 21           (3) 2.5t the e c h= + =  
 
 / 21 th ce−= +  
 
 3/ 22.5 1 ce−= +  
 
   3/ 21.5c e=  
 
 ( 3) / 2( ) 1 (1.5)           3 18th t e t− −= + ≤ <  
 
Part c 
 

  4 4 2dh h
dt

= −   (Mass balance) 

 

 1 1
2

dh h
dt

+ =   (Solution by integrating factor) 

 
  / 2 / 2( )  1         (18) 1t td e h e dt h= =∫ ∫  
 
 - Method is same as part b. 
 
   ( 18) / 2( ) 2           18 33th t e t− −= − ≤ <  
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Part d 
 
  Same as part b with h (33) = 2 
 
   ( 33) / 2( ) 1           33 50th t e t− −= + ≤ ≤  
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 2.22 
 

 
To solve the problem, we start by writing the mass balance for each tank 1-4.  
To write the mass balance for each tank, we start with the most general form, 
where the change in mass in the tank over time is equal to the mass flowing into 
the tank minus the mass flowing out of the tank. The general form of the 
equations are shown below, where i represents the tank number (1, 2, 3, 4). The 
mass can be written as the density multiplied by the tank volume, and the mass 
flow rates can be written as the density multiplied by the volumetric flow rate.  
 

, ,
( )i

in i out i
d V q q

dt
ρ ρ ρ= −  

 
With density assumed constant over time, it can be pulled out of the derivative. 
Also, we write the volume of the tank as the height of liquid in the tank, hi, 
multiplied by the cross-sectional tank area, Ai.  

 

, ,

, ,

( )

( )

i i
in i out i

i i
in i out i

A d h q q
dt

A d h q q
dt

ρ ρ ρ= −

= −
 

 
The flow exiting each tank through the bottom can be written as: 
 

,exit i i iq C h=  

 
Where Ci is the proportionality constant for each tank.  
 

 
        Results: 
 

a) The final equations for the height of liquid in each tank are shown below. 
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31 1 1
1 3 1

1 1 1

2 2 4 2
2 4 2

2 2 2

3 3 2
3 2

3 3

                                                   (1)

                                                (2)

1                  

Cdh C h h F
dt A A A
dh C Ch h F
dt A A A

dh C ( )h F
dt A A

γ

γ

γ

= − + +

= − + +

−
= − +

4 4 1
4 1

4 4

                                       (3)

1                                                          (4)dh C ( )h F
dt A A

γ−
= − +

 

 
b) Now we can substitute 1 2 0.5γ γ= =  

 
31 1

1 3 1
1 1 1

2 2 4
2 4 2

2 2 2

3 3
3 2

3 3

0 5                                                    

0 5                                                

0 5                          

Cdh C .h h F
dt A A A
dh C C .h h F
dt A A A

dh C .h F
dt A A

= − + +

= − + +

= − +

4 4
4 1

4 4

                              

0 5                                                          dh C .h F
dt A A

= − +

 

 
The differential equations for the tank heights are coupled, so the heights 
cannot be solved for or controlled independently. F1 and F2 can be used to 
control h3 and h4 independently, but h1 and h2 will be affected in an 
uncontrolled manner.  
 

c) In the extreme case where 1 2 0γ γ= = , we get: 
 

31 1
1 3

1 1

2 2 4
2 4

2 2

3 3 2
3

3 3

4 4 1
4

4 4

                                                        

                                                         

Cdh C h h
dt A A
dh C Ch h
dt A A

dh C Fh
dt A A

dh C Fh
dt A A

= − +

= − +

= − +

= − +

 

 
These equations make sense with the process diagram because now F1 and 
F2 only affect tanks h3 and h4 directly (they no longer flow into tanks 1 
and 2 at all). However, F1 and F2 indirectly affect tanks 1 and 2 through h3 
and h4.  
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 3.1 

 

 

(a)  
3 4( ) 5 t tf t e te     

Transform each term using rules 2, 5, and 7 from Table 3.1, respectively. 

2

5 1 1
( )

3 ( 4)
F s

s s s
  

 
 

 

(b)  

( 3) 5
( ) sin(4 ) ( 3) ( 3) ( 3)tf t t t S t e S t

t

         

 To transform sin(4t), use rule 14 from Table 3.1  

 To transform (t-3)S(t-3) use rules 3 and 26 together. To use rule 26, 

set f(t) = t and t0 =3.  

 To transform e-(t-3)S(t-3) use rules 5 and 26 together. To use rule 

26, set f(t) = e-t and t0 =3.  

 Note that there is no Laplace transform for 1/t. 
3 3

2 2

4 1
( ) 5

16 1

s se e
F s

s s s t

 
 

     
   

 

 

(c)  

( ) cos(4 )
5

t t
f t e t   

 To transform the first term, use rule 18 from Table 3.1 

 To transform the second term, use rule 3 from Table 3.1 

2 2

1 1
( )

( 1) 16 5

s
F s

s s


 

 
 

 

(d)    
2( ) ( 1)cos(4( 1))f t S t t t     

 To transform the first term, use rules 15 and 26 together. To use rule 

26, set f(t) = cos(4t) and t0 = 1.  

 To transform the second term, use rule 4 of Table 3.1.  

2 3

2
( )

16

s s
F s e

s s

 

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 3.2 

 

 

Break the pulse into three step functions. First, a step up to 10 at t=0. Then, a step 

down by 8 at t=1. Finally, a step down by 2 at t=3: 

   

f(t) = 10 S(t)  – 8 S(t-1)   –  2 S(t- 3) 

        

 )(sF  =  -  -31
10 -  8e - 2 es s

s
 

 

 

 3.3 

 

 

a) Pulse width is obtained when x(t) = 0. Since x(t) = h – at 

 

 t :   h   at = 0           or      t = h/a 

b)  

  

 x(t) = hS(t) – atS(t) + a(t -t) S(t-t) 

c) 
222

1
)(

s

e

s

h

s

ae

s

a

s

h
sX

stst



 

 

 

d)         Area under pulse = h t/2 

 

 

 3.4 

 

 

(a) Laplace transform on the ODE gives: 

 
2

2

2

2

( ) 6 ( ) 8 ( ) 3 ( )

1
( ) (0) '(0) 6 ( ) 6 (0) 8 ( ) 3

2

td y dy
y b e

dt dt

s Y s sy y sY s y Y s b
s

  

     


 

x(t) x(t)

h

slope = a

slope = -a

slope = -a
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2 3
( ) 6 ( ) 8 ( )

2

b
s Y s sY s Y s

s
  


 

 

Thus: 

31 2

2 2 2

3 3
( )

( 2)( 6 8) ( 2) ( 4) ( 2) ( 2) ( 4)

aa ab b
Y s

s s s s s s s s
    

       
 

 

Regardless of the numerical values of a1, a2 and a3, the inverse Laplace transform 

indicates that y(t) includes 
2 2,  ,t te te 

and 4te . 

 

(b) When u = ct, Laplace transform gives: 

 

2

2

3
( ) 6 ( ) 8 ( )

c
s Y s sY s Y s

s
    

 

31 2 4

2 2

3
( )

( 2)( 4) ( 2) ( 4)

aa a ac
Y s

s s s s s s s
    

   
 

 

Regardless of the numerical values of a1, a2, a3, and a4, the inverse Laplace 

transform indicates y(t) includes 2 4

1,  ,  ,  and t ta t e e  . 

 

 

 3.5 

 

 

T(t) = 20 S(t)  + 
30

55
t S(t)  –  

30

55
(t-30) S(t-30) 

 ss e
ss

e
sss

sT 30

2

30

22
1

1

30

55201

30

551

30

5520
)(    
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a)       
432)4)(3)(2(

)1(
)( 321





















ssssss

ss
sX  

 

        1
)4)(3(

)1(

2

1 





s
ss

ss
 

 

         6
)4)(2(

)1(

3

2 





s
ss

ss
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        6
)3)(2(

)1(

4

3 





s
ss

ss
 

 

 

         
4

6

3

6

2

1
)(










sss
sX        

2 3 4and ( ) 6 6t t tx t e e e      

 

 

b)     1 2

2 2

2
( )

( 1) 1 ( 1)

s
X s

s s s

 
  

  
      (1) 

 

       
2 1

( 2) 1
s

s


    

 

In Eq. 1, substitute any s-1 to determine 1. Arbitrarily using s=0, Eq. 1 

gives 

 

     1
12 2

2 1
or 1

1 1 1


    

 

     
2

1 1
( )

1 ( 1)
X s

s s
 

 
 and t tx( t ) e te    

c)      
  2222

1

4

3

2

1

1

1

1
)(


















bs

s
ss

sX    

1 3
where and

2 2
b     

         

tetetx

t

bt

2

3
sin

3

2
sin

1
)( 2


 


  

 

d) X(s) = 
0.51

( 4)( 3)

ss
e

s s s



 
 

 

To invert, first ignore the time delay term. Using the Heaviside expansion 

with the partial fraction expansion, 

 

1ˆ ( )
( 4)( 3) 4 3

s A B C
X s

s s s s s s


   

   
 

 

Multiply by s and let s  0 
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A = 
1 1

(4)(3) 12
  

 

Multiply by (s+4) and let s 4 

 

B = 
4 1 3 3

( 4)( 4 3) ( 4)( 1) 4

   
 

    
 

 

Multiply by (s+3) and let s-3 

 

C = 
3 1 2 2

( 3)( 3 4) ( 3)(1) 3

  
 

   
 

 

Then 

 

1 12 3 / 4 2 3ˆ ( )
4 3

X s
s s s


  

 
 

 

4 31 3 2
ˆ( )

12 4 3

t tx t e e     

 

 

Using the Real Translation Theorem, 

 

4( 0.5) 3( 0.5)1 3 2
ˆ( ) ( 0.5)

12 4 3

t tx t x t e e         

 

  for t  0.5   
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a) 
2

21

22

6

)1(

)1(6
)(

sssss

s
sY












     
  

         06
6

1

0

2

2

2 
ss

s  

         
2

6
)(

s
sY   
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b) 
9)9(

)2(12
)(

2

321

2 












s

s

sss

s
sY  

 

Multiplying both sides by s(s2+9) 

 

))(()9()2(12 32

2

1 ssss       or       

 13

2

21 9)(2412  sss  

 

         Equating coefficients of like powers of s, 

 

         s2:   1 + 2 = 0 

         s1:   3         = 12 

         s0:   91       = 24 

 

        Solving simultaneously, 

 

        12,
3

8
,

3

8
321 


  

        
9

12
3

8

1

3

8
)(

2 












s

s

s
sY  

 

c)       
654)6)(5)(4(

)3)(2(
)( 321





















ssssss

ss
sY  

 

         1
)6)(5(

)3)(2(

4

1 





s
ss

ss
 

 

       6
)6)(4(

)3)(2(

5

2 





s
ss

ss
 

 

         6
)5)(4(

)3)(2(

6

3 





s
ss

ss
 

 

  
6

6

5

6

4

1
)(










sss
sY  

 

d)        
  )2()22(

1

)2(1)1(

1
)(

2222 





sssss
sY  
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                 = 
2)22(22

5

22

43

2

21















sss

s

ss

s
 

  

          Multiplying both sides by )2()22( 22  sss  gives 

 

1 =  1s
4 + 41s

3 + 61s
2 +41s + 2s

3 +42s
2 +62s +42 + 3s

2 +23s
 +       

4s + 24 + 5s
4 + 45s

3 + 85s
2 + 85s + 45 

 

          Equating coefficients of like power of s, 

 

          s4 :  1 + 5  = 0 

 

          s3 :  41 + 2  +  45 = 0 
  

          s2 :  61 + 42 + 3  + 85 = 0 
 

          s1 :  41  +  62  +  23 + 4  +  85 = 0  
 

        s0 :  42 + 24 + 45
 = 1 

 

          Solving simultaneously:  

 

         1  = -1/4        2 = 0        3=-1/2        4=0         5 = ¼ 

 

  
2

4/1

)22(

2/1

22

4/1
)(

222 












sss

s

ss

s
sY  
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a) From Eq. 3-66 

L )(
1

)(
0

** sF
s

dttf

t









  

we know that  L 











t

de
0

=
s

1
 L 

te   )1(

1




ss
 

 

 Laplace transforming yields 

 

s2X(s) + 4X(s) + 3X(s) = 
)1(

2

ss
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or    (s2 + 4s + 3) X(s) = 
)1(

2

ss
 

 X(s) = 
2

2

( 1) ( 3)s s s 
 

   

Performing partial fraction expansion and taking the inverse Laplace 

transform (either manually or using a symbolic software program), we get: 

     

32
( )

3 6 2

t t
t e e

x t te
 

     

 

b) Applying the Final Value Theorem (note that the theorem is applicable here) 

 

20 0

2 2
lim ( ) lim ( ) lim

( 1) ( 3) 3t s s
x t sX s

s s  
  

 
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i) Y(s) = 
4)4(

2

)4(

2
222 





 s

C

s

B

s

A

sssss
 

 

 y(t) will contain terms of form:  constant, t, e-4t 

 

ii) Y(s) = 
31)3)(1(

2

)34(

2
2 








 s

C

s

B

s

A

ssssss
 

 

 y(t) will contain terms of form: constant, e-t, e-3t   

 

iii) 
2)2()2(

2

)44(

2
)(

222 











s

C

s

B

s

A

sssss
sY  

 

 y(t) will contain terms of form: constant, e-2t , te-2t  

 

iv) 
)84(

2
)(

2 


sss
sY  

 
2222 2)2()48()44(84  sssss  

]2)2[(

2
)(

22 


ss
sY  

 

 y(t) will contain terms of form: constant, e-2t sin2t, e-2tcos2t  
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v) 
2222222 22)2(

)1(2

)4(

)1(2
)(

















s

C

s

Bs

s

A

ss

s

ss

s
sY  

A =
2

1

)4(

)1(2
lim

20






 s

s

s
 

 

2(s+1) = A(s2+4) + Bs(s) + Cs 

 

2s+2 = As2 + 4A + Bs2 + Cs 

 

Equating coefficients on like powers of s 

 s2:   0 = A + B          B = A =  
2

1
 

 s1:    2 =  C               C = 2 

 s0:   2 = 4A               A = 
2

1
 

 Y(s)
2222 2

2

2

)21(21









ss

s

s
 

 

y(t) = tt 2sin
2

2
2cos

2

1

2

1
  

 

y(t) = tt 2sin)2cos1(
2

1
  
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a) Laplace transform of the equation gives 

 

3 2 3
( ) 2 ( ) 2 ( ) ( )s X s s X s sX s X s

s
     

 

The denominator of [sX(s)] contains complex factors so that x(t) is 

oscillatory, and the denominator vanishes at real values of s= 1 and -½   

which are all <0; thus x(t) is converges. See Fig. S3.10a. 

b) 
1

2
)()(2




s
sXsXs  

 

)
2

3

2

1
)(

2

3

2

1
)(1(

3

)122(

3
)(

23

jsjsss
ssss

sX








)1()1(

2

)1)(1(

2
)(

22 





ssss
sX
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The denominator contains no complex factors; thus x(t) is not oscillatory. 

The denominator vanishes at s=1 0; x(t) is divergent. See Fig. S3.10b. 

 

c) 
1

1
)()(

2

3




s
sXsXs  

 
 

The denominator contains complex factors; x(t) is oscillatory. The 

denominator vanishes at real s = 0 and s= ½; thus x(t) is not convergent. See 

Fig. S3.10c. 

d) 
s

ssXsXs
4

)()(2   

 

  

The denominator of [sX(s)] contains no complex factors; x(t) is not 

oscillatory. The denominator of [sX(s)] vanishes at s = 0; x(t) is not 

convergent. See Fig. S3.10d. 

 
   Figure S3.10a.  Simulation of X(s) for case a)                                                                                                                

   

)
2

3

2

1
)(

2

3

2

1
)(1)()((

1

)1)(1(

1
)(

32

jsjssjsjs
ss

sX








)1(

4

)(

4
)(

22 





sssss
sX
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time
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          Figure S3.10b.  Simulation of X(s) for case b)                                                                                                                   

  
       Figure S3.10c.  Simulation of X(s) for case c)       
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      Figure S3.10d.  Simulation of X(s) for case d)                                                                                                                          

 

 

 3.11 

 

 

Since the time function in the solution is not a function of initial conditions, take 

the Laplace transform with: 

 

  0
)0(

)0( 
dt

dx
x  

 

  12s
2X(s) + (1+2)sX(s) + X(s) = KU(s) 

  )(
1)(

)(
21

2

21

sU
ss

K
sX


  

 

  Factoring the denominator 

 

  )(
)1)(1(

)(
21

sU
ss

K
sX


  

 

a) If u(t) = a S(t) then U(s)=
s

a
 

 

)1)(1(
)(

21 


sss

Ka
sX a   21   

 

xa(t) = fa( S(t),   e-t/1,   e– t/2) 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

14

16

18

time

time 

x
(t

) 
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b) If u(t) = be-t/ then U(s) = 
1



s

b
 

 

)1)(1)(1(
)(

21 




sss

Kb
sX b   21   

 

xb(t) = fb(e
-t/  ,  e-t/1,   e– t/2) 

 

c) If u(t) =ce-t/  where  = 1 , then U(s) = 
11 



s

c
 

)1()1(
)(

2

2

1 




ss

Kc
sX c  

 

xc(t) = fc(e
– t/1,  t e– t/1,   e– t/2) 

 

 d) If u(t) = d sin t   then U(s) = 
22 



s

d
 

 

   
)1)(1)((

)(
21

22 


sss

Kd
sX d  

 

xd(t) = fd(e
– t/1,   e– t/2, sin t, cos t) 
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a) 

3 2

3 2

(0) (0)
4 with (0) 0tdx d x dx

x e x
dt dt dt

      

 

  Take the Laplace transform of the equation: 

 

  
1

1
4




s
X(s)X(s)s3  

 

  
)37.179.0)(37.179.0)(59.1)(1(

1

)4)(1(

1
)(

3 jsjsssss
sX





  

 

             
js

j

js

j

ss 37.179.037.179.059.11

333321



















  
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5

1

)4(

1

1

31 




s
s

 

        
6.19

1

)37.179.0)(37.179.0)(1(

1

59.1

2 



s

jsjss
 

        j
jsss

j
js

59.074.0
)37.179.0)(59.1)(1(

1

37.179.0

33 





 

 

X(s)
js

j

js

j

ss 37.179.0

059.0074.0

37.179.0

059.0074.0

59.1

6.19

1

1

5

1


















  

         

)37.1sin059.037.1cos074.0(2
6.19

1

5

1
)( 79.059.1 tteeetx ttt    

 

b)  12 sin 3 with (0) 0
dx

x t x
dt

            

 

  
9

3
12(s)

2 


s
X(s)sX  

 

  
)12)(3)(3(

3

)12)(9(

3
)(

2 





sjsjsss
sX  

 

           
1233

31111
















sjs

j

js

j
 

  j
jsjs

j
js

102

4

102

1

7218

3

)12)(3(

3

3

11 








 

 

  3 2

12

3 1

9 51
s

( s )


  


 

  

   

 

  tetttx 12

51

1
)3sin43(cos

51

1
)(   

 

12

51

1

3

102

4

102

1

3

102

4

102

1

)(













sjs

j

js

j

sX
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c) 
2

2

(0)
6 25 with (0) 0td x dx dx

x e x
dt dt dt

      

 

2

2

1 1
6 25 or

1 1 6 25
s X( s ) sX( s ) X( s ) X( s ) X( s )

s ( s )( s s )
    

   
 

js

j

js

j

sjsjss
sX

43431)43)(43)(1(

1
)( 22221

















          

20

1

)256(

1

1

21 




s
ss

 

 

j
jss

j
js

80

1

40

1

)43)(1(

1

43

22 





 

 

         
js

j

js

j

s
sX

43

80

1

40

1

43

80

1

40

1

1

20

1

)(












  

 

         )4sin
40

1
4cos

20

1
(

20

1
)( 3 tteetx tt    
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  )2(
)2(

4)(
)(

3
)(

2

2




 tx
dt

xd
ty

dt

tdy

dt

tyd
 

  Take the Laplace transform assuming zero initial conditions: 

 

  s2Y(s) + 3sY(s) + Y(s) = 4 e-2ssX(s) e-2sX(s) 

 

  Rearranging, 

 

   
13

)41(
)(

)(

)(
2

2








ss

es
sG

sX

sY s

     (1) 

 

a) The standard form of the denominator is : 2s2 + 2s + 1 

 

From (1) ,  = 1  ,  = 1.5  

 

Thus the system will exhibit overdamped and non-oscillatory responses. 

 

b) Steady-state gain 
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1)(lim
0




sGK
s

  (from (1)) 

 

c) For a step change in x 

X(s) = 
s

5.1
      and   Y(s) =

sss

es s 5.1

)13(

)41(
2

2



 

 

 

Therefore, )(ˆ ty = 1.5  +  1.5e-1.5t cosh(1.11t)  +  7.38e-1.5t sinh(1.11t) 

Using MATLAB-Simulink,  y(t)= )2(ˆ ty  is shown in Fig. S3.13 

  
Figure S3.13. Output variable for a step change in x of magnitude 1.5 
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First, take the Laplace transform of each term in the equation 

 

 

 

 

2
2 2

2
( ) (0) '(0) ( )

5 5( ( ) (0)) 5 ( ) 5

6 6 ( )

7
7

d y
s Y s sy y s Y s s

dt

dy
sY s y sY s

dt

y Y s

s

 
     

 

 
    

 





 

 

 The final transformed equation is: 
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2

2
2

2

7
( 5 6) 5

5 7
( 5 6)

5 7

( 2)( 3)

Y s s s
s

s s
Y s s

s

s s
Y

s s s

    

 
  

 


 

 

 

 Now perform partial fraction expansion. 

 

 

2

2 3

5 7

( 2)( 3) 2 3

7 1 1
, ,

6 2 3

7 1 1
( )

6 2( 2) 3( 3)

7 1 1
( )

6 2 3

t t

s s A B C

s s s s s s

A B C

X s
s s s

x t e e 

 
  

   

   

  
 

  
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 )/1()()( hthSthStf   

  )/1()(4 htStShx
dt

dx
  ,     x(0)=0 

    

 Take the Laplace transform, 

  











s

e

s
hsXssX

hs /1
)(4)(  

  

















 

4
)1(

)4(

1
)1()( 21//

ss
eh

ss
ehsX hshs

 

  
4

1

4

1

0

1 



ss

 ,   
4

11

4

2 
ss

 

 

  









 

4

11
)1(

4
)( /

ss
e

h
sX hs

 

 

            
















44

11

4

//

s

e

ss

e

s

h hshs
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     0    t <0 

  )(tx  )1(
4

4te
h     0 < t < 1/h 

     tht ee
h 4)/1(4

4

    t > 1/h 

 

 

 
            Figure S3.15.  Solution for values h= 1, 10 and 100 
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 a) Take the Laplace transform: 

 

     
1

)(9)0()(6)0()0()(
2

2




s

s
sYyssYysysYs  

 

  (s2 + 6s + 9)Y(s)  s(1)  2 –(6)(1)=
12 s

s
 

 

  (s2 + 6s + 9)Y(s) = 
12 s

s
+ s + 8 

 

  (s2 + 6s + 9)Y(s) =
1

88
2

23





s

ssss
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          Y(s) = 
)1()3(

828
22

23





ss

sss
 

 

  To find y(t) we have to expand Y(s) into its partial fractions 

 

  
113)3(

)(
222 











s

D

s

Cs

s

B

s

A
sY  

 

  y(t) = Ate-3t + Be-3t + C cost + D sin t 

 

b) Y(s) =
)84(

1
2 



sss

s
 

 

Since 8
4

42

 ,  there are complex factors. 

 

 complete the square in denominator 

 

s2 + 4s + 8 = s2 + 4s + 4 + 84 

 

         = s2 + 4s + 4 + 4 = (s+2)2 + (2)2      { b = 2  ,  =2} 

   

 Partial fraction expansion gives 

 

)84(

1

8484

)2(
)(

222 












sss

s

ss

C

ss

sB

s

A
sY  

 

Multiply by s and let s0 

 

 A=1/8 

  

  Multiply by s(s2+4s+8) 

 

  A(s2+4s+8)  +  B(s+2)s  + Cs = s + 1 

 

  As2 + 4As + 8A + Bs2 + 2Bs + Cs = s + 1 

 

s2:   A + B = 0       B = A =  
8

1
 

s1:    4A + 2B + C =  1         C =  1 +  2 








8

1
 4 









8

1
=

4

3
 

s0:   8A = 1        A = 
8

1
      (This checks with above result) 
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 

2222 2)2(

4/3

2)2(

)2(8/18/1
)(









ss

s

s
sY  

 

  y(t) = 








8

1
  









8

1
e-2t cos 2t + 









8

3
e-2t sin 2t 
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Laplace transform of the system of ODEs gives: 

 

   

   

1
2

2
2 13 2

tdy
y e

dt

dy
y y

dt

 
  

 

 
  

 

 

 

1 2

2 2 1

1
           (1)

1

3 2             (2)

sY Y
s

sY Y Y

 


 

 

 

Next solve Equation 2 for Y2 in terms of Y1 

 

2 1

1
2

( 3) 2

2
                   (3)

3

Y s Y

Y
Y

s

 




 

Substitute equation 3 into equation 1 and solve for Y1 

 

1
1

1

2 1

3 1

2 1

3 1

Y
sY

s s

Y s
s s

 
 

 
  

  

 

1

1

2
( 1)( )

3

Y

s s
s



 


 

Expand using partial fractions: 

 

1 2 2

3 1 1 2

( 1) ( 2) 2 1 ( 1)

s
Y

s s s s s


   

    
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Now go back and substitute into equation 3 to get Y2 and expand using partial 

fractions: 

 

1
2 2 2

2 2 2 2 2

3 ( 1) ( 2) 2 1 ( 1)

Y
Y

s s s s s s
    

     
 

 

Finally, get both time-domain solutions using the inverse Laplace transform: 

 
2

1

2

2

( ) 2

( ) 2( )

t t t

t t t

y t e e te

y t e e te

  

  

  

  
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   V
i

dc
qc qc

dt
   

 

 Since V and q are constant, taking Laplace transforms give 

 

   sVC(s) + qC(s) = q Ci(s) 

  

 Note that c(t = 0) = 0 

 

 Also, ci(t) = 0 ,  t 0 

  ci(t) = ic  , t > 0 

 

 Taking Laplace transform of the input function, a constant, gives 

 

   
s

c
sC i

i )(  

 so that 

   sVC(s) + qC(s) = q
s

ci  or  C(s) = 
( )

iqc

sV q s
 

 

 Dividing numerator and denominator by q 

 

   C(s) = 

ss
q

V

ci









1

 

 

 Use Transform pair #3 in Table 3.1 to invert ( =V/q) 
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   c(t) = ic  1
q

t
Ve

 
 

 
 

 

Using MATLAB, the concentration response is shown in Fig. S3.18. (Consider 

 V = 2 m3,  ci=50 Kg/m3  and q = 0.4 m3/min) 
  

  
     Figure S3.18.  Concentration response of the reactor effluent stream. 

 

 

 3.19 

 

 

(a) Take the Laplace transform of each term, taking into account that all initial 

conditions are zero: 

 
2

2

2

2

(0) '(0) 5 5 (0) 8 8 (0)

5 (8 1)

1
( )

8 1
( 5 1)

8 1

( 5 1)

s Y sy y sY y Y sU u U

s Y sY Y U s

U s
s

s
Y s s

s

s
Y

s s s

       

   




  




 

 

 

Now use symbolic mathematical software (ex. Mathematica) to solve for y(t).  

 

InverseLaplaceTransform[(8*s+1)/(s*(s^2+5*s+1)),s,t] 

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50

Time

c
(t

)
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g[t_]:=
5 21 5 21 21 5 21 5

2 2 2 2
1

21 11 21 21 11 21 42
41

t t t t

e e e e
   

  
     
 
 

 

Plot[g[t],{t,0,100},AxesLabel{time,Y},PlotRange{{0,100},{0 ,2}}] 

 

   

Figure S3.19a: Tank level response to a unit step change in flow rate. 

 

(b)  Define the time when y(t) reaches its maximum as tmax. This time occurs 

when y′(t)=0. Solve for this time using Mathematica and find that tmax=0.877 

and y(tmax)=1.558. Therefore, the tank will not overflow.  

 

(c) Now find the general solution for any input step size, M (the solution is 

denoted in this case as YM(s) and yM(t) for clarity). The input U(s) is M/s. 
 

2

2

( )

(8 1)
( 5 1)

(8 1)

( 5 1)

M

M

M
U s

s

M s
Y s s

s

M s
Y MY

s s s




  


 

 

 

 

YM is the previous Y, multiplied by the size of the step, M. Since M is a constant, 

taking the inverse Laplace transform gives: 

 

( ) ( )My t My t  

 

Now solve the equation: 

0 2 4 6 8 10

t0

1

2

3

4

y
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max max( ) 2.5 ( ) (1.558)

2.5
1.605

1.558

My t My t M

M

  

 
 

 

The maximum step change in the flow rate into the tank that will not overflow the 

tank is 1.605. 

 

 
Figure S3.19b: Tank level response to a 1.605 step change in flow rate.  

 

 

 
 

a) Given constant volumes, overall balances on the three tanks indicate that 

the flow rate out of each tank is equal to q 

 

  Component balance for tracer over each tank, 

 

   
1

1
1     ( )i

dc
V q c c

dt
 

 
 

   
2

2
2 1    ( )

dc
V q c c

dt
 

 
 

   
3

3
3 2    ( )

dc
V q c c

dt
 

 

0 2 4 6 8 10

t0

1

2

3

4

y

3.20 
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b) Taking Laplace transform of above equations and eliminating

1 2( ) and C ( ) givesC s s
 

  
   

1 2 3

3

1 2 3

( ) ( )
/ / /

i

q q q

V V V
C s C s

s q V s q V s q V

   
   

   
  

 
 

  Since ( ) ( ),           ( ) 1i ic t t C s   

 

1.  1 2 3V V V V  
 

   

3

31 2
3 3 2 3

( / )
( )

( / ) ( / ) ( / ) ( / )

q V
C s

s q V s q V s q V s q V

 
   

     
 

   
2

3 1 2 3

( / ) ( / ) ( / )
( )

q V t q V t q V t
c t e te t e    

  
 

 

   2.  1 2 3 1V V V V  
 

  

   3 4 5 6
31 2 ( / )( / ) ( / )

( )
q V tq V t q V t

c t e e e  
 

  
 

 

 (c) Yes, amount of tracer can be calculated by measuring 3( )c t , 

  amount of tracer = 3

0

( )qc t dt



 , which can be evaluated numerically 

 

 

 3.21 

 

 

Start with the Laplace version of the equations from Exercise 3.20: 

 

   
1 2 3

3

1 2 3

( ) ( )
/ / /

i

q q q

V V V
C s C s

s q V s q V s q V

   
   

   
  

 
 

Since V1=V2=V3, this equation reduces to: 

 

 

3

3 3
( ) ( )                             (1)

/
i

q

V
C s C s

s q V

 
 
 

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where ci(t) is a pulse of magnitude A and width tw. A pulse can be described by the 

sum of two step functions. The first will be a step function of magnitude A at time 

0. The second will be a step function of –A at t=tw.  

 

( ) ( ) ( )

1
( )               (2)

w

w

i w

t s
t s

i

c t AS t AS t t

A A e
C s e A

s s s




  

 
    

 

 

Now substitute Equation (2) into Equation (1). For simplicity, define a new variable 

f=q/V. 

 

 

 

3

3 3

(1 )
( )

wt s
A f e

C s
s s f







 

Now use a symbolic mathematics software to find the inverse Laplace transform, 

giving c3(t). The solution is formulated as a function of t, f, A, and tw. Then as an 

example, we plot c3(t) for f=1/20, A=10, and tw=1.  

 

In Mathematica, take the inverse Laplace transform: 

 

InverseLaplaceTransform[𝐴 ∗ 𝑓^3
∗ (1 − Exp[−tw ∗ 𝑠]) (𝑠 ∗ (𝑠 + 𝑓)^3)⁄ , 𝑠, 𝑡] 

 

The solution: 

 

c3(t) = 

½ 𝐴(ⅇ−𝑓𝑡(−2 + 2ⅇ𝑓𝑡 − 2𝑓𝑡 − 𝑓2𝑡2)

− ⅇ𝑓(−𝑡+tw)(−2 + 2ⅇ𝑓(𝑡−tw) − 2𝑓(𝑡 − tw)

− 𝑓2(𝑡 − tw)2)HeavisideTheta[𝑡 − tw]) 

 

Define the function in terms of the parameters: 

 

𝑔[t_, f_, A_, tw_]

≔
1

2
𝐴(ⅇ−𝑓𝑡(−2 + 2ⅇ𝑓𝑡 − 2𝑓𝑡 − 𝑓2𝑡2) − ⅇ𝑓(−𝑡+tw)(−2

+ 2ⅇ𝑓(𝑡−tw) − 2𝑓(𝑡 − tw) − 𝑓2(𝑡 − tw)2)HeavisideTheta[𝑡
− tw]) 

 

Then plot the concentration over time, assuming f=1/20, A=10, and tw=1. 

 

Plot[𝑔[𝑡, 1 20⁄ , 10,1], {𝑡, 0,200}, AxesLabel → {time, C3}] 
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Figure S3.21: Plot of c3 over time in response to a pulse in ci of amplitude 10 and 

width 1, with f=1/20.  

 

 

 3.22 

 

  

Solve this problem using a symbolic software program such as Mathematica. The 

following script will solve the problem (note that only 4 of the 5 possible initial 

conditions on y and its derivatives are included, otherwise the problem is over-

specified). 

 

DSolve[{𝑦''''[𝑥] + 16 ∗ 𝑦'''[𝑥] + 86 ∗ 𝑦''[𝑥] + 176 ∗ 𝑦′[𝑥] + 105 ∗ 𝑦[𝑥] =
= 1, 𝑦[0] == 0, 𝑦′[0] == 0, 𝑦''[0] == 0, 𝑦'''[0] == 0}, 𝑦[𝑥], 𝑥] 

 

Running this script will give the result: 

 

{{𝑦[𝑥] →
ⅇ−7𝑥(−1 + ⅇ𝑥)4(5 + 20ⅇ𝑥 + 29ⅇ2𝑥 + 16ⅇ3𝑥)

1680
}} 

 

Use the Expand[ ] command to expand this solution into its individual terms.  

 

{{𝑦[𝑥] →
1

105
+

ⅇ−7𝑥

336
−

ⅇ−5𝑥

80
+

ⅇ−3𝑥

48
−

ⅇ−𝑥

48
}} 

 

If desired, the fractions can be approximated as decimals: 

 

01.0021.0021.00125.0003.0)( 357   tttt eeeety  

50 100 150 200

time

0.02

0.04

0.06

0.08

0.10

0.12

C3
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Chapter 4 © 
 

 

 

 4.1 

 

( )
                                                                                    

( )

Y s d

U s bs c



 

a) Gain K can be obtained by setting s = 0  

d
K

c
  

Alternatively, the transfer function can be placed in the standard gain/time 

constant form by dividing the numerator and denominator by c: 

( )
             ,

( ) 1

Y s K

U s s



 where  and 

d b
K

c c
  . 

b) In order to determine the boundedness of the output response, consider a step 

input of magnitude M. Then use U(s) = M/s and 

          ( )
1

K M
Y s

s s



 

From Table 3.1, the step response is:  
/          ( ) (1 e )ty t KM    

By inspection, this response will be bounded only if τ > 0, or equivalently, 

only if b/c > 0. 

 

 

 4.2 

 

 

a) K=3 

b) =10 

c) We use the Final Value Theorem to find the value of y(t) when t. 

0

12
( )

(10 1)

12
( )

(10 1)

12
lim 12

(10 1)

s

s

s

s

e
Y s

s s

e
sY s

s

e

s


















   

 

From the Final Value Theorem, y(t) = 12 when t 

 

 

 d) y(t) = 12(1e(t-1)/10)  ,   then  y(10) =  12(1-e-9/10) = 7.12 
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  7.12/12=0.593. 

 

e)    Again use the final value theorem.  

0

3 (1 e )
( )

(10 1)

3 (1 )
( )

(10 1)

3 (1 ) 3(1 1)
lim 0

(10 1) 1

s s

s s

s s

s

e
Y s

s s

e e
sY s

s

e e

s

 

 

 













 
 



  

           From the Final Value Theorem, y(t) = 0 when  t 

 

f)    

   

0

3
( ) 1

(10 1)

3
( )

(10 1)

3
lim 0

(10 1)

s

s

s

s

e
Y s

s

se
sY s

s

se

s


















    

 

          From the Final Value Theorem, y(t)= 0  when  t 

 

g) 
2 2

3 10 30
( )

(10 1) ( 4) (10 1)( 4)

s se e
Y s

s s s s

 

 
   

   then 

 
( 1)

10
10 1

( ) 30 ( 1) (sin(2( 1)) 20cos(2( 1)))
401 802

t

y t S t e t t
  

      
 

 

 

The sinusoidal input produces a sinusoidal output and y(t) does not have a 

limit when t. 

 

These solutions can be verified by using mathematical software such as 

Mathematica or Simulink.                                    
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Fig. S4.2a. Output for parts c) and d).    Fig. S4.2b. Output for part e). 

 
 

Fig. S4.2c. Output for part f).     Fig. S4.2d. Output for part g). 

 

 

 4.3 

 

 

The transfer function for the pressure transmitter is given by, 

  
( ) 1

                                                                        (1)
( ) 10 1

mP s

P s s




 
 

 

 and ( ) 15 /P s s  for the step change from 35 to 50 psi. Substituting (1) and 

rearranging gives: 

   
1 15

 ( )  
10 1

mP s
s s

 


 

 

From item #13 in Table 3.1, the step response is given by: 

 
/10( ) 15 (1 e )                                                                (2)t

mP t      

 

Let ta be the time that the alarm sounds. Then,  

( ) 45 35 10 psi                                                          (3)m aP t     

 

Substituting (3) and t=ta into (2) and solving gives ta = 11s. Thus, the alarm will 

sound 11 seconds after 1:30PM. 

 

10 20 30 40 50
time

2

4

6

8

10

12

y

10 20 30 40 50
time

0.05

0.10

0.15

0.20

0.25

y

10 20 30 40 50
time

0.05

0.10

0.15

0.20

0.25

0.30

y

10 20 30 40 50
time

1

1

2

y



 

4-4 
 

 
 4.4 

 

 

 From Exercise 4.2, 

-1

( ) 3
          

( ) 10 1

Rearrange,

          ( )[10 1] 3 ( )            (2)

Take  of (2),

          10 3 ( 1)                  (3)

Take  of (3) for (0)=4,

         10[ ( ) 4] ( ) 3

s

s

Y s e

U s s

Y s s e U s

dy
y u t

dt

y

sY s Y s e










 

  

  

L

L

1 2

( )                                      

Substitute ( ) 2 /  and rearrange to give,

6
       10sY-40+Y=

6
(10 1) 40

Partial fraction expansion:

6 40
      ( )

(10 1) (10 1)

6

(10 1)

s

s

s

s

U s

U s s

e

s

e
Y s

s

Y s e
s s s

a a

s s s









  

 
 

 


1 1

2 2

-1

( 1)/10 /10

10 1

Find :  Multiply by  and set  0    6

Find :  Multiply by 10 1 and set   0.1    60

6 6 4
( )

0.1 ( 0.1)

Take ,

( ) 6 ( 1)(1 ) 4

:   At =0,   (

s

t t

s

s s

s s

Y s e
s s s

y t S t e e

Check t y

 

 



  



  

    

 
   

  

   

L

0)=4.

 



 

4-5 
 

 

 4.5   

 

 a) 2
dt

d 1y
 = -2y1 – 3y2 + 2u1      (1) 

   
dt

d 2y
 = 4y1 – 6y2 + 2u1 + 4u2      (2) 

 

 Taking Laplace transform of the above equations and rearranging, 

 

  (2s+2)Y1(s) + 3Y2(s) = 2U1(s)      (3) 

 

  -4 Y1(s) + (s+6)Y2(s)=2U1(s) + 4U2(s)    (4) 

  

 Solving Eqs. (3) and (4) simultaneously for Y1(s) and Y2(s), 

  Y1(s) = 1 2 1 2

2

(2 6) ( ) 12 ( ) 2( 3) ( ) 12 ( )

2( 3)( 4)2 14 24

s U s U s s U s U s

s ss s

   


  
 

 

  Y2(s) = 1 2 1 2

2

(4 12) ( ) (8 8) ( ) 4( 3) ( ) 8( 1) ( )

2( 3)( 4)2 14 24

s U s s U s s U s s U s

s ss s

     


  
 

 

 Therefore, 

 

   1

1

( ) 1

( ) 4

Y s

U s s



  , 1

2

( ) 6

( ) ( 3)( 4)

Y s

U s s s




 
 

 

   2

1

( ) 2

( ) 4

Y s

U s s



  , 2

2

( ) 4( 1)

( ) ( 3)( 4)

Y s s

U s s s




 
 

 

 

 4.6 

 

a) 
-1

/10 /10

Taking the  gives,

          ( ) 0.09e     and    ( )  ( ) 0.3  0.09e                                                                              

The intial values are (0) 0.09 and

t tx t x t x x t

x

      

 

L

         (0) (0) 0.09 0.3 0.39.

The plot of the concentration response is shown in Fig. S4.6.

x x x    
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Fig. S4.6. Transient response. 

 

The transfer function is given by: 

( ) 0.6

( ) 10 1i

X s

X s s




 
 

For the impulse input, ( ) 1.5 ( )ix t t  , and from Table 3.1, ( )=1.5iX s . Thus,  

0.9
( )

10 1
X s

s
 


 

 

b)  Initial Value Theorem: 

   
0.9

(0) ( ) 0.09lim
10s

x sX s


     

   Thus, (0) (0) 0.09 0.3 0.39x x x      

c)  For the steady-state condition,  

 

(0) 0.3x x   

 

d)  As indicated in the plot, the impulse response is discontinuous at t=0. The 

results for parts (a) and (b) give the values of x(0) for t=0+ while the result for (c) 

gives the value for t=0-.  

 

 

 4.7 
 

     The simplified stage concentration model becomes 

 

   )()( 1210
1 yyVxxL

dt

dx
H      (1) 

    y1 = a0 + a1x1 + a2x1
2 +a3x1

3     (2) 

 

 

x

t
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a) Let the right-hand side of Eq. 1 be denoted as f(L, x0, x1, V, y1, y2)  

 

   ),,,,,( 2110
1 yyVxxLf

dt

dx
H

1

1

0

0

x
x

f
x

x

f
L

L

f

sss










































 

 
2

2

1

1

y
y

f
y

y

f
V

V

f

sss








































  

 Substituting for the partial derivatives and noting that 
dt

xd

dt

dx 11


 : 

  


dt

xd
H 1

12121010 )()( yVyVVyyxLxLLxx    (3) 

 

 Similarly, 

  
1

2

131211

1

11 )32()( xxaxaax
x

g
xgy

s













    (4) 

 

b) For constant liquid and vapor flow rates, 0 VL  

 

 Taking Laplace transforms of Eqs. 3 and 4, 

 

  )()()()()( 12101 sYVsYVsXLsXLsXHs     (5) 

 

  )()32()( 1

2

131211 sXxaxaasY       (6) 

 

 From Eqs. 5 and 6, the desired transfer functions are: 

 

  
1)(

)(

0

1










s

H

L

sX

sX
  ,  

1)(

)(

2

1










s

H

V

sY

sX
 

  
1

)32(

)(

)(
2

13121

0

1










s

H

L
xaxaa

sX

sY
 

 
1

)32(

)(

)(
2

13121

2

1










s

H

V
xaxaa

sY

sY
 

 

where: 

  
)32(

2

13121 xaxaaVL

H


   
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 The material balance is,  

 

   5.1)(
Rhw

dt

Ahd
i 


 

 or 

   
5.11

h
A

R
w

Adt

dh
i





  

 Use a Taylor series expansion to linearize 

 

   )(
5.1

)(
11 5.0

5.1 hh
A

hR
ww

A
h

A

R
w

Adt

dh
iii 



















  

 

 Since the bracketed term is identically zero at steady state, 

 

   h
A

hR
w

Adt

hd
i








 5.05.11

 

 

 Rearranging 

   iw
hR

h
dt

hd

hR

A



5.05.0 5.1

1

5.1
 

 Thus, 

1)(

)(








s

K

sW

sH

i

 

 where,   


w

h

hR

h

hR
K

5.15.15.1

1
5.15.0

 
 

height

flowrate
 











w

V

hR

hA

hR

A

5.15.15.1 5.15.0

 
 

 time
timemass

mass


/
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a) The model for the system is given by 

 

)()( TTAhTTwC
dt

dT
mC wppi      (2-51) 

 )()( TTAhTTAh
dt

dT
Cm wppwsss

w
ww      (2-52) 

Assume that m, mw, C, Cw, hp, hs, Ap, As, and w are constant. Rewriting the 

above equations in terms of deviation variables, and noting that  

 

dt

Td

dt

dT 
    ,       

dt

Td

dt

dT ww


  

  )()( TTAhTTwC
dt

Td
mC wppi




 

  )()0( TTAhTAh
dt

Td
Cm wppwss

w
ww




 

 

 Taking Laplace transforms and rearranging, 

 

  )()()()( sTAhsTwCsTAhwCmCs wppipp
    (1) 

 )()()( sTAhsTAhAhsCm ppwppssww
     (2) 

 

 Substituting in Eq. 1 for )(sTw
 from Eq. 2, 

 ppipp AhsTwCsTAhwCmCs  )()()( )(
)(

sT
AhAhsCm

Ah

ppssww

pp



 

 Therefore,  

 






)(

)(

sT

sT

i

2)())((

)(

ppppsswwpp

ppssww

AhAhAhsCmAhwCmCs

AhAhsCmwC




 

 

 b) The gain is 












0
)(

)(

si sT

sT

ppssppss

ppss

AhAhAhAhwC

AhAhwC





)(

)(
 

 

c) No, the gain would be expected to be one only if the tank were insulated so 

that hpAp= 0. For the heated tank, the gain is not one because heat input 

changes as T changes. 
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Additional assumptions 

 

1. Perfect mixing in the tank 

2. Constant density   and specific heat C. 

3. Ti is constant. 

 

Energy balance for the tank, 

 

2( ) ( ) ( )i a

dT
VC wC T T Q U bv A T T

dt
        

 

Let the right-hand side be denoted by f(T,v), 

 

 ),( vTf
dt

dT
VC v

v

f
T

T

f

ss


























    (1) 

 
2( )

s

f
wC U bv A

T

 
    

 
 

 












sv

f
2 ( )avbA T T   

 

Substituting for the partial derivatives in Eq. 1 and noting that 
dt

dT
=

dt

Td 
 

 

2

2

( ) 2 ( )

( ) 2 ( )

a

a

dT
VC wC U bv A T vbA T T v

dt

dT
VC wC U bv A T vbA T T v

dt






        


        

 

Taking the Laplace transform and rearranging 

 

 

2

2

2

2

2

( ) 2 ( )

( ) 2 ( )

2 ( )

( )

2 ( )

( ) ( )

( )
1

( )

a

a

a

a

VCsT wC U bv A T vbA T T V

VCs wC U bv A T vbA T T V

vbA T T
T V

VCs wC U bv A

vbA T T

T s wC U bv A

V s VC
s

wC U bv A









         

           

 
 

      



  


  
   
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a) Mass balances on the surge tanks: 

 

21
1 ww

dt

dm
       (1) 

32
2 ww

dt

dm
       (2) 

  Ideal gas law: 

   RT
M

m
VP 1

11         (3) 

   RT
M

m
VP 2

22        (4) 

  Flows    (Ohm's law: 
Resistance

ForceDriving


R

E
I   ) 

   )(
1

1

1

1 PP
R

w c        (5) 

   )(
1

21

2

2 PP
R

w        (6) 

   )(
1

2

3

3 hPP
R

w        (7) 

 

  Degrees of freedom: 

 number of parameters : 8 (V1, V2, M, R, T, R1, R2, R3) 

 number of variables : 9 (m1, m2, w1, w2, w3, P1, P2, Pc, Ph) 

 number of equations : 7 

   number of degrees of freedom that must be eliminated = 9  7 = 2 

 

Because Pc and Ph are known functions of time (i.e., inputs), NF = 0. 

 

b) Model Development 

Substitute (3) into (1) :  21
11 ww

dt

dP

RT

MV
     (8) 

Substitute (4) into (2) :  32
22 ww

dt

dP

RT

MV
     (9) 
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Substitute (5) and (6) into (8): 

 

    )(
1

)(
1

21

2

1

1

11 PP
R

PP
Rdt

dP

RT

MV
c           

   2

2

1

211

11 1
)

11
()(

1
P

R
P

RR
tP

Rdt

dP

RT

MV
c    (10) 

Substitute (6) and (7) into (9):  

 

     )(
1

)(
1

2

3

21

2

22
hPP

R
PP

Rdt

dP

RT

MV
  

   )(
1

)
11

(
1

3

2

32

1

2

22 tP
R

P
RR

P
Rdt

dP

RT

MV
h  (11) 

  Note that    ),( 211
1 PPf

dt

dP
     from Eq. 10 

          ),( 212
2 PPf

dt

dP
      from Eq. 11 

This system has the following characteristics: 

(i) 2nd-order denominator (2 differential equations) 

  (ii) Zero-order numerator (See Example 4.7 in text) 

(iii) The gain of 
)(

)(3

sP

sW

c



 is not equal to unity. (It cannot be because the 

                    units for the two variables are different). 

 

 

 4.12 
 

 

(a) First write the steady-state equations: 

 

0 ( ) ( )

0 ( )

Now subtract the steady-state equations from the dynamic equations

( ) ( ) ( ) ( )         (1)

( ) ( ) ( )    

i e e e

e e e

i i e e e e

e
e e e e e e

wC T T h A T T

Q h A T T

dT
mC wC T T T T h A T T T T

dt

dT
m C Q Q h A T T T T

dt

   

  

             

                                   (2)

Note that /  '/  and / '/ . Substitute

deviation variables; then multiply (1) by 1/wC and (2) by 1/(h ).

e e

e e

dT dt dT dt dT dt dT dt

A

 
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'
( ' ' ) ( ' ')                                              (3)

' '
( ' ')                                                         (4)

Eliminate one of the output v

e e
i e

e e e
e

e e e e

h Am dT
T T T T

w dt wC

m C dT Q
T T

h A dt h A

    

  

2

ariables, T'(s) or T' ( ),  by solving

(4) for it, and substituting into (3). Because T' ( ) is the intermediate 

variable, remove it. Then rearranging gives:

1

e

e

e e e e e e

e e e e

s

s

mm C m C m C m
s s

wh A h A wC w

  
     
  

'( )

1
1 ' ( ) '( )e e

i

e e

T s

m C
s T s Q s

h A wC



 
   
 

 

Because both inputs influence the dynamic behavior of T', it is necessary to 

develop two transfer functions for the model. The effect of Q' on T' can be 

derived by assuming that T  is constant at its i

12

2 1

nominal steady-state value, T .

Thus, T'  = 0 and the previous equation can be rearranged as:

'( ) 1/
( )          ( ' ( ) 0)

'( ) 1

Similarly, the effect of T'  on T' is obtained by assumin

i

i

i

i

T s wC
G s T s

Q s b s b s
  

 

g that Q=Q

(that is, Q'=0):

 

22

2 1

1

2

1
'( )

( )         ( '( ) 0)
' ( ) 1

where

 is defined to be 

 is defined to be 

By the superposition principle, the effect of simultaneous changes in 

e e

e e

i

e e e e

e e

e e

e e

m C
s

h AT s
G s Q s

T s b s b s

m C m C m
b

h A wC w

mm C
b

wh A



  
 

 

1 2

both

inputs is given by 

'( ) ( ) '( ) ( ) ' ( )iT s G s Q s G s T s 

 

2

1

(b)

The limiting behavior of m  going to zero has b 0

and b /  and simplifies the last equation to

1/ 1
'( ) '( ) ' ( )

1 1

e e

i

C

m w

wC
T s Q s T s

m m
s s

w w





 

 
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A mass balance yields: 

                       (1)i

dm
q q

dt
    

 

The mass accumulation term can be written, noting that dV=Adh=wtLdh, as 

          (2)t

dm dV dh
w L

dt dt dt
    

 

where wtL represents the changing surface are of the liquid. Substituting (2) into 

(1) and simplifying gives: 

 

          (3)t i

dh
w L q q

dt
   

 

The geometric construction indicates that wt/2 is the length of one side of a right 

triangle whose hypotenuse is R. Thus, wt/2 is related to the level h by 

2 2

A mass balance yields:

w
( )

2

t R R h  
 

After rearrangement,  

2 ( )           (4)tw D h h   

with D = 2R (diameter of the tank). Substituting (4) into (3) yields a nonlinear 

dynamic model for the tank with qi and q as inputs: 

1
( )

2 ( )
i

dh
q q

dt L D h h
 


 

To linearize this equation about the operating point ( )h h , let 

2 ( )

iq q
f

L D h h





 

Then 

 

1

2 ( )

1

2 ( )

1
0

2 ( )

i s

s

i

s
s

f

q L D h h

f

q L D h h

f
q q

h h L D h h

 
 

  

  
 

  

    
             
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The last partial derivative is zero, because iq q from the steady-state relation, and 

the derivative term in brackets is finite for all 0<h<D. Consequently, the linearized 

model of the process, after substitution of deviation variables, is  

 

' 1
( ' ')

2 ( )
i

dh
q q

dt L D h h
 


 

 

Recall that the term 2 ( )L D h h  in the previous equation represents the variable 

surface area of the tank. The linearized model treats this quantity as a constant that 

depends on the nominal (steady-state) operating level. Consequently, operation of 

the horizontal cylindrical tank for small variations in level around the stead-state 

value would be much like that of any tank with equivalent but constant liquid 

surface. For example, a vertical cylindrical tank with diameter D’ has a surface are 

of liquid in the tank equal to 2( ') / 4 2 ( )D L D h h   . Note that the coefficient 

1
( )

2
L D h h is infinite for 0h   or for h D and is a minimum at / 2h D . 

Thus, for large variations in level, this equation would not be a good approximation, 

because dh/dt is independent of h in the linearized model. In these cases, the 

horizontal and vertical tanks would operate very differently.  
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 Assumptions 

1. Perfectly mixed reactor 

2. Constant fluid properties and heat of reaction. 

 

a) Component balance for A, 

AAA
A cTVkccq

dt

dc
V

i
)()(       (1) 

Energy balance for the tank, 

( ) ( ) ( )i A

dT
VC qC T T H Vk T c

dt
          (2) 

Since a transfer function with respect to cAi is desired, assume the other inputs, 

namely q and Ti, to be constant. 

Linearize (1) and (2) and note that 
dt

cd

dt

dc AA


   , 
dt

Td

dt

dT 
 , 

 

T
T

TkcVcTVkqcq
dt

cd
V AAAi

A 


2

20000
)())((    (3) 

T
T

TkcHVqC
dt

Td
VC A














2

20000
)(  + ( ) ( ) AH Vk T c  (4) 
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 Taking the Laplace transforms and rearranging, 

 

    )(
20000

)()()()(
2

sT
T

TkcVsCqsCTVkqVs AAiA
   (5) 

2

20000
( ) ( ) ( ) ( ) ( ) ( )A AVCs qC H Vc k T T s H Vk T C s

T

 
       

 
 (6) 

 

Substituting for )(sCA
  from Eq. 5 into Eq. 6 and rearranging, 

 

2 2

2 2

( ) ( )

20000 20000( )
( ) ( ) ( ) ( ) ( )Ai

A A

T s HVk T q

C s
Vs q Vk T VCs qC H Vc k T H c V k T

T T

 


  
           

 

 (7) 

Ac  is obtained from the steady-state version of Eq.1, 

 0.001155
( )

Ai

A

qc
c

q Vk T
 


  mol/cu.ft. 

Substituting the numerical values of T , , C, (H), q, V, Ac  into Eq. 7 and 

simplifying gives, 

 

)150)(10722.0(

38.11

)(

)(








sssC

sT

Ai

 

b) The gain K of the above transfer function is equal to 

0
)(

)(
















sAi sC

sT
, 

6 7

2 2

0.15766

3.153 10 13.84 4.364.10
1000 1000

A A

q
K

c cq q

T T


  

     
  

       (8) 

 

It is obtained by setting s=0 in Eq. 7 and substituting numerical values for , 

C, (H), V. Evaluating sensitivities gives, 

 

4

26

2

1050.6315301384.0
10

2
15766.0











T

cq

q

K

q

K

qd

dK A  

 











 










 










3

7

3

62 10364.42210153.3
84.13

1000153.3 T

c

T

cqK

Td

dK AA  

       51057.2   

 

Ai

A

AAi cd

cd

cd

dK

cd

dK
  
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  
















 








 













13840

10364.410153.3
84.13

100015766.0 2

7

2

62

q

q

TT

q

q

K
 

 

  31087.8   
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 Assumptions: 

1. Constant physical properties 

2. Perfect mixing 

 

 Dynamic model: Balances on cell mass and substrate concentration 

 1( ) ( , , )
dX

S X DX f S X D
dt

    (1) 

 / 2( ) / ( ) ( , , , )X S f f

dS
S X Y D S S f S X D S

dt
      (2) 

where: 

( )  is defined as ,

 is defined as 

m

s

S
S X X

K S

F
D

V





 

Linearization of (1) about the nominal steady state gives a linearized model of the 

form:  

 

    1 1 1

ssss ss

f f fdX
S X D

dt S X D

   
    

  
 

 

 
2

( )
' '

( )

m s m m

s s

K S S SdX
X S D X X D

dt K S K S

       
      

    
  (3) 

 

Linearization of (2) about the nominal steady state:  

 

 2 2 2 2' ' ' f

ss ss ss f ss

f f f fdS
S X D S

dt S X D S

    
   

   
 

 

2

/ /

( )1 1
' ' ( ) '

( )

m s m m
f f

X S s X S s

K S S SdS
X D S X S S D D S

dt Y K S Y K S

       
          

    
   

(4) 
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Substituting the numerical values gives: 

 

  
'

0.113 '
dX

S
dt

   2.25 'D  

 

  
'

0.326 ' 0.2 ' 9 ' 0.1 f

dS
S X D S

dt
      

Taking Laplace transforms, assuming steady state initially: 

 

)('113.0)(' sSssX    )('25.2 sD   

 

'( ) 0.326 '( ) 0.2 ( ) 9 ( ) 0.1 ( )fsS s S s X s D s S s         

 

In order to derive the transfer function between X and D, assume that Sf is 

constant at its nominal steady-state value, ( ) ;  thus 0.f f fS t S S   Rearranging 

gives, 

)('
113.0

)(' sS
s

sX   )('
25.2

sD
s

 (5) 

 

0.2 9
'( ) '( ) '( )

0.326 0.126
S s X s D s

s s

   
    

    
 (6) 

 

 Substitute (6) into (5) and rearrange gives, 

 

2

'( ) (2.25 1.7)

'( ) 0.326 0.0226

X s s

D s s s

 


 
 (7) 

 

 Rearrange (7) to a standard form: 

 

2 2

( 1)'( )
                        

'( ) 2 1

            where:

                            77.4 g h /L

                           0.778 h

                            6.65 h

                  

a

a

K sX s

D s s s

K



 








 

 





          1.08 

 

 

Note that the step response will be overdamped because  >1. 
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Chapter 5 
 

 

 5.1 

 

No, the time required for the output Y(s) to reach steady state does not depend on 

the magnitude of the step input in U, it only depends on the time constant 𝜏𝑖 and 

delay θ . Since the Laplace transform of a step change is M/s, we have: 

      
    1 2 3 41 1 1 1

sKM
Y s G s U s e

s s s s s



   

 
   

   

 The inverse Laplace transform takes the following form: 

    
       

       

1 2

3 4

2 2
/ /1 2

1 2 1 3 1 4 1 2 2 3 2 4

2 2
/ /3 4

1 3 3 2 3 4 1 4 4 2 4 3

t t

t t

e e

Y t KMu t

e e

 

 

 

           


 

           

 

 

 
  

       
 
 

       

   

As shown in above equation, the settling time is not related to the magnitude of 

input signal M.  

 

 

 5.2 

 

(a) For a step change in input of magnitude M: 

      /1 0ty t KM e y      

We note that    0 500 100 400KM y y C        

Then 
 

400
400

2 1
/K

K

C
C Kw

w


 


  

At time 4t   ,  4 400y C  ; thus, 4/400 100
1

500 100
e 

 


  , or 2.89 min    

 
 

 

' 400

' 2.89 1
/

T s

P s s
C Kw    

   

(b)  For an input ramp change with slope 0.5 / mina Kw : 

400 0.5 200 /K mia C n     

 

This maximum rate of change will occur as soon as the transient has died out, i.e., 

after  52.89 min  15 min have elapsed. 

Solution Manual for Process Dynamics and Control, 4th edition 

Copyright © 2016 by Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp, 

and Francis J. Doyle III 
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            Figure S5.2.  Temperature response for a ramp input of magnitude 0.5 Kw/min. 

 

 5.3 

 

 The contaminant concentration c increases according to this expression: 

 

   c(t) = 5 + 0.2t 

 

 Using deviation variables and Laplace transforming, 

 

   ( ) 0.2c t t    or  
2

2.0
)(

s
sC   

 Hence   

2

2.0

110

1
)(

ss
sCm 


  

 

 and applying Eq. 5-21 

 

   /10( ) 2( 1) 0.2t

mc t e t     

 

 As soon as ( ) 2 ppmmc t    the alarm sounds. Therefore, 

 

   t = 18.4 s       (starting from the beginning of the ramp input) 

 

0 1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

Time(/min)

T
'
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The time at which the actual concentration exceeds the limit (t = 10 s) is 

subtracted from the previous result to obtain the requested t . 

 

 t = 18.4  10.0 = 8.4 s     

   
  Figure S5.3.  Concentration response for a ramp input of magnitude 0.2 Kw/min. 

 

 5.4 

 

 

a) Using deviation variables, the rectangular pulse is 

 

0       t < 0 

Fc =  2 0  t < 2 

0 2  t   

 

  Laplace transforming this input yields   

 

    ' 22
( ) 1 s

FC s e
s

   

  

The input is then given by  

 

  
2

' 8 8
( )

(2 1) (2 1)

se
C s

s s s s



 
 

 

 

and from Table 3.1 the time domain function is  

 

  
' /2 ( 2)/2( ) 8(1 ) 8(1 )t tc t e e      S )2( t     

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

time

c
' m
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            Figure S5.4.  Exit concentration response for a rectangular input. 
 

 

b) By inspection of Eq. 1, the time at which this function will reach its 

maximum value is 2, so maximum value of the output is given by 

)1(8)1(8)2( 2/01   eec S )0(      

 

  and since the second term is zero, 057.5)2( c  

 

c) By inspection, the steady state value of )(tc will be zero, since this is a 

first-order system with no integrating poles and the input returns to zero.   

To obtain )(c , simplify the function derived in a) for all time greater 

than 2, yielding  

 

)(8)( 2/2/)2( tt eetc         

 

 which will obviously converge to zero. 

   

Substituting 05.0)(  tc  in the previous equation and solving for t gives 

  

t = 9.233 

 

 

 

 

 

 

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

time

C
'



5-5 

 5.5 
 

a) Energy balance for the thermocouple, 

 

mC )( TThA
dt

dT
s       

 

  where  m is mass of thermocouple 

   C is heat capacity of thermocouple 

   h is heat transfer coefficient 

   A is surface area of thermocouple 

   t is time in sec 

 

  Substituting numerical values in (1) and noting that 

 

  TTs     and  
dt

Td

dt

dT 
 , 

 

   TT
dt

Td
s




15  

 

  Taking Laplace transform, 
115

1

)(

)(








ssT

sT

s

 

 

b) Ts(t) = 23 + (80  23) S(t) 

 

23 TTs  

 

From t = 0 to t = 20,  

 

 )(tTs 57 S(t)       , 
s

sTs

57
)(     

)115(

57
)(

115

1
)(







ss
sT

s
sT s  

 

Applying inverse Laplace Transform, 

 

    )1(57)( 15/tetT   

 

Then 

 

)1(5723)()( 15/teTtTtT   

 

Since T(t) increases monotonically with time, maximum T = T(20). 
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Maximum T(t) = T(20) = 23 + 57 (1-e
-20/15

) = 64.97 C 

c) 

 

 
Figure S5.5.  Thermocouple output for parts b) and c) 

 

 5.6 
 

 

(a) 

M
s

a

s

a

s

a
sY

s

M

ss
sUsGsY

)
1315

()(

)13)(15(

10
)()()(

321 










 
 

Partial fraction expansion: 

a1 = 125, a2 = -45, a3 = 10. 

M
sss

sY )
10

13

45

15

125
()( 







 
 

Inverse Laplace: 

Meety tt )101525()( 3/5/  

 
 

Then, 

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

time

T
'

41.97 º 
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MMeety tt

tt
10)101525(lim)(lim 3/5/  

  
 

Or, final value theorem from Chapter 3 applies: 

 

M
s

M

ss
ssUssGssYty

ososost
10

)13)(15(

10
lim)()(lim)(lim)(lim 





 

 

(b) 

1315
)(

)13)(15(

10
)()()(

21










s

a

s

a
sY

ss
sUsGsY

 
 

Partial fraction expansion: 

a1 = 25, a2 = -15. 

13

15

15

25
)(







ss
sY

 
 

Inverse Laplace: 
3/5/ 55)( tt eety    

 

Then, 

055lim)(lim 3/5/  



tt

tt
eety

 
 

Or, final value theorem from Chapter 3 applies: 

 

0
)13)(15(

10
lim)()(lim)(lim)(lim 




 ss
ssUssGssYty

ososost
 

 

(c) 

js

jba

js

jba

s

a

s

a
sY

sss
sUsGsY




















333321

2

1315
)(

1

1

)13)(15(

10
)()()(

 
 

Partial fraction expansion: 

a1 = 625/26, a2 = -27/2, a3 =  -2/13, b3 = 7/26. 

js

j

js

j

ss
sY

















26/713/226/713/2

13

2/27

15

26/625
)(

 
 

Inverse Laplace: 

tteety tt cos13/4sin13/72/926/125)( 3/5/  
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Then, lim ( )
t

y t


 does not converge. 

 

(d) 

)1(
1

)13)(15(

10
)()()(

stwe
sss

sUsGsY







 
 

According to part (a), we have: 

)101525)(()101525()( 3/)10(5/)10(3/5/   tt

w

tt eettSeety
 

 

Then, 

0)101525()101525(lim)(lim 3/)10(5/)10(3/5/  



tttt

tt
eeeety

 
 

 

 

 5.7 
 

 

Assume that at steady state the temperature indicated by the sensor Tm is equal to 

the actual temperature at the measurement point T. Then, 

 

   
( ) 1

( ) 1 1.5 1

mT s K

T s s s


 

   
 

 

   350mT T C   

 

   ( ) 15sinmT t t    

 

 where =20.1 rad/min = 0.628 rad/min 

 

At large times when t/ >>1, Eq. 5-26 shows that the amplitude of the sensor 

signal is 

   
2 2 1

m

A
A 

  
 

 

 where A is the amplitude of the actual temperature at the measurement   

 point. 

 

  Therefore 
2 215 (0.628) (1.5) 1A   = 20.6C 

 

  Maximum T T A  =350 + 20.6 = 370.6 

 

  Maximum Tcenter = 3 (max T) – 2 Twall  
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    = (3370.6)(2200) = 711.8C 

 

Therefore, the catalyst will not sinter instantaneously, but will sinter if operated 

for several hours. 

 

 

 

 

 5.8 
 

 

a) Assume that q is constant. Material balance over the tank, 

 

qqq
dt

dh
A  21

 

 

Writing in deviation variables and taking Laplace transform 

 

)()()( 21 sQsQsHAs   

 

 
AssQ

sH 1

)(

)(

1





 

 

b)  )(1 tq 5 S(t) – 5S(t-12) 

 

se
ss

sQ 12

1

55
)(   

12

1 2 2

1 5 / 5 /
( ) ( ) sA A

H s Q s e
As s s

     

 

 t
A

th
5

)(  S(t)  )12(
5

t
A

S(t-12) 

 

 

  4 + tt
A

177.04
5

     0 t 12  

   h(t) =  

  4 + 122.612
5











A
    12 < t 
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        Figure S5.8a.  Liquid level response for part b) 

 

   

c) ft122.6h  at the new steady state t  12 

 

d)    1( ) 10 5 12q t S t S t     

 

12

1

10 5
( ) sQ s e

s s

    

12

2 2

10 / 5 /
( ) sA A

H s e
s s

    

 
10

4 4 0.354 0 12

6.122 0.177 12

t t t
h t A

t t


    

 
  

  

The liquid level will keep increasing and there will be no steady-state 

value of liquid level h  . 
 

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

time

h
'(
t)
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        Figure S5.8b.  Liquid level response for part d) 
 

 

 5.9 
 

 

a) Material balance over tank 1. 

 

)33.8( hqC
dt

dh
A i   

 

where  A =  (4)
2
/4 = 12.6 ft

2
 

 

 C = 0.1337 
USGPM

/minft 3

 

 

)()33.8()()( sHCsQCsHAs i
  

 

128.11

12.0

)(

)(








ssQ

sH

i

 

 

For tank 2, 

 

)( qqC
dt

dh
A i   

0 5 10 15 20 25
4

5

6

7

8

9

10

11

Time/min

h
(t

)/
ft
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)()( sQCsHAs i
  , 

ssQ

sH

i

011.0

)(

)(





 

b) ssQi /20)(   

 

For tank 1,     
128.11

1.274.2

)128.11(

4.2
)(







ssss
sH  

 

  h(t) = 6 + 2.4(1 – e
-t/11.28

) 

 

For tank 2,     
2/22.0)( ssH   

 

            h(t) = 6 + 0.22t 

 

c) For tank 1,  h() = 6 +2.4 – 0 = 8.4 ft 

 

For tank 2,  h() = 6 + (0.22) =  ft 

 

d) For tank 1,  8 = 6 + 2.4(1 – e
-t/11.28

)  

   h = 8 ft  at t = 20.1 min 

  For tank 2,  8 = 6 + 0.22t  

   h = 8 ft  at t = 9.4 min 
 

  Tank 2 overflows first, at  9.4 min. 

e) The red line (h’(t)=2 ft, or h(t)= 8 ft) shows that tank 2 overflows first at 

9.4 min. 

 
   Figure S5.9.  Transient response in tanks 1 and 2 for a step input. 
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 5.10 
 

 

 a) The dynamic behavior of the liquid level is given by 

 

  )(
2

tpChB
dt

hd
A

dt

hd






 

 

  where 

   A = 



2

6

R
 B = 

L

g

2

3
 and  C =

L4

3
 

 

  Taking the Laplace Transform and assuming initial values = 0 

 

  )()()()(2 sPCsHBsHAssHs   

 

  or  )(

1
1

/
)(

2

sP

s
B

A
s

B

BC
sH 



  

 

  We want the previous equation to have the form 

 

   )(
12

)(
22

sP
ss

K
sH 


  

 

  Hence  K = C/B = 
g2

1
 

   
B

12   then  

2/1

3

2
/1 










g

L
B  

   
B

A
2  then  

2/1

2 3

23














g

L

R
 

 

b) The manometer response oscillates as long as 0 <  < 1  or 

   

1/2

2

3 2
0 1

3

L

gR





 
  

 
 

If  is larger , then  is smaller and the response would be more oscillatory. 

 If   is larger, then  is larger and the response would be less oscillatory.  
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 5.11 
 

 Y(s) = 
)1()1(

2

2

1

2 


 ss

K

s

K

ss

KM
 

 

  K1s + K1 + K2s = KM 

 

  K1 =  KM 

  K2 = K1 =  KM 

 

 Hence 

Y(s) = 
)1(2 




ss

KM

s

KM
 

 or 

   y(t) = KMt  KM (1-e
-t/

) 

 

 After a long enough time, we can simplify to 

 

   y(t)  KMt - KM          (linear) 

 

   slope = KM 

   intercept =  KM 

 

 That way we can get K and  

 

   

Figure S5.11.  Time domain response and parameter evaluation 

 

 

 

 

 

 

 

 

    



Slope = KM

y(t)
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 5.12 
 

 

a) xyyKy  4  

 

Assuming y(0) = 0)0( y  

 

 
125.025.0

25.0

4

1

)(

)(
22 





KssKsssX

sY
 

 

b) Characteristic equation is 

 

s
2
  +  Ks  + 4 = 0 

 

  The roots are s = 
2

162  KK
 

 

  -10  K < -4 Roots : positive real, distinct 

    Response : A + B 1/ t
e  + C 2/ t

e  
 

  
K = -4  Roots : positive real, repeated 

    Response : A + Be
t/

 + C e
t/ 

 

  -4 < K < 0 Roots: complex with positive real part. 

    Response: A + e
t/ 

(B cos
21 


t
 + C sin

21 


t
)
 

 

  K = 0  Roots: imaginary, zero real part. 

    Response: A + B cos t/ + C sin t/
 

 

 

  0 < K < 4 Roots: complex with negative real part. 

    Response: A + e
-t/ 

(B cos
21 


t
 + C sin

21 


t
)
 

 

  K = 4  Roots: negative real, repeated. 

    Response: A + Be
-t/

 + C t e
-t/ 

 

 

  4 < K  10 Roots: negative real, distinct     

    Response: A + B 1/ t
e  + C 2/ t

e  

 

Response will converge in region 0 <  K  10, and will not converge in 

region   –10  K  0   
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 5.13 
 

 

a) The solution of a critically-damped second-order process to a step change 

of magnitude M is given by Eq. 5-50 in text. 

 

y(t) = KM 

















  /11 te

t
 

 

  Rearranging 

 

   










 /11 te

t

KM

y
 

 

    

   
KM

y
e

t t 









  11 /  

 

When y/KM = 0.95, the response is 0.05 KM below the steady-state value. 

 

 

 05.095.011 / 









 ts e

t
 

 

 00.3)05.0ln(1ln 












 ss tt

 

 

t
s

KM

time

0.95KM

y

0
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 Let   E = 31ln 












 ss tt

 

and find value of 


st that makes E 0 by trial-and-error. 

 
ts/ E 

4 0.6094 

5 -0.2082 

4.5 0.2047 

4.75 -0.0008 

 

 a value of  t = 4.75 is ts, the settling time. 

 

b) Y(s) = 
2

43

2

21

22 )1(1)1( 





 s

a

s

a

s

a

s

a

ss

Ka
  

 

We know that the a3 and a4 terms are exponentials that go to zero for large 

values of time, leaving a linear response. 

 

 a2 = Ka
s

Ka

s


 20 )1(
lim  

 

Define  Q(s) = 
2)1( s

Ka
 

 

 
3)1(

2






s

Ka

ds

dQ
 

 

Then   a1 = 












 30 )1(

2
lim

!1

1

s

Ka

s
 

 

 a1 =  2 Ka 

 

 the long-time response (after transients have died out) is 

 

 )2(2)(  tKaKaKatty  

          )2(  ta  for   K = 1 

 

and we see that the output lags the input by a time equal to 2. 
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(c) . 

 
Figure S5.13a Computer simulation results on part (a) 
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Figure S5.13b Computer simulation results on part (b) 

 

 

 5.14 
 

 

 a) Gain = psi/mm20.0
psi15psi31

mm8mm2.11





 

 

  Overshoot = 47.0
mm8mm2.11

mm2.11mm7.12





 

  Overshoot = exp 47.0
1 2



















       ,   = 0.234 

  Period = sec3.2
1

2

2



















 

    = 2.3 sec sec356.0
2

234.01 2







 

  
1167.0127.0

2.0

)(

)(
2 






sssP

sR
      (1) 

 

b) From Eq. 1, taking the inverse Laplace transform, 

 

P RRR   0.2         0.167      0.127   

 

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

Time

Y

 

 

u(t)

y(t)
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  158 P-P              R-R             RR             RR    

 

  52016701270    P  .    R    R .     R .    

 

  53957.1887311 .   P     R  .    R .     R  
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1)3)(7.0(2)3(

3

)(

)(
22 






sssT

sP
    / kWC     

 

  Note that the input change kw62026)(  tp  

 

Since K is 3 C/kW, the output change in going to the new steady state 

will be 

 

   C18kW6)kW/3(  


CT
t

 

 

 a) Therefore the expression for T(t)  is  Eq. 5-51 

    






























































 




ttetT

t 2

2

2

3

7.0
)7.0(1

sin
)7.0(1

7.0

3

)7.0(1
cos11870)( 

 

   
             Figure S5.15.  Process temperature response for a step input 
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b) The overshoot can obtained from Eq. 5-53 or Fig.  5.11. From Figure 5.11 

we see that OS  0.05 for =0.7. This means that maximum temperature is 

 

Tmax  70 + (18)(1.05) = 70 + 18.9 = 88.9 

 

  From Fig S5.15 we obtain a more accurate value. 

The time at which this maximum occurs can be calculated by taking 

derivative of Eq. 5-51 or by inspection of Fig. 5.8. From the figure we see 

that t /  = 3.8 at the point where an (interpolated) =0.7 line would be. 

 

   

 tmax  3.8 (3 min) = 11.4 minutes 
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 For underdamped responses, 

 





































































  tteKMty t

2

2

2
/ 1

sin
1

1
cos1)(    (5-51) 

 

a) At the response peaks, 

 

2 2

/

2

1 1
cos sin

1

tdy
KM e t t

dt

 
        

     
            

   

 

             
2 2 2

/ 1 1 1
sin cos 0te t t 

        
       

           

 

   

  Since  KM  0  and   0/  te  

 

  












































































 tt

22

2

22 1
sin

1

1

1
cos0  

 

  

















 nt sin

1
sin0

2

    ,     t
21 


 n  

  where n is the number of the peak. 
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  Time to the first peak,     
21 


pt  

b) Overshoot, OS = 
KM

KMty p )(
 

OS = 































 )sin(

1
)cos(exp

2

t
 

       






































22 1
exp

1
exp  

 

c) Decay ratio, DR = 
KMty

KMty

p

p





)(

)( 3
 

 where  
2

3

1

3
)(




pty  is the time to the third peak. 

 

 DR = 























































2
3/

/

1

2
exp)(exp

3

ppt

t

tt
eKM

eKM

p

p

 

           
2

2

2
exp (OS)

1

  
  

   

 

 

d) Consider the trigonometric identity 

  

 sin (A+B) = sin A cos B  +  cos A sin B 

 

 Let  B = 

















t

21
 ,      sin A = 

21    ,        cos A =   

  















  BBeKMty t sincos1
1

1
1)( 2

2

/
 

          



















)sin(
1

1
2

/

BA
e

KM
t

 

 

 Hence for stt  , the settling time, 

 

 05.0
1 2

/




 te
   ,  or       




 2105.0lnt   
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 Therefore,      



















21

20
lnst  
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a) Assume underdamped second-order model (exhibits overshoot) 

 

 
Δoutput 15 10 f ft

1/ 6
Δinput 210 180 gal/min gal/min

t
K


  


 

 

   Fraction overshoot = 
16.5 15 1.5

0.3
15 10 5


 


 

 

  From Fig 5.11, this corresponds (approx) to  = 0.35 

 

  From Fig. 5.8 ,   = 0.35 , we note that tp/  3.5 

 

  Since tp = 4 minutes (from problem statement, assuming first peak), 
21 ζ

1.19
pt





   min 

 

  
2 2 2

1/ 6 0.17
  

(1.19) 2(0.35)(1.19) 1 1.42 0.83 1
pG (s)

s s s s
  

   
 

 

b) 4 minutes might not be the first peak (as shown in Figure 5.8); thus, the 

solution may be not unique. 

 

 

 5.18 
 

 

(a) 

τ=1,ζ=0.5 .  

Roots of denominator are: 
2 1 0s s   , s = -0.50+0.87j and -0.50-0.87j. 

Imaginary roots suggest oscillation. 

2 20 0 0

2 2 4
lim ( ) lim ( ) lim lim 4

1 1t s s s
y t sY s s

s s s s s   
   

   
.  

Time to first peak: 
2πτ/ 1-ζ =3.6   

Overshoot: 
22 2 exp(-πζ/ 1-ζ )=0.652   
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Period: 
2

2
7.25

1-ζ


  

 

Figure can be sketched using Figure S5.8 in Chapter 5 for 1,ζ 0.5   .  

 

 

 
Figure S5.18 Step response of G. 

 

 

(b) 

Decay Ratio: 
2exp( 2 ζ/ 1-ζ ) 0.106   

 

 

 5.19 
 

 

a) For the original system, 

 

 
1

11
1

R

h
Cq

dt

dh
A i   

 
2

2

1

12
2

R

h

R

h

dt

dh
A   

 

where A1 = A2 = (3)
2
/4 = 7.07 ft

2
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 C = 0.1337 
gpm

/minft3

 

 R1 = R2 = 
/minft

ft
187.0

1001337.0

5.2
3

1 



iqC

h
 

 

Using deviation variables and taking Laplace transforms, 

 

 
132.1

025.0

11)(

)(

11

1

1

1

1














ssRA

CR

R
sA

C

sQ

sH

i

 

 
132.1

1

1

/

1

/1

)(

)(

22

12

2

2

1

1

2














ssRA

RR

R
sA

R

sH

sH
 

 
2

2

)132.1(

025.0

)(

)(








ssQ

sH

i

 

 

For step change in qi of magnitude M, 

 

 Mh 025.0max1   

 Mh 025.0max2   since the second-order transfer function  

 

2)132.1(

025.0

s
 is critically damped  (=1), not underdamped 

 Hence Mmax = gpm100
ft/gpm025.0

f5.2


t
 

 

For the modified system, 

 

 
R

h
Cq

dt

dh
A i    

 

 
22 ft6.124/)4( A   

 V = V1 + V2 = 2 ft5ft07.7 2   = 70.7ft
3
 

 hmax = V/A = 5.62 ft 

 

 R = 
/minft

ft
21.0

1001337.0

62.55.0
3







iqC

h
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164.2

0281.0

11)(

)(














sARs

CR

R
As

C

sQ

sH

i

 

 

 Mh 0281.0max   

 Mmax = gpm100
ft/gpm0281.0

f81.2


t
 

 

Hence, both systems can handle the same maximum step disturbance in qi. 

 

b) For step change of magnitude M, 
s

M
sQi  )(  

 

For original system, 

 

 
s

M

s
sH

R
sQ

22

2

2
)132.1(

025.0

187.0

1
)(

1
)(


  

 

  














2)132.1(

32.1

)132.1(

32.11
134.0

sss
M   

    















  32.1/

2
32.1

11134.0)( te
t

Mtq  

 

For modified system, 

 

 














164.2

64.21
134.0

)164.2(

0281.0

21.0

1
)(

1
)(

ss
M

s

M

s
sH

R
sQ  

 

  64.2/1134.0)( teMtq   

 

Original system provides better damping since )(2 tq  <  )(tq  for t < 3.4. 

c) Computer simulation result 
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Figure S5.19 Computer simulation results on part (b) 

 

 

 5.20 
 

 

a) Caustic balance for the tank, 

 

wccwcw
dt

dC
V  2211  

   

Since V is constant, w = w1 + w2 = 10 lb/min 

 

For constant flows, 

 

  )()()()( 2211 sCwsCwsCwsCVs   
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         (from the graph) 
 

   
)149)(11.0(

5.0

)149(

5.0

)11.0(

1

)(

)(

1 









sssssC

sCm  
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b) 
s

sC
3

)(1   

)149)(11.0(

5.1
)(




sss
sCm  












  )491.0(

)1.049(

1
15.1)( 49/1.0/ tt

m eetc  

 

c) 
)149(

5.13

)149(

5.0
)(







ssss
sCm  

 

 49/15.1)( t

m etc   

 

 

d) The responses in b) and c) are nearly the same. Hence the dynamics of the 

conductivity cell are negligible. 

 
                       Figure S5.20   Step responses for parts b) and c) 

 

 

 5.21 
 

 

  Assumptions:  1)  Perfectly mixed reactor 

2) Constant fluid properties and heat of reaction 

 

a) Component balance for A, 
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AAiA
A cTVkccq

dt

dc
V )()(          (1) 

 

Energy balance for the tank, 

 

ARi cTVkHTTqC
dt

dT
VC )()()(         (2) 

 

Since a transfer function with respect to cAi is desired, assume the other 

inputs, namely q and Ti, are constant. Linearize (1) and (2) and note that  

 

dt

cd

dt

dc AA


   ,  
dt

Td

dt

dT 
 , 

 

 T
T

TkcVcTVkqcq
dt

cd
V AAiA

A 


2

20000
)())((       (3) 

 

 ARAR cTVkHT
T

TkcVHqC
dt

Td
VC 











 )(

20000
)(

2
  (4) 

 

Taking Laplace transforms and rearranging 

 

  )(
20000

)()()()(
2

sT
T

TkcVsCqsCTVkqVs AAiA
       (5) 

2

20000
( ) ( ) ( ) ( ) ( ) ( )R A R AVCs qC H Vc k T T s H Vk T C s

T

 
       

 
   (6) 

 

Substituting )(sC A
 from Eq. 5 into Eq. 6 and rearranging, 

 

2 2

2 2

( ) ( )( )

20000 20000( )
( ) ( ) ( ) ( ) ( )

R

Ai
R A R A

H Vk T qT s

C s
Vs q Vk T VCs qC H Vc k T H V c k T

T T

 


  
           

 

           

          (7) 

Ac  is obtained from Eq. 1 at steady state, 

  
)(TVkq

cq
c Ai

A


 = 0.01159 lb mol/cu.ft. 

 

Substituting the numerical values of T , , C, –HR, q, V, Ac  into Eq. 7 

and simplifying, 
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)15)(1082.0(

69.12

)(

)(








sssC

sT

iA

  

 

For step response, ssC Ai /1)(   

 

 
sss

sT
)15)(1082.0(

69.12
)(


  

 

 










  )5082.0(

)082.050(

1
169.12)( 5/082.0/ tt eetT  

 

A first-order approximation of the transfer function is 

 

 
15

69.12

)(

)(








ssC

sT

iA

  

For step response, 
)15(

69.12
)(




ss
sT   or   5/169.12)( tetT   

 

 The two step responses are very close to each other hence the 

approximation is valid. The ODE calculation indicates a slightly different 

gain due to linearization. 

 

 
Figure S5.21  Step responses for the ODE system, 2

nd
 order t.f  and 1

st
 order 

approx. 
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 5.22 
 

 

(a) 

Step response of a first-order process is: 

 

Inverse Laplace gives: 

                                                                                          (1) 

 

Taylor series expansion at t = 0: e
-t/τ

 = 1- 1/τ × t. Substitute into Eq. (1): 

                                                                       (2) 

Inverse Laplace on integrator : 

                                                                                                         (3) 

 

Compared Eqs. 2 and 3, we conclude when t is close to zero, or t << τ, first order 

system can be approximated by integrator with: 

                                                                                                               (4) 

 

(b) 

From part (a), . 

 

(c) 

Eq. 3 shows the integrator step response in time domain. With the step test data, 

plot the data and approximate the slope of the line. Set the slope equal to K0M and 

find K0. The time delay would be estimated to be the time where the line 

intersects the x-axis. 

 

s

M

s

K
sUsGsY

)1(
)()()( 1






)1()( /

1

teMKty 

Mt
K

tMKty


 1
1 ))/1(1()( 

( ) o
o

K
G s

s


MtKty 0)( 


1
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K
K 


1
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K
K 
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5.23 

 
Figure S5.22 Step response data to find delay and approximated integrator process gain. 

 

 

 

 

 

(a) 

5 (1 )
( ) ( ) ( )

(3 1)

se
Y s G s U s

s s


 


 

Final value theorem: 

0 0 0

5 (1 ) 5(1 )
lim ( ) lim ( ) lim lim 0

(3 1) (3 1)

s s

t s s s

e e
y t sY s s

s s s

 

   

  
    

  
 

 

(b) 

1

2

1
( ) ( ) ( )

(3 1)

K
Y s G s U s

s s
 


 

Final value theorem: 

20 0 0

5 1 5
lim ( ) lim ( ) lim lim

(3 1) (3 1)t s s s
y t sY s s

s s s s   

 
     

  
        Undefined. 

 

(c) 

 For part (a), the heating rate returns to steady state after time 1, the tank 

temperature will gradually return to the steady state value once the hotter fluid is 

passed out of the stirred tank heater. 

 

 For part (b), the heating rate rises linearly with time and so does the outlet 

temperature. Physical limitations include element burnout, boiling of the liquid, 

and constraints on the amount of electrical power available. However, there 
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5.24 

should not be any short term physical limitations to the ramp, but it is an unsafe 

situation. 

 

 

 

 

 

 

 

   a)          

    From block algebra, 

𝑌(𝑠) = 𝐺1(𝑠)𝑈(𝑠) + 𝐺2(𝑠)𝑈(𝑠) + 𝐺3(𝑠)𝑈(𝑠) 

    or    𝑌(𝑠) = [𝐺1(𝑠) + 𝐺2(𝑠) + 𝐺3(𝑠)]𝑈(𝑠) 

    After some simple operations, and by account that U(s) = 1, then 

            𝑌(𝑠) = [
1

𝑠
+

4

2𝑠+1
+

−3

𝑠+1
] 𝑈(𝑠) =

4𝑠+1

𝑠(2𝑠+1)(𝑠+1)
         

     or   𝑌(𝑠) =
4𝑠+1

(2𝑠+1)(𝑠+1)
×

1

𝑠
=

4𝑠+1

2𝑠2+3𝑠+1
×

1

𝑠
 

Notice that this system is equivalent to a step input response of an overdamped 

( = 1.06) second-order transfer function with numerator dynamics (see 

Example 6.2 in your textbook).  

For this example, a > 1 (e.g., 4 > 2), so the response will exhibit some 

overshoot.  

      The system poles (-0.5, -1) lie in the LHP, so y(t) will be bounded.  

      Finally,  

            

𝑦(0) = 𝑙𝑖𝑚
s ⟶ ∞

𝑠𝑌(𝑠) = 0                             𝑦(∞) =  𝑙𝑖𝑚
s ⟶ 0

𝑠𝑌(𝑠) = 1 
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5.25 

5.26 

b)  

 

Figure S5.24   Step response for part (a) 

 

 

 

      For such an integrating process at steady state, any positive/negative step  

 

      change in inlet flow will cause the tank level to increase/decrease with time.    

 

      Thus, no new steady state will be attained, unless the tank overflows or 

 

      empties. 

      Integrating processes do not have a steady-state gain in the usual sense.  Note  

      that G(0) is undefined because of dividing by zero. 


 s

K
sGK

ss 00
lim)(lim           Undefined. 

 

 

     (a) 

At time 0, Tm (0) and T(0) are the same which is t0. Then T (bath temperature)   

follows a ramp: 
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0( )T t t T                           (1)         

 

Define deviation variables: Tm’ = Tm – Tss = Tm – T0 ; T’ = T – Tss = T – T0, 

substitute these into Eq. 1 : 

 

ttT )('  and LT: 
2

1
)('

s
sT     (2)          

 

As known, thermometer can be modeled by a first order system with time 

constant 0.1 and gain 1: 

 

11.0

1

1)('

)('







ss

G

sT

sTm


              (3)    Eq. 5-19 in the book         

Combine Eqs. 2 and 3 : 

 

2

1

11.0

1
)('

11.0

1
)('

ss
sT

s
sTm 





             (4)  

Apply PFE to Eq. 4: 

 

1.0

1.0015.0
11.0

;005.0
1

11.0

1
,10

1
11.0

1

01.0
1

11.0

1

11.0

1
)('

11.0

1
)('

2

22

321

2

0

3

10

21

2

321

2

































a

a
s

a

s

a

s

a

ss
sset

s
a

s
a

s

a

s

a

s

a

ss
sT

s
sT

s

s

m

 

 

As a result: 

 

2

11.0

11.0

01.0
)('

sss
sTm 


                (5)                

 

Use inverse LT to time domain: 

 

tttT

t
t

tT

m

m





)1)10(exp(1.0)('

1.0)
1.0

exp(
1.0

1
01.0)('

            Eq. 5-21 in the book     

 

At t = 0.1 min and t = 1.0 min after the change in T(t), the difference would be: 

 



5-36 

5.27 

)1)10(exp(1.0)()(

)0()(

)1)10(exp(1.0)0()(







ttTtTT

tTtT

ttTtT

mm

mm

               (6) 

 

1.0)1.0(

0632.0)1.0(





m

m

T

T
                                         

 

(b) 

 

By looking at Figure 5.5, the maximum difference occurs when t→∞ and the 

corresponding difference is: 1.0)}1)10(exp(1.0{lim 


t
t

       

 

(c) 

For large time, exp(-10t) approaches zero and: 

)1.0()0()1)10(exp(1.0)0()(  tTttTtT mmm  

which indicates there is a 0.1 min time delay between measurement and true value 

after a long time.           

 

 
Figure S5.26 T(t) and Tm(t)  

 

 

 

    The temperature of the bath can be described as: 

    )10(40)(20120)(  tStStT                                                                    (1) 
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Define deviation variables as: T’(t) = T(t) – T(0) and Tm’(t) = Tm’(t) – T(0) where 

T(0) = 120°F. Transfer T(t) into T’(s) : 

)10(40)(20120)()('  tStStTtT  

se
ss

sT 104020
)('                                                                                               (2) 

 

According to the problem, the dynamics of the thermometer follow first order: 

'( ) 1

'( ) 1

mT s

T s s



                                                                                                      (3) 

 

Combine Eqs. 2 and 3: 

s

m

s

m

e
ssss

sT

e
sss

sT
s

sT

10

10

)
40

1

40
()

20

1

20
()('

)
4020

(
1

1
)('

11.0

1
)('
























 

 

Use inverse LT to time domain: 

)10()))10(exp(1(40))exp(1(20)('  tStttTm                                        (4) 

 

Add T(0) back: 

120)10()))10(exp(1(40))exp(1(20)(  tStttTm                             (5) 

 

when 0 < t < 10s, 120))exp(1(20)(  ttTm ;  

when t > 10s, 120)))10(exp(1(40))exp(1(20)(  tttTm  

 

 
Figure S5.27 Tm vs. time 
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(b) 

     when t = 0.5 s, (0.5) 20(1 exp( 0.5)) 120 127.87FmT       

     when t = 15 s, (2) 20(1 exp( 2)) 120 100.26FmT       
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   3 51 2 4

2 3 2 2 3

1

(2 1) 1 ( 1) ( 1)

a aa a a
Y s

s s s s s s s  
     

   
  

We know that the 3 4 5, ,a a a  terms are exponentials that go to zero for large values  

of time, leaving a linear response. 

   
1 2

1 23 322

1 1

2 1 2 1

a a
a s a

s ss s s
     

 
 

 
2 3

0

1
lim 1

2 1s
a

s
  


  

Define     3

1

(2 1)
Q s

s



 

4

6

(2 1)

dQ

ds s


 


 

Then   a1 = 
40

1 6
lim

1! (2 1)s s

 
 

 
 

(from Eq. 3-62) 

 

 a1 =  6 

 the long-time response (after transients have died out) is 

 ( ) 6y t t   

We see that the output lags the input by a time equal to 6. 
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(a) Energy balance: 

ρ ( )p A

dT
Vc UA T T

dt
   

 where   ρ   is density of water 

V   is volume of water 
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pc  is heat capacity of water 

   U is heat transfer coefficient 

   A is surface area of tank 

   t is time in mins 

 Substituting numerical values in and noting that 

 
'

;A

dT dT
T T

dt dt
    

 
'

2 ' '1000 0.5 1 4180 120 60 0.5 1
4

A

dT
T T

dt


             

Taking Laplace transform: 

 
 

 

'

'

1

72.57 1A

T s

T s s



  

   20 15 20 ; 20A AT S t T T        

   ' ' 35
35A AT S t T s

s
       

 
 

' 35

72.57 1
T s

s s
 


  

Applying inverse Laplace Transform to find when the water temperature reaches 

0 ̊C. 
/72.57 /72.57( ) 35(1 ) 0 20 35 (1 )t tT t e e            

61.45mint    

(b) Since the second stage involves a phase change with a constant temperature, 

thus, the time spent on phase change can be calculated based on the following 

equation: 

 ρ AV UA T T t    

3 2 3 3 2 21000 / 0.5 1 334 10 / 120 / 0.5 1 15
4

kg m m J kg W m K m K t


          

  

386.6mint    

      So the total time it takes to complete freeze the water in the tank is: 

61.45 386.6 448mintotalt      
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(a) From the results after 15 hr, we can see: 

It is a first order system, the gain K is: 

 

 
3

0 1
10 /

0 1000

K
K K kW

kW


 

 
 

  



5-40 

It takes 5  to reach steady state, thus, the time constant 

4
0.8 2880

5
hr hr s     

(b) The interval of step changes for the input should be larger, possibly greater 

than 4 hours.  

(c) 
 

 
 

'
;

1
p a

T s K dT
mc UA T T

Q s s dt
  


 Because the gain is small and the time 

constant is large, we can see that the mass, density, heat capacity and furnace 

height are all large. 
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Chapter 6  
 

 

 6.1 

a)   

 
 2

5 4 3 2

0.7 2 2

5 9 11 8 6

s s
G s

s s s s s

 


    
  

 

By using MATLAB, the poles and zeros are: 
 

Zeros:  (-1 +j) , (-1-j) 

Poles:  -3 

 -1 

 (0+j), (0-j) 

 (-1+j), (-1-j) 

 

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
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Im
a
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a
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a
rt

 

 

zeros

poles

axis

 
       Figure S6.1.  Poles and zeros of G(s) plotted in the complex s plane. 

 

 

b) The process output will be bounded because there is no pole in the right 

half plane, but oscillations will be shown because of pure imagine roots. 

 

c) Simulink results: 

 

Solution Manual for Process Dynamics and Control, 4th edition 

Copyright © 2016 by Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp, 

and Francis J. Doyle III 
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            Figure S6.1c.  Response of the output to a unit step input. 

 

As shown in Fig. S6.1c, the system is stable but oscillations show up 

because of pure imaginary roots. 

 

 

 6.2 

(a) Standard form:   
 

  

 

  
5 5

4 2 8 0.5 1

0.5 1 2 1 0.5 1 2 1

s s
s s

G s e e
s s s s

 
 

 
   

  

(b) Apply zero-pole cancellation: 

 
 

58

2 1

sG s e
s




  

Gain =8; Pole=-0.5; Zeros=None 

(c)  

1/1 Padé approximation:  5 1 5 / 2
e

1 5 / 2

s s

s

 



 

The transfer function becomes    

8 (1 5 / 2 )
( )

2 1 (1 5 / 2 )

s
G s

s s

 
  

  
 

 Gain = 8; poles = -0.5, -0.4; zero = 0.4 
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1 
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 From Eq. 6-13  
 

  y(t) = KM 1 1/ /1

1 1

1 1 e 1 e
t ta aKM
   

 

 
    
       
    

 

 

a) KMKMy aa
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

















 

 

b) Overshoot   y(t) > KM 
 

KMeKM
ta 














 1/

1

11  

 

 or when, a  1 > 0  ,  that is, a > 1 

 

1/1

2

1

( )
e 0 0

tay KM for KM
 




     

 

 c) Inverse response   y(t) < 0 
 

1/1

1

1 e 0
taKM
 



 
  

 
 

  1/1

1

e
ta  




  or      1/

1

1 e 0
ta 




   at  t = 0. 

  Therefore,  a < 0. 
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


ss

sK

sX

sY a   ,  1>2,      X(s) = M/s 

 

 From Eq. 6-15 
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a) Extremum    0)( ty  
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 b) Overshoot    )(ty > KM 
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c) Inverse response    0)( ty  at t = 0
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  Since 1 > 2,  a < 0. 

 

d) If an extremum in y exists, then from (a): 
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Using 1/1 Padé approximation: 45 1 22.5
;

1 22.5
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  
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30 30

1.4 1 9.641.4 13.5

40 1 1 22.5 40 1 1 22.5
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p
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G s e e

s s s s

 


 
   

  

Gain = 1.4; 10 a   , so it is an over damped process,  
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Figure S6.5.   Step response of the system. 
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 Put in standard K/ form for analysis: 

 

  
)1(

1

)(
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2
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
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a) Order of G(s) is 2 (maximum exponent on s in denominator is 2) 

 

b) Gain of G(s) is K1. Gain is negative if K1 < 0. 

 

c) Poles of G(s) are:  s1 = 0  and s2 = –1/ 

 

s1 is on imaginary axis; s2 is in the left hand plane. 

 

d) The zero of G(s) is:   
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
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If  0
21

1 
 KK

K
, the zero is in right half plane. 

 

Two possibilities:    

1.   K1<0  and K1 + K2 >0 

 

e) Gain is negative if K1 < 0 

 

Then the zero is RHP if K1 + K2 > 0.  This is the only possibility. 

 

f) Constant term and e
-t/

 term. 

 

g) If input is M/s, the output will contain a t term that is not bounded. 
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)1(6)( 20/tetQ   

 

b) )()()( sPsQsR m
  

 

)0()()()()( mmm ptptptqtr   
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 Overshoot, 
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Period T for )(tr  is equal to the period for pm(t) because e
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 decreases 

monotonically. 
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d) Overall process gain = 
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a) Transfer Function for the blending tank: 

 

1
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
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where  1
 i
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q
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bt  

 

Transfer Function for the transfer line 

 

 51
)(


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K
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tl

tl

tl   

where:  

 

1tlK  

 min02.0
min/m15
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3
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 tl  

Thus, 
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sC bt
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which is a 6
th

-order transfer function. 

 

b) Since bt >> tl  [ 2 >> 0.02], we can approximate 
5)102.0(

1

s
 by e

-s 
 

where 
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
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1.0)02.0(
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 
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)( 1.0






 
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eK

sC

sC s

bt

in

out  

 

c) Because bt  100 tl, we anticipate that this approximate TF will yield 

results very close to those from the original TF (part (a)). This 

approximate TF is exactly the same as would have been obtained using a 

plug flow assumption for the transfer line. Thus we conclude that 

investing a lot of effort into obtaining an accurate dynamic model for the 

transfer line is not worthwhile in this case. 

 

Note: if bt  tl , this conclusion would not be valid. 
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d) Simulink simulation 
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  Figure S6.8.   Unit step responses for exact and approximate models. 
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 (a)  
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   
   

Gain= 80; time delay = 3; time constants 1 26, 1    ; poles = -1, -1/6; zeros = 

0.25 

(b) Since 4 0;a     it will show an inverse response.  

 

 6.10 
 

  

a) The transfer function for each tank is 
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i   ,i = 1, 2, …, 5 

 

where  i  represents the i
th 

tank. 
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 co is the inlet concentration to tank 1. 

 

 V is the volume of each tank. 

 

 q is the volumetric flow rate. 
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Then, by partial fraction expansion, 
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 b) Using Simulink, 
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    Figure S6.10.   Concentration step responses of the stirred tank. 

 

 The value of the expression for c5(t) verifies the simulation results above: 
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First, consider then the undelayed response (with =0); then apply the Real 

Translation Theorem to find the desired delayed response. 
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Denote the undelayed response (for =0) by c ( ). Then, 

                       c ( )  c ( )                                                                 (1) 

Taking the Laplace transforms giv

m

m m

t

t t



   

e,

                         C ( ) e C ( )                                                              (2)

The transfer functions for the delayed and undelayed systems are:

                        

s

m ms s 

C ( ) e
                                                                    (3)

( ) 1

C ( ) 1
                                                                                            

( ) 1

s

m

m

s

C s s

s

C s s




  




  

2

(4)

For the ramp input, c ( ) 2 ;  from Table 3.1: 

2
                        ( )                                                                             (5)

Substituting (5) into (4) and rearrangi

t t

C s
s

 

 

2

ng gives:

1 2
                     C ( )                                                               (6)

1

The corresponding response to the ramp input is given by Eq. 5-19 with =1, 

m s
s s

K a

  
    

   

/10

=2, and =10:

                     c ( ) 20(e 1) 2                                                            (7)t

m t t



   
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Let  denote the time that the alarm goes on for the undelayed system; thus, the alarm lights up when  

c ( ) 25 min; i.e., when  c ( ) 25 5 20 min . .Substituting into (7) and solving for  

a

m a m a a

t

t t t    by trial

 and error gives

                     9.24 min

Let  denote the time that the alarm goes off for the system with time delay. It follows from the 

definition of a time delay that,

            

a

a

t

t



          9.24 2.00 11.24 mina at t     
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a) Using Skogestad’s method 
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Using Simulink, 
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Figure S6.12 Unit step responses for the exact and approximate models. 
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(c) Maximum error =0.265, at t= 9.89s, and the location corresponding to the 

maximum error is graphically shown in above figure by black vertical line. 
 

 

 6.13 

 

From the solution to Exercise 2.5(a) , the dynamic model for isothermal 

operation is 
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2212

2

2      (2) 

 

Taking Laplace transforms, and noting that 

 

0)(  sPf  
 

since Pf is constant, 
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 where 

 

   )/( baaa RRRK   

   )/( babb RRRK   

 

   )/( cbcc RRRK   
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 Substituting for )(1 sP from Eq. 3 into 4, 
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 Substituting for )(2 sP from Eq. 5 into 4, 

  

  

2

1

21 2 1 2
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b
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d
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P s
s s
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 
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        
    

    

          (6) 

 

To determine whether the system is overdamped or underdamped, consider the 

denominator of the transfer functions in Eqs. 5 and 6. 
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














1
2,

1

21212
 

 

 

 Therefore, 

 

  
)1(

1

2

1)1(

)1(

)(

2

1

1

2

2

1

21

21

ca

ca

ca KK

KK

KK 






























  

 

 Since x + 1/x  2   for all positive x, 

  
)1(

1

ca KK
  

 

  Since KaKc  0, 

 
  1  

 

 Hence the system is overdamped. 
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 6.14 

 

   
2 22

4 4
Let    ( )

0.4 1 (2 3 1) 0.4 1 (2 1)( 1)

We want an approximate model of the form,

                       ( )
1

In order for the approximate model and the original mod

s s

s

approx

e e
G s

s s s s s s

Ke
G s

s

 





 



 
     




 

els to have the

same steady-state gain, we set 4.

The largest time constant in ( ) to neglect is 1. Thus,

1
                       2 1 2.5

2

Approximate the smallest time constant by:

          

K

G s





 
   

 

0.41
             

0.4 1

Thus,

1
                       ( ) 2 2(0.4) 1.8

2

se
s

  




    
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 From Eqs. 6-71 and 6-72, 

 

   
21

12

11

22

22

11

2121

121122

2

1

2

1

2 AR

AR

AR

AR

AR

AR

AARR

ARARAR


















  

 

 Since 2
1


x
x  for all positive x and since R1, R2, A1, A2 are positive 

 

     1
2

1
2

2

1

21

12 
AR

AR
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 6.16 

 

  

a) Mass balance on Tank 2: 

 



A2
dh2

dt
 q0  q2

 

Dividing by , 

 



A2
dh2

dt
 q0  q2

 

For a linear resistance, (cf. Eq. 4-50),  

 



q2 
1

R2
h2

  

Substitute, 

 



A2
dh2

dt
 q0 

1

R2
h2

 
or 

 



A2R2
dh2

dt
 R2q0  h2

 

 

Introducing deviation variables and Laplace transforming yields 

 



H 2(s)

Q 0(s)


R2

A2R2s1  

Because 



Q 2(s) 
1

R2
H 2(s)

 

 

we obtain, 



Q 2(s)

Q 0(s)

1

R2

R2

A2R2s1


1

A2R2s1 

 

2 2 2Letting A R 
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

Q 2(s)

Q 0(s)


1

2s1  

  

 b) Mass balances on the two tanks yield (after dividing by , which is constant) 



A1
dh1

dt
 q1

 



A2
dh2

dt
 q0  q1  q2

 

         Valve resistance relations: 



q1 
1

R1
(h1  h2)

 



q2 
1

R2
h2

  

       c) These equations clearly describe an interacting second-order system; one 

or more transfer functions may contain a single zero (cf. Section 6.4). For 

the Q2/Q0 transfer function we know that the steady-state gain must be 

equal to one by physical arguments (the steady-state material balance 

around the two tank system is 2 0q q ). 

        d) The response for Case (b) will be slower because this interacting system is 

second order, instead of first order. 
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 The input is ttTi  sin12)(  where       

 

1hr262.0
hours24

radians2 


  

 

 The Laplace transform of the input is from Table 3.1, 

 

   
22

12
)(






s
sTi  

 

 Multiplying the transfer function by the input transform yields 

 

   
))(15)(110(

)3672(
)(

22 




sss

s
sTi  

 

To invert, either (i) make a partial fraction expansion manually, or (ii) use the 

MATLAB residue function. The first method requires solution of a system of 
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algebraic equations to obtain the coefficients of the four partial fractions. The 

second method requires that the numerator and denominator be defined as 

coefficients of descending powers of s prior to calling the MATLAB residue 

function: 

 

MATLAB Commands: 

 

>> b = [ 36*0.262  72*0.262] 

b = 

     9.4320  18.8640 

>> a = conv([10 1], conv([5 1], [1 0 0.262^2])) 

b = 

     50.0000 15.0000 4.4322  1.0297  0.0686 

>> [r,p,k] = residue(b,a) 

r = 

6.0865  4.9668j 

6.0865 + 4.9668j 

38.1989 

             50.3718 

p = 

          0.0000  0.2620j 

          0.0000 + 0.2620j 

          0.2000  

             0.1000 

k = 

 [] 

 

Note: the residue function re-computes all the poles (listed under p). They 

are, in reverse order: p1 = 0.1( )101  , p = 0.2( )52  , and the two purely 

imaginary poles corresponding to the sine and cosine functions. The 

residues (listed under r) are exactly the coefficients of the corresponding 

poles; in other words, the coefficients that would have been obtained via a 

manual partial fraction expansion. In this case, we are not interested in the 

real poles since both of them yield exponential functions that go to 0 as 

t . 

 

The two complex poles are interpreted as the sine/cosine terms using 

Appendix L. 

 

The coefficients of the periodic terms: 
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 2
1( ) cos sin ...bt bta

y t a e t e t 


     

 

b= 0, thus the exponential terms = 1. Using (L-13) and (L-15), 0.264  . 

 

...sin9336.9cos136.12)(  ttty  

 

The amplitude of the composite output sinusoidal signal, for large values, 

of t is given by 

 

 7.15)9336.9()136.12( 22 A  

 

Thus the amplitude of the output is 15.7 for the specified 12 amplitude 

input. 
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Figure S6.18 Comparison between y1 and y2 
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 6.19 

 

 

(a) The mathematical model is derived based on material balance: 

 

1
0 0 2 2 1 1 1

2
1 1 2 2 21

dc
V F c RF c F c Vkc

dt

dc
V F c R F c Vkc

dt

   

   

  

Subtracting the steady-state equation and substituting deviation variables 

yields: 

 

 

'
' ' ' '1

0 0 2 2 1 1 1

'
' ' '2

1 1 2 2 21

dc
V F c RF c F c Vkc

dt

dc
V F c R F c Vkc

dt

   

   

  

 

(b) The transfer function model can be derived based on Laplace transform: 

 

         

         

' ' ' ' '

1 0 0 2 2 1 1 1

' ' ' '

2 1 1 2 2 21

VsC s F C s RF C s FC s VkC s

VsC s FC s R F C s VkC s

   

   
  

Solve above equations, we have: 

 
   

 ' '0 1
2 02 2 2 2

1 2 2 1 2 2 12 1

F F
C s C s

V s Vk F F RF Vs F F Vk R F FVk V k


          

 

(c) When 0R   , we have: 

 
 

 

  
 

' '0 1
2 02 2 2 2

1 2 1 2 2 1

'0 1
0

1 2

2

F F
C s C s

V s Vk F F Vs F F VkF FVk V k

F F
C s

Vs Vk F Vs Vk F


        


   

 

which is equivalent to the transfer function of the two tanks connected in 

series. 

 

(c) When k=0, Equation in (b) becomes: 

 
 

 ' '0 1
2 02 2

1 2 2 1 2

F F
C s C s

V s F F RF Vs F F


   
 

Since 1 2 2 0 2,F RF F F F     
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 
 

   
 

 

0 0 0' '

2 02 2

0 0 0 0 0 0

2

0
'

022 2
20 0

0 0

2

1
1

2
2

F RF F
C s C s

V s RF RF F Vs RF F F

F
R

C s
F FV s

Vs F Vs F
R R R




    

 
 

 

   

 

When R   ,    ' '0
2 0

02

F
C s C s

Vs F



 , equivalent to a single tank with a 

volume = 2V.  

The gain of above transfer function is 1. 
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  The dynamic model for the process is given by Eqs. 2-45 and 2-46,             

  which can be written as 

 

   )(
1

ww
Adt

dh
i 


       (1) 

 

   
AhC

Q
TT

Ah

w

dt

dT
i

i





 )(      (2) 

  where    h   is the liquid-level 

    A   is the constant cross-sectional area 

 

  System outputs:  h , T 

  System inputs :  w, Q 

 

Assume that wi and Ti are constant. In Eq. 2, note that the nonlinear term 










dt

dT
h can be linearized as   

 

h
dt

Td

dt

Td
h 


 

 

                               or     
dt

Td
h


  since    0

dt

Td
 

 

Then the linearized deviation variable form of (1) and (2) is 

 

w
Adt

hd





 1
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Q
ChA

T
hA

w

dt

Td i 








 1
   

 

Taking Laplace transforms and rearranging, 

 

s

K

sW

sH 1

)(

)(





   ,   0

)(

)(






sQ

sH
   ,    0

)(

)(






sW

sT
   ,     

1)(

)(

2

2








s

K

sQ

sT
 

 

where 
A

K



1

1  ;    and 
Cw

K
i

1
2     ,  

iw

hA
2  

 

For an unit-step change in Q: hth )(     ,    )1()( 2/

2




t
eKTtT  

 

For an  unit step change in w:  tKhth 1)(  ,  TtT )(  
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 Additional assumptions: 

 

(i) The density  and specific heat C of the liquid are constant. 

 

 (ii) The temperature of steam, Ts, is uniform over the entire heat transfer 

area. 

 

 (iii) The feed temperature TF is constant (not needed in the solution). 

 

 Mass balance for the tank is 

 

   qq
dt

dV
F          (1) 

 

 Energy balance for the tank is 

 

  )()()(
)]([

TTUATTCqTTCq
dt

TTVd
C srefrefFF

ref



    (2) 

 

 where Tref  is a constant reference temperature and A is the heat transfer area 
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Eq. 2 is simplified by substituting for 
dt

dV
 from Eq. 1. Also, replaceV  by hAT  

(where TA  is the tank area) and replace A by Tp h  (where pT is the perimeter of 

the tank). Then,  

 

  qq
dt

dh
A FT            (3) 

 

  ( ) ( )T F F T s

dT
CA h q C T T Up h T T

dt
             (4) 

 

 Then, Eqs. 3 and 4 are the dynamic model for the system. 

 

a) Making a Taylor series expansion of nonlinear terms in (4) and introducing 

deviation variables, Eqs. 3 and 4 become: 

 

  qq
dt

hd
A FT




       (5) 

 

( ) ( )T F F F T

dT
CA h C T T q Cq Up h T

dt


        ( )T s T sUp hT Up T T h     (6) 

 

 Taking Laplace transforms, 

 

  
1 1

( ) ( ) ( )F

T T

H s Q s Q s
A s A s

         (7) 

 

  
( )

1 ( ) ( )T F
F

F T F T

CA h C T T
s T s Q s

Cq Up h Cq Up h

      
      

       
     

           
( )

( ) ( )T sT
s

F T F T

Up T TUp h
T s H s

Cq Up h Cq Up h

   
     

      
  (8) 

 

 Substituting for ( )H s from (7) into (8) and rearranging gives 

 

   
( )

1 ( ) ( )T F
T T F

F T F T

CA h C T T
A s s T s A s Q s

Cq Up h Cq Up h

      
      

       
 

 

         
( )

( ) ( ) ( )T sT T
s F

F T F T

Up T TUp hA s
T s Q s Q s

Cq Up h Cq Up h

   
       

      
 (9) 
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 Let   T

F T

CA h

Cq Up h


 

 
 

 

 Then from Eq. 7 

 

  
( ) 1

( )F T

H s

Q s A s





        ,       

( ) 1

( ) T

H s

Q s A s


 


         ,          

( )
0

( )s

H s

T s





 

 

 And from Eq. 9 

 

  
( )

( )F

T s

Q s




   

( ) ( )
1

( )

1

T s F T

F T T s

T

Up T T C T T A
s

Cq Up h Up T T

A s s

     
   

      

 
 

 

  
( )

( )

T s

Q s




   

( )

1

T s

F T

T

Up T T

Cq Up h

A s s

 
  

  

 
 

 

  
( )

( )s

T s

T s




 1

T

F T

Up h

Cq Up h

s

 
 
  

 
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 Note: 

  
2

( )

( )

F T

T s

C T T A

Up T T

 
 


 is the time constant in the numerator. 

 

Because 0FT T   (heating) and 0sT T  , 2  is negative, we can show this 

property by using Eq. 2 at steady state: 

 

  ( ) ( )F F T sCq T T Up h T T        

 

  or   
( )

( ) T s
F

F

Up h T T
C T T

q

 
    

 Substituting 

  2
T

F

hA

q
    

 Let  TV hA    so that   2

F

V

q
   =  (initial residence time of tank) 

 For  
( )

( )F

T s

Q s




  and  

( )

( )

T s

Q s




  the “gain” in each transfer function is  

 

  
 

( )T s

T F T

Up T T
K

A Cq Up h

 
 

   

 

 

and must have the units of temperature/volume .  (The integrator s has units of 

 t
-1

). 

 

 To simplify the transfer function gain, we can substitute 

 

  
( )

( ) F F
T s

Cq T T
Up T T

h

 
    

 

 from the steady-state relation. Then 

 

  
 

( )FT F

T F T

Cq T T
K

hA Cq Up h

 


 
 

 

  or   

1

F

T

F

T T
K

Up h
V

Cq




 
 
 
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and the gain is positive since 0FT T  . Furthermore, it has dimensions of 

temperature/volume. 

 

  (The ratio T

F

Up h

Cq
 is dimensionless). 

 

(b)  The Fh q  transfer function is an integrator with a positive gain. Liquid level 

accumulates any changes in Fq , increasing for positive changes and vice-versa. 

 

  h q  transfer function is an integrator with a negative gain. h accumulates 

  changes in q, in the opposite direction, decreasing as q increases and vice  

  versa. 

 

  sh T  transfer function is zero. Liquid level is independent of sT  and 

  steam pressure sP . 

 

  T q  transfer function is second-order due to the interaction with liquid  

  level; it is the product of an integrator and a first-order process. 

 

  FT q  transfer function is second-order due to the interaction with liquid  

  level; it has numerator dynamics since Fq  affects T directly as well if  

  FT T . 

   

 sT T  transfer function is first-order because there is no interaction with 

liquid level. 

 

 c) Fh q :  h increases continuously at a constant rate. 

 

  h q :  h decreases continuously at a constant rate. 

 

  sh T : h stays constant. 

 

  FT q : for FT T ,   T decreases initially (inverse response) and then  

  increases. After long times, T increases like a ramp function. 

 

  T q : T decreases, eventually at a constant rate. 

 

  sT T : T increases with a first-order response and attains a new steady  

  state. 
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6.22 

 
 

a) The two-tank process is described by the following equations in deviation 

 variables: 

 
'

' ' '1
1 1 2

1

1 1
(

 
     

dh
w h h

dt A R
    (1) 

 
'

' '2
1 2

2

1 1
(

 
    

dh
h h

dt A R
    (2) 

 

 Laplace transforming 

 

  ' ' ' '

1 1 1 2( ) ( ) ( ) ( )   iA RsH s RW s H s H s    (3) 

 

  ' ' '

2 2 1 2( ) ( ) ( )  A RsH s H s H s      (4) 

 

 From (4) 

 

  ' '

2 2 1( 1) ( ) ( )  A Rs H s H s      (5) 

 

or 

  
'

2

'

1 2 2

( ) 1 1

( ) 1 1
 
   

H s

H s A Rs s
     (6) 

 

  where 2 2  A R  

 

Returning to (3) 

 
' ' '

1 1 2( 1) ( ) ( ) ( )    iA Rs H s H s RW s     (7) 

 

Substituting (6) with 1 1  A R       

 

  
' '

1 1

2

1
( 1) ( ) ( )

1

 
    

  
is H s RW s

s
    (8) 

 

 or 
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2 ' '

1 2 1 2 1 2( ) ( ) ( ) ( 1) ( )          is s H s R s W s    (9) 

 

'

1 2

'

1 1 2 1 2

( ) ( 1)

( ) ( )

 


     

H s R s

W s s s
     (10) 

 

 Dividing numerator and denominator by 1 2( )    to put into standard form 

 

  
'

1 1 2 2

'

1 1 2

1 2

( ) [ /( )]( 1)

( )
1

    


  
 

   

H s R s

W s
s s

     (11) 

 

 Note that 

 

  
1 2 1 2 1 2

1 1

( )
   
       

R R
K

A R A R A A A
  (12) 

 

  since 1 2 A A A  

 

 Also, let 

 

  
2 2

1 2 1 2 1 2

1 2 1 2( )

   
   

    
s

R A A RA A

R A A A
    (13) 

 

 so that 

 

  
'

1 2

'

3

( ) ( 1)

( ) ( 1)

 


 i

H s K s

W s s s
      (14) 

 

 and 

 

  
' ' '

2 2 1 2

' ' '

1 2 3

( ) ( ) ( ) ( 1)1

( ) ( ) ( ) ( 1) ( 1)

 
 

   i i

H s H s H s K s

W s H s W s s s s
 

   
3( 1)


 

K

s s
      (15) 

 

 

 Transfer functions (6), (14) and (15) define the operation of the two-tank 

 process. 

 

 The single-tank process is described by the following equation in 

 deviation variables: 
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'

'1



i

dh
w

dt A
      (16) 

 

 Note that , which is constant, subtracts out. 

 

 

 Laplace transforming and rearranging: 

 

   
'

'

( ) 1/

( )




i

H s A

W s s
      (17) 

 Again 

   
1




K
A

 

   
'

'

( )

( )


i

H s K

W s s
      (18) 

 

 which is the expected integral relationship with no zero. 

 

 

 

b)      For 1 2 / 2A A A   

 

  
2

3

/ 2

/ 4

   


   

AR

AR
       (19) 

 

 Thus 2 32    

 

 We have two sets of transfer functions: 

 

 One-Tank Process   Two-Tank Process 

 

 
'

'

( )

( )


i

H s K

W s s
    

'

3

'

3

( ) (2 1)

( ) ( 1)

 


 

i

i

H s K s

W s s s
 

 

      
'

2

'

3

( )

( ) ( 1)


 i

H s K

W s s s
 

 

 Remarks: 

 

- The gain ( 1/ ) K A  is the same for all TFs. 

- Each TF contains an integrating element. 
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- However, the two-tank TF’s contain a pole 3( 1) s  that will “filter 

out” changes in level caused by changing wi(t). 

- On the other hand, for this special case, we see that the zero in the first 

tank transfer function ' '( ( ) / ( ))i iH s W s  is larger than the pole: 

  2 3 3    

Thus we should make sure that amplification of changes in h1(t) 

caused by the zero do not more than cancel the beneficial filtering of 

the pole so as to  cause the first compartment to overflow easily. 

Now look at more general situations of the two-tank case: 

 

 
'

1 2 2

'
1 2 3

( ) ( 1) ( 1)

( ) ( 1)
1

   
 

   
 

 

i

H s K A Rs K s

RA AW s s s
s s

A

   (20) 

 
'

2

'

3

( )

( ) ( 1)


 i

H s K

W s s s
      (21) 

 

For either 1 20  or  0 A A , 

 

 1 2
3 0


  

RA A

A
 

Thus the beneficial effect of the pole is lost as the process tends to 

look more like the first-order process. 

 

c) The optimum filtering can be found by maximizing 3  with respect 

 to A1 (or A2) 

 

  1 2 1 1
3

( )  
  

RA A RA A A

A A
 

 

 Find max  3
3 1 1

1

: ( ) ( 1)
 

    


R
A A A

A A
 

 

 Set to 0: 1 1 0  A A A  

 

   12 A A  

 

   1 / 2A A  

 Thus the maximum filtering action is obtained when 1 2 / 2. A A A  
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 The ratio of 2 3/   determines the “amplification effect” of the zero on 

 1( ).h t  

 

  2 2

1 23 1

 
 


A R A

RA A A

A

 

 

As 1A  goes to 0, 2

3





 

 

Therefore, the influence of changes in 1( ) on ( )iw t h t  will be very large, 

leading to the possibility of overflow in the first tank. 

 

Summing up: 

 

The process designer would like to have 1 2 / 2 A A A  in order to obtain 

 the maximum filtering of 1 2( ) and ( ).h t h t   However, the process response 

 should be checked for typical changes in ( )iw t  to make sure that 1h  does 

 not overflow.  If it does, area 1A  needs to be increased until it is not a 

 problem. 

 

Note that 2 3    when 1 A A , thus a careful study  (simulations) 

should be made before designing the partitioned tank.  Otherwise, leave 

wellenough alone and use the non-partitioned tank.  

 

 

 6.23 

 

 

 The process transfer function is 

 

   
)124()11.0(

)(
)(

)(
22 


sss

K
sG

sU

sY
 

 

 where K = K1K2. 

 

The quadratic term describes an underdamped 2
nd

-order system since 

 

 42       2  
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   22      5.0  

 

a) For the second-order process element with 2 = 2 and this degree of 

underdamping )5.0(  , the small time constant, critically damped 2
nd

-

order process element (1 = 0.1) will have little effect. 

 

In fact, since 0.1 << 2 (= 2) we can approximate the critically damped 

element as 12
e  so that  

 

 
124

)(
2

2.0






ss

Ke
sG

s

 

 

b) From Fig. 5.10 for 5.0 ,   15.0OS    or from Eq. 5-51 

  Overshoot = exp 163.0
1 2



















    

 

  Hence ymax = 0.163 KM + KM = 0.163 (1) (3)  + 3 = 3.5 

 

 

c) From Fig. 5.3, ymax occurs at t/ = 3K or tmax = 6.8 for an underdamped 

2
nd

-order process with 5.0 . 

 

Adding in the effect of the  time delay t = 6.8 + 0.2 = 7.0 

 

 

d) By using Simulink 
 

1 = 0.1: 

0 5 10 15 20 25 30
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time

O
u
tp

u
t

Exact model

Approximate model

 
Figure S6.23a Step response for exact and approximate models; 1 = 0.1. 
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1 = 1: 

0 5 10 15 20 25 30
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time

O
u
tp

u
t

Exact model

Approximate model

 
      Figure S6.23b Step responses for exact and approximate models; 1 = 1. 

                           

 

1 = 5: 

0 5 10 15 20 25 30
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time

O
u
tp

u
t

Exact model

Approximate model

 
     Figure S6.23c Step response for exact and approximate models ; 1 = 5. 

 

As is apparent from the plots, the smaller 1 is, the better the quality of the 

approximation.  For large values of 1 (on the order of the underdamped 

element's time scale), the approximate model fails. 
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Transport

Delay1= 30 s

Transport

Delay = 75 s

-0.4

40s+1

Transfer Fcn1

-1

40s+1

Transfer Fcn

Step1

Step

Scope

 

 6.24 

 

  

0 50 100 150 200 250 300 350 400
-1.4

-1.2
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-0.8

-0.6

-0.4

-0.2

0

Time

O
u
tp

u
t

 
   Fig. S6.24.  Unit step response in blood pressure.  
  

 

The Simulink- block diagram is shown below 
 

 

 

 

 

 

 

 

 

 

 

 

 

   

The system appears to respond approximately as a first-order system or 

overdamped second-order process with time delay. 
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 6.25 

 

 

 The system equations are: 

 

   1

1

1
1

1
h

R
q

dt

hd
A i




           ,          1

1

1

1
h

R
q   

   2

2

1

1

2
2

11
h

R
h

Rdt

hd
A 


         ,         2

2

2

1
h

R
q    

   

Using a state space representation, 

 

    x Ax Bu  
   y = Cx + Du  

 where       













2

1

h

h
x    ,    iqu     and     2qy   

 then, 

 

  iq

A

h

h

ARAR

AR

dt

hd

dt

hd





























































































0

1

11

0
1

1

2

1

2211

11

2

1

 

       































2

1

2

2

1
0

h

h

R
q  

 

 Therefore,   

 

  

1

1 1

2

1 1 2 2

1
1

0
1

, , 0 , 0
1 1

0

A
R A

R

R A R A

 
        
       
        
 

  

A B C E  
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 6.26 

 

 

 Applying numerical values, equations for the three-stage absorber are: 

 

  
21

1 539.0173.1881.0 xxy
dt

dx
f   

 

  
321

2 539.0173.1634.0 xxx
dt

dx
  

 

  
fxxx

dt

dx
539.0173.1634.0 32

3   

 

  ii xy 72.0  

 

 Transforming into a state-space representation form: 

 

  
fy

x

x

x

dt

dx

dt

dx

dt

dx





















































































0

0

881.0

173.1634.00

539.0173.1634.0

0539.0173.1

3

2

1

3

2

1

 

 

  fy

x

x

x

y

y

y





































































0

0

0

72.000

072.00

0072.0

3

2

1

3

2

1

 

 

 Therefore, because xf can be neglected in obtaining the desired transfer

 functions, 

 

   











































0

0

881.0

173.1634.00

539.0173.1634.0

0539.0173.1

BA  

 

 





































0

0

0

72.000

072.00

0072.0

DC  
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 Applying the MATLAB function ss2tf , the transfer functions are: 

 

  
8123.0443.35190.3

6560.04881.16343.0

)(

)(
23

2

1










sss

ss

sY

sY

f

 

  

  
8123.0443.35190.3

4717.04022.0

)(

)(
23

2










sss

s

sY

sY

f

 

 

  
8123.0443.35190.3

2550.0

)(

)(
23

2








ssssY

sY

f
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Chapter 7  
 

 

 7.1 

 

In the absence of more accurate data, use a first-order transfer function:   

 

    

'( )

'( ) 1

s

i

T s Ke

Q s s




   

   

o( ) (0) (124.7 120) F
0.235

520 500 gal/mini

T T
K

q

  
  

   
    = 3:08 am – 3:05 am = 3 min 

 

Assuming that the operator logs a 99% complete system response as “no change 

after 3:34 am”, five time constants elapse between 3:08 and 3:34 am. 

   5 = 3:34 min  3:08 min = 26 min 

      = 26/5 min = 5.2 min 

 Therefore, 

    

3'( ) 0.235

'( ) 5.2 1

s

i

T s e

Q s s




  

To obtain a better estimate of the transfer function, the operator should log more 

data between the first change in T and the new steady state. 

 

7.2 

 

 Process gain,  

 

2

(5.0) (0) 6.52 5.50 min
0.339

30.1 0.1 fti

h h
K

q

 
  

 
 

 

 

a)       Output at 63.2% of the total change 

 

         = 5.50 + 0.632(6.52-5.50) = 6.145 ft 

 

      Interpolating between   h = 6.07 ft      and    h = 6.18 ft 

 

  
(0.8 0.6)

0.6 (6.145 6.07) min 0.74min
(6.18 6.07)


    


 

  

Solution Manual for Process Dynamics and Control, 4th edition 

Copyright © 2016 by Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp, 

and Francis J. Doyle III 
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b)   

 

   
0

(0.2) (0) 5.75 5.50 ft ft
1.25

0.2 0 0.2 min mint

dh h h

dt 

 
  


 

 

  Using Eq. 7-15, 

 

   

0t

KM

dh

dt 

  
 
 
 

0.339 (30.1 0.1)
0.82min

1.25

 
  

c) The slope of the linear relation between ti and 













)0()(

)0()(
1ln

hh

hth
z i

i
 gives   

an approximation of (-1/), according to Eq. 7-13. 

 

Using h() = h(5.0) = 6 .52, the values of zi are 

 

ti zi  ti zi 

0.0 0.00  1.4 -1.92 

0.2 -0.28  1.6 -2.14 

0.4 -0.55  1.8 -2.43 

0.6 -0.82  2.0 -2.68 

0.8 -1.10  3.0 -3.93 

1.0 -1.37  4.0 -4.62 

1.2 -1.63  5.0 -  

 

Then the slope of the least squares fit, using Eq. 7-6 is 

 

2

131

13 ( )

tz t z

tt t

S S S
slope

S S

 
   

  
    (1) 

 

where the datum at t = 5.0 has been ignored. 

  

        Using definitions, 

 

   0.18tS    4.40ttS  

   5.23zS    1.51tzS  

 

        Substituting in (1), 

 

   
1

1.213
 
   
 

 0.82min    

  

d)    
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Experimental data
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Figure S7.2 Comparison between models a), b) and c) and the step response data. 

 

 

 

 7.3 

 

 

 a)  

   1 1

1

( )

( ) 1

T s K

Q s s




  
 2 2

1 2

( )

( ) 1

T s K

T s s




  
 

 

   
2

2 1 2 1 2

1 2 1

( )

( ) ( 1)( 1) 1

s
T s K K K K e

Q s s s s


 

      
   (1) 

 

where the approximation follows from Eq. 6-58 and the fact that 1>2, as 

revealed by an inspection of the data. 

 

667.2
8285

0.100.18)0()50( 11
1 











q

TT
K  

 

  75.0
0.100.18

0.200.26

)0()50(

)0()50(

11

22
2 











TT

TT
K  
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Let z1 and z2 be the natural log of the fraction incomplete response for T1 

and T2, respectively. Then, 

 








 















8

)(18
ln

)0()50(

)()50(
ln)( 1

11

11
1

tT

TT

tTT
tz  

 








 















6

)(26
ln

)0()50(

)()50(
ln)( 2

22

22
2

tT

TT

tTT
tz  

 

A plot of z1 and z2 versus t is shown below. The slope of the z1 plot is 

 – 0.333;  hence (1/-1)= - 0.333   and 1 = 3.0 

 

From the best-fit line for z2 versus t, the projection intersects z2 = 0 at  

t  1.15. Hence 2 = 1.15. 
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                           Figure S7.3a z1 and z2 as a function of t 
 

b)  Using Simulink-MATLAB, the following results are obtained: 
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  Figure S7.3b Comparison of experimental data and models for a step change. 
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Taking the inverse Laplace transform, 

 

     ( ) (-75/8) exp(- /5) + (27/4) exp (- /3) - (3/8)exp(- ) + 3y t t t t  (1) 

 

a) Fraction incomplete response 
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Figure S7.4a Fraction incomplete response; linear regression 

 

  From the plot:   slope = - 0.179 and intercept  3.2 

 

  Hence, 

 

   -1/ = -0.179  and   = 5.6 

 

 = 3.2 

   
3.22

( )
5.6 1

se
G s

s


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 b)   In order to use Smith’s method, find t20 and t60: 

 

  y(t20)=  0.2   3 =0.6 

 

  y(t60)=  0.6   3 =1.8 

  

  Using either Eq. 1 or the plot of this equation, t20 = 4.2 , t60 = 9.0 

 

  Using Fig. 7.7 for t20/ t60 = 0.47 

 

  = 0.65  ,     t60/= 1.75, and   = 5.14 
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z(t) = -0.1791 t + 0.5734
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 The models are compared in Fig. S7.4b:
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First order model
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     Figure S7.4b Comparison of three models for a step input 
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For a first-order plus time-delay model
1

1

sG e
s
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




, assume 1; 0.1,1,10   , 

we have: 

a) / 0.1    : 
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Figure S7.5a Plot of the true data; / 0.1    
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So 1 20.5355; 2.017;t t    
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      Figure S7.5b Comparison of true data and approximate model 

 

Sum of squared error = 0.0232 

 

b) / 1    : 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X: 1.436

Y: 0.3537

Time/s

R
e
s
p
o
n
s
e

X: 2.918

Y: 0.8531

 

Figure S7.5c Plot of the true data; / 1    

 

So 1 21.436; 2.918;t t    
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      Figure S7.5d Comparison of true data and approximate model 

 

Sum of squared error = 0.1050 

 

 

c) / 10   : 
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Figure S7.5e Plot of the true data; / 10    
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So 1 210.44; 11.92;t t    
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      Figure S7.5f Comparison of true data and approximate model 

 

Sum of squared error = 4.3070 
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a) Drawing a tangent at the inflection point which is roughly at t  5, the 

intersection with y(t) = 0 line is at t  1 and with the y(t)=1 line at t  14.  

 Hence  =1    and    = 141=13 

   
113

)(1





s

e
sG

s

 

 

b)      Smith’s method 

  

 From the plot,  t20 = 3.9 , t60 = 9.6  ;  using Fig 7.7 for t20/ t60 = 0.41  

 

    = 1.0  ,     t60/= 2.0   ,     hence  = 4.8  and 1 = 2 =  = 4.8 
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 Nonlinear regression 

 

From Figure E7.5, we obtain these values (approximate): 

 
Table Output values from Figure E7.5 

 

 

 

 

 

 

 

 

 
 

For the step response of Eq. 5-48, the time constants were calculated so as 

to minimize the sum of the squares of the errors between data and model 

predictions. Use Excel Solver for this Optimization problem: 

 

1 =6.76 min   and    2 = 6.95 min   
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The models are compared in Fig.S7.6: 

Time Output

0.0 0.0

2.0 0.1

4.0 0.2

5.0 0.3

7.0 0.4

8.0 0.5

9.0 0.6

11.0 0.7

14.0 0.8

17.5 0.9

30.0 1.0
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          Figure S7.6 Comparison of three models for unit step input 
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a)  From the plot, time delay  = 4.0 min 

 

 Using Smith’s method, 

 

 from the graph,  20 5.6t      ,   60 9.1t     

 

 6.120 t  ,  1.560 t   ,  314.01.5/6.1/ 6020 tt  

 

 From Fig.7.7 ,  1.63    , 60 / 3.10t     ,   1.645   

 

 Using Eqs. 5-45 and 5-46,  1 4.81   min  , 2 0.56   min   

 

 

b)  Overall transfer function 
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  ,   1 2    
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       Assuming plug-flow in the pipe with constant-velocity, 

 

        ( ) ps

pipeG s e


   ,  
3 1

0.1min
0.5 60

p     

 

  Assuming that the thermocouple has unit gain and no time delay 
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1
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TCG s
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  Then  
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so that, 
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  (a) 63% response method 

From inspection of the data, it is obvious that there is no time delay in the system 

(=0).  

Time constant  is estimated by the 63% response method:  

   
 

' ' '

00.63 0.63*20.3 12.78

12.78 10.4 23.18

ssh h h ft

h ft





   

  
 

From inspection at the data,  ≈ 270 min.   

The process gain is calculated as: 

 
 

' '
20

0

20.3 0 20.3
46 min/

4.8 1.5 0.1337 0.4412

ssh h
K ft

q q

 
   

  
  

The estimated process model is: 

 

 

'

'

46

1 2.70 1

H s K

Q s s s
 

 
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(b) Nonlinear regression 

By using deviation variables, the first order tank can be expressed as  

 

 

'

' 1

H s K

Q s s



 

The inlet flow rate is quickly changed from 1.5 gallon/min to 4.8 gallon/min so it 

is a step change, Q’(s) 3.3/s: 

   
 ' '
4.8 1.5 0.1337 0.4412

1 1 1

K K K
H s Q s

s s s s s  

 
  

  
  

Apply the inverse Laplace transform: 

   ' /0.4412 1 th t K e    

By using EXCEL, the estimated model is: 

 

 

'

'

46.31

1 2.65 1

H s K

Q s s s
 

 
 

A comparison of the data and the two models is shown in Fig.S7.8. 

 

Figure S7.8 A comparison of the step responses of the data and the two models. 

 

The Sum of Squared Errors for the two models are: 

SSE (63.2%) = 0.75 
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SSE (NR) = 0.43 

As indicated in Fig.S7.8, both methods fit the data well. The NR model is 

preferred due to its smaller SSE value.  
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3 0
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5 1

y
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 
  
 

 

=2     (by inspection) 

Use Smith’s method to find 1 and 2. 

y20 = y(0) + (0.2) (y) = 0 + (0.2) (3) = 0.6 

From inspection of the data,  

t20 = 4 –  = 2 

Similarly,  

y60 = y(0) + (0.6) (y) = 0 + (0.6) (3) = 1.8 

t60 = 7 –  = 5 

Therefore, 

20

60

2
0.4

5

t

t
   

From Fig. 7.7: 

1.2   

and 

60 60 5
2.1    = 2.38

2.1 2.1

t t
    


 

Thus the transfer function can be written as: 
2

2

2

0.75
                          ( )

5.66 5.71 1

From (5-45) and (5-46) or by factoring (e.g., using MATLAB command )

 gives:

0.75
                          ( )

(4.44 1) (1.28 1)
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7.10 

 

 

Assume that T() = T(13) = 890 C. The steady-state gain K is the change in 

output divided by the change in input: 

K = 
890 – 850

950 – 1000
 = – 0.8 C/cfm 

Assume that the input change in air flow rate is made at t = 2
+
 min so that the 

observed input first changes at t = 3 min ; the output first changes at t = 5 min. 

This means that the time delay is two sampling periods, i.e.,  = 2 min. Why is 

=2 min, rather than 3 min? To understand this point, first consider a process 

with no time delay (=0). For a step change at t = 2
+ 

min, the first observed 

changes in the input and the output of this undelayed would occur at t = 3 min, 

because the output cannot change simultaneously due to the process dynamics. 

But for our process, the first changes are observed at t = 5 min which implies that 

 min 

Time constant  can be obtained from the 63.2% response time: 

T63.2% = 850 C + (890 – 850 C)(0.632) = 875.3 C 

Interpolating between t = 7 min and t = 8 min gives 

t63.2% = 






t(8) – t(7)

T(8) – T(7)
(T63.2% – T(7)) + t(7) 

         = 






8 – 7

878 – 873
(875.3 – 873) + 7 

     = 7.46 min 

Then 

t63.2% =  +  + t(0) 

where t(0)=3, the time when the input first changes. Thus 

= t63.2% –  - t(0) = 7.46 – 1 - 3 

 
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So the FOPTD model of the process is 

20.8
( )

3.46 1

se
G s

s





 

  

7.11 

 

 

(a) For a SOPTD model shown in below, 

  2 2 2 1

sK
G s e

s s



 


 

  

 Based on visual inspection on the figure, it is an underdamped process, using 

Equation (5-51) we have gain 

 

 

2

22

ln1.5 1
1, 2, 0.5 0.1572 0.16

1 0 ln

5.5 5.5 2 3.5p

OS
K OS

OS

t s

 




          
    

    

 , 

Based on Equation (5-50): 

2 21 5.5* 1 0.1572
1.7289 1.73

pt 


 

 
      

  2 2

2 2

1 1

1.73 2*0.16*1.73 1 3 0.55 1

s sG s e e
s s s s

  
   

 

 

An alternative method is to use the Smith’s Method shown in Figure 7.7: 

20 602, 1, 2.6, 3.1K t t       

The adjusted times are employed for the actual graphical analysis: 
'

20 20

'

60 60

'

20

'

60

2.6 2 0.6

3.1 2 1.1

0.54

t t

t t

t

t





    

    



  

Based on Figure 7.7, we have 60 3.1
0.14, 1.3 2.38

1.3

t
 


       

  2 2

2 2

1 1

2.38 2*0.14*2.38 1 5.67 0.67 1

s sG s e e
s s s s

  
   

 

 

(b) Because a damped oscillation occurs, this matches the features of SOPTD. 

FOPTD method does not allow for oscillation. 
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(a) For a FOPTD model shown in below: 

 
1

sKe
G s

s










  

Based on visual inspection, the gain 2;K   2.5  ; when the response reaches 

63.2% complete, i.e., 2*0.632=1.264, 63.2% 5t s     

(b)  
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Raw data

 
Figure S7.12 The response of the derived FOPTD model 

 

(c) The inverse response at the initial state is caused by a right-half plan zero and 

is not captured by FOPTD model. 
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a) Replacing  by 5, and K by 6 in Eq. 7-25  

 
/5 /5( ) ( 1) [1 ]6 ( 1)t ty k e y k e u k       

 

b) Replacing   by 5, and K by 6 in Eq. 7-22  
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( ) (1 ) ( 1) 6 ( 1)
5 5

t t
y k y k u k

 
      

    

In the integrated results tabulated below for t = 0.1, the values are shown 

only at integer values of t, for comparison.  

 
Table S7.13 Integrated results for the first order differential equation 
 

t 
y(k) 

(exact) 
y(k) 

(Δt=1) 
y(k)  

(Δt=0.1) 

0 3 3 3 

1 2.456 2.400 2.451 

2 5.274 5.520 5.296 

3 6.493 6.816 6.522 

4 6.404 6.653 6.427 

5 5.243 5.322 5.251 

6 4.293 4.258 4.290 

7 3.514 3.408 3.505 

8 2.877 2.725 2.864 

9 2.356 2.180 2.340 

10 1.929 1.744 1.912 

   
  

Thus t = 0.1 does improve the finite difference model making it a more 

accurate approximation of the exact model. 
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  To find 1a  and 1b , use the given first order model to minimize 

 

   
10

2

1 1

1

( ( ) ( 1) ( 1))
n

J y k a y k b x k


      

 

where y(k) denotes the data. 

 

   
10

1 1

11

2( ( ) ( 1) ( 1))( ( 1) 0
n

J
y k a y k b x k y k

a 


       


  

   
10

1 1

11

2( ( ) ( 1) ( 1))( ( 1)) 0
n

J
y k a y k b x k x k

b 


       


  

Solving simultaneously for 1a  and 1b  gives 
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  Using the given data, 

 

   212.35)()1(
10

1




kykx
n

  ,    749.188)()1(
10

1


n

kyky  

 

   14)1(
10

1

2 
n

kx      ,     112.198)1(
10

1

2 
n

ky  

 

   409.24)1()1(
10

1


n

kxky  

 

  Substituting into expressions for 1a  and 1b  gives 

 

   1a = 0.8187        ,       1b = 1.0876 

 

The fitted model is )(0876.1)(8187.0)1( kxkyky      

 

or                         )1(0876.1)1(8187.0)(  kxkyky   (1) 

 

  Let the first-order continuous transfer function be, 

 

   
( )

( ) 1

Y s K

X s s

 

 

 

For Eq. 7-34, the discrete model is 

 

   / /( ) ( 1) [1 ] ( 1)t ty k e y k e Kx k           (2) 

   

 

Comparing Eqs. 1 and 2, for t=1, gives  
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    = 5 s      and    K = 6 volts 

 

  Hence, the continuous transfer function is  

 

6
( )

5 1



G s

s
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     Figure S7.14  Responses of the fitted model and the data 
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a) FOPTD model: 

Since K=1, using linear interpolation to find times corresponding to the 35.3% 

and 85.3% of response: 

35.3% 85.3%2.89; 8.66t t    

 
35.3% 85.3%

85.3% 35.3%

1.3 0.29 1.24

0.67 3.87

t t

t t





   

  
  

 

b) Discrete-time ARX model: 

     0.911 1 0.1329 1y k y k u k     (since    1 1u k u k    ) 

Thus: 
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 1/ 1/0.911; 1 0.1329 1.49e K e K         

An alternative way to calculate K is to set      1 , 1 1ss ssy k y k y u k u        

0.1329
0.911 0.1329 1.49

0.089
ss ssy y K       
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Figure S7.15. Comparison of true data and model responses. 

 

The result obtained using the ARX model is different from that obtained using an 

FOPTD model, because the extra constraint “K=1” is not used. In other words, 

the discrete time data do not include the final steady-state value, so the calculation 

gives a different gain. If more data points are added on steady-state values, the 

result obtained using ARX model will converge to K=1.  

 

7.16 

 

1 2 1 2( ) ( 1) ( 2) ( 1) ( 2)y k a y k a y k b u k b u k         (1) 

 

a) For the model in (1), the least squares parameter estimates are given by 

 

 ˆ -1
T T

β = X X X Y           (2) 

For the basal1 dataset:  

 



7-23 

 

1

2

1

2

4 0 2 5 0 4

4 4 2 5 2 5 11
  ,  and  

213 211 2 5 2 5 214

     
     

        
     
     

      

.

. .
β̂ ,

. .

a

a
X Y

b

b

 

 

Calculate parameter estimates using (2): 

 

  ˆ 1.29 0.31 3.67 1.26
T

  β .  

 

Next, we generate model predictions for the calibration data (dataset basal1) 

using past inputs and past model predictions, but not past output data.  

Figure S7.16a compares the calibration data and the model predictions, 

where y = y - y(0).   Metric S denotes the corresponding sum of squared 

errors,  

 
2

1

ˆ( ) ( )
N

S y k y k   (2) 
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Figure S7.16a Comparison of model predictions and calibration data for the 2nd 

order discrete-time model (S is the sum of squared errors in Eq. 2). 

 

b)   The comparison of the validation data (dataset basal2) and the corresponding 

model predictions is shown in Figure S7.16b.  
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Figure S7.16b Comparison of model predictions and validation data for the 2nd 

order discrete time model (S is the sum of squared errors in Eq. 2). 

b) Now, consider the first-order transfer function model 

 

( )

( ) 1

Y s K

U s s



      (3) 

 

First, determine the steady-state gain, K = Δy/Δu.  The output finally reaches a 

new steady state of about 250 mg/dL.  For dataset basal1, the input change is 

u=2.5 units/day. Thus,  

250 mg day
100

2.5 dL units
K       

 

To identify time constant τ, determine the time at which 63.2% of the total 

change has occurred. This corresponds to the time at which the output, Δy has a 

value of - 250 × 63.2% = - 158. For inspection of the data, τ = 134 min when 

y= 158 mg/dL.  

 

The model predictions for the model in (3) can be calculated from the step 

response for a first-order transfer function in (5-18)  

 
/( ) (1 )ty t KM e       (5-18)) 

 

The input step sizes are M = 2.5 units/day for basal1 and 1.5 units/day for 

basal2. 
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Figures S7.16c and S7.16d show the model predictions for the calibration and 

validation data, respectively.  
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Figure S7.16c  Comparison of the model predictions and calibration data for the 

1
st
 order transfer function (S is the sum of squared errors in Eq. 2). 
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Figure S7.16d  Comparison of the model predictions and validation data for the 

1
st
 order transfer function (S is the sum of squared errors in Eq. 2). 

c) Discussion of results  

Table S7.16 lists the calculated values of S for the two models.  
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Table S7.16. Average squared error for the model predictions. 

 

 

 

 

 

 

 

 

 

The discrete-time model is more accurate than the transfer function model for 

the calibration data, which is not surprising because the former has more 

model parameters. Although, the transfer function model is more accurate for 

the validation dataset, neither model is very accurate for this dataset. 
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a) Fit a first-order model: 

 

Let y = hydrocarbon exit temperature, THC 

      u = air flow rate, FA 

 

Note: There is a typo in the 1
st
 printing. The step change in u should start at 17.9 

m
3
/min, not 17.0 m

3
/min. 

 

The step response data is shown in Fig. S7.17a. The step change in u from 17.9 to 

21 m
3
/min occurs at t = 14 min. By inspection of the noisy y data, the time delay 

is approximately = 4 min.  
 

 Modelh 

 Discrete-time  Transfer 

function 

Calibration data 

(basal1) 

1921 2428 

Validation data 

(basal2) 

60,282 48,194 



7-27 

 

 
 Figure S7.17a Step response data for the furnace module. 

 

From the step response data, the following information can be obtained: 

 

 
3 3

25K K
11.9

2.1 m /min m /min

y
K

u


    


 

 

 y(0) = 609.5 K,   y(∞) = 584.5 K;   thus y = 609.5 – 584.5 = - 25 K 

 

 y63.2 = 609.5 + (0.632)(-25) = 593.7 K 

 

From the figure, t63.2 = 19.5 – 14 - 4 = 5.5 min. Thus, the transfer function model 

is: 

( ) 11.9

( ) 5.5 1

Y s

U s s





 

 

b) Fit a second-order model: 

 

Use Smith’s method to find 1 and 2. 

 

y20 = y(0) + (0.2)(y) = 609.5 + (0.2)(-25) = 604.5 K 

 

y60 = y(0) + (0.6) (y) = 609.5 + (0.6)(-25) = 594.6 K 

 

From inspection of the data,  

 

t20 ≈ 19.5 - 10 = 1.5 min 

Similarly,  

t60 = 23 –  = 5 min 

Therefore, 
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20

60

1.5
0.3

5

t

t
   

 

From Fig. 7.7: 

 

2.2   

and 

60 60 5
4    = 1.25min

4 4

t t
    


 

 

Thus the second-order transfer function can be written in standard form as: 

 
2

2

4

2 2

( ) 1.5
                          

( ) 5.66 5.71 1

( ) 11.9
                          

( ) (1.25) 2(2.2)(1.25) 1

From (5-45) and (5-46) or by factoring (e.g., using MATLAB command 

s

HC

A

s

HC

A

T s e

F s s s

T s e

F s s s

ro






 




 

4

)

 gives:

11.9
                           

(5.2 1) (0.3 1)

s

HC

A

ots

T e

F s s




 

 

 

c) Simulations 
 

 
       Figure S7.17b Comparison of furnace step response data and model responses. 

 

 

d) Discussion 
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The model comparisons in Fig. S7.17b indicate that the two models are very 

similar and reasonably accurate. However, the low-order transfer function models 

fail to capture the higher order dynamics of the physical furnace model that was 

used to generate the step response data. The first-order model has a lower value of 

the least squares index, S:  

 

First order model:  S = 1.71 x 10
4
  

Second-order model: S = 2.01 x 10
4 
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(a) Fit a FOPTD model to the column step response data: 

 

Let y = distillate MeOH composition, xD 

      u = reflux ratio, R 

 

The step response data is shown in Fig. S7.18a with the step change in u from 

1.75 to 2.0 occurring at t = 3950 s. By inspection of the noisy data, the time delay 

is ≈ 50 s.  

 

The following information can be obtained from the step response data: 

 

 xD(0) = 0.85,   xD(∞) = 0.88;   

thus  

  xD = 0.88 – 0.85 = 0.03 

and 

 
0.03

0.12
0.25

y
K

u


  


 

Also, 

 

 y63.2 = 0.85 + (0.632)(0.03) = 0.869 
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 Figure S7.18a Step response data for the column module. 

 

From the figure,  = t63.2 – t(0)= 5050 – 3950 - 50 ≈ 1050 s.  Thus, one estimate of 

the time constant is  = 1050 s.  A second estimate can be obtained from the 

settling time, ts ≈ 7600 – 3950 = 3650 s. Thus,  ≈ ts/4 = 912 s. Averaging these 

two estimates gives: 

1050 912
981 s

2
ave


    

Thus the identified transfer function is, 

50( ) 0.12

( ) 981 1

s

Dx s e

R s s






 

 

 (b)   SOPTD model: 

 Use Smith’s method: 

y20  = 0.85 + (0.2)(0.03) = 0.856 

y60  = 0.85 + (0.6)(0.03) = 0.868 

From the step response data: 

t20 ≈ 4280 – 3950 – 50 =  280 s 

t60 ≈ 4900 – 3950 – 50 =  900 s 

Thus, 



7-31 

 

20

60

280
0.31

900

t

t
   

From Fig. 7.7: 

60 60           4 225 s
4

and

                         2.0

t t
    



 

 

The SOPTD model can be written as: 

 

50

2 2 4 2

50

( ) 0.12
           

( ) 2 1 4 10 800 1

which can be factored using (5-45) and (5-46):

( ) 0.12
                         

( ) (769 1)(54 1)

ss

D

s

D

x s eKe

R s s ts x s s

x s e

R s s s





 
     


 

 

c) Simulations 

 

  
Figure 7.18b Comparison of column step response data and model responses. 

 

d) Discussion 

 

The model comparisons in Fig. S7.18b indicate that both models are reasonably 

accurate. However, the second-order model is more accurate as indicated visually 

and by its slightly lower S value: 



7-32 

 

 

First order model:  49.014 10S     

Second-order model: 49.012 10S    
 

 



 

[Type here] 8-1 [Type here] 

Chapter 8 © 
 

 

Many of the problems in this chapter require determining whether a controller should be 

direct-acting or reverse-acting. The following chart can help guide the thinking process 

for these problems when also considering the style of the valve. Note that the chart 

assumes all unmentioned gains are positive (measurement, I/P, etc.). 

  

Table S8.1: Chart for determining if controller should be direct-acting or reverse-acting. 

If the process gain is: And the valve is: 
Then the controller 

should be: 

Positive 

MV ↑, CV ↑ 

Kp + 

 

For control, if CV ↑, 

want MV ↓ 

Fail Close (Air-to-Open) 

Kv + 

For MV ↓, want p ↓ 

Reverse-Acting 

Kc + 

For CV ↑, want p ↓ 

Fail Open (Air-to-Close) 

Kv – 

For MV ↓, want p ↑ 

Direct Acting 

Kc – 

For CV ↑, want p ↑ 

Negative 

MV ↑, CV ↓ 

Kp – 

 

For control, if CV ↑, 

want MV ↑ 

Fail Close (Air-to-Open) 

Kv + 

For MV ↑, want p ↑ 

Direct Acting 

Kc – 

For CV ↑, want p ↑ 

Fail Open (Air-to-Close) 

Kv – 

For MV ↑, want p ↓ 

Reverse-Acting 

Kc + 

For CV ↑, want p ↓ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

8-2 

 8.1 

 

 

The response of a PI controller to a unit step change in set point at t = 0 is shown in 

Fig. 8.6.  The instantaneous change at t = 0 is Kc and the slope of the response is 

Kc/I. Now consider a more general step change in the set point of magnitude M.  

2

( ) 1
(1 )

( )

( )

( )

( )  for 0

c
c c

I I

c c

I

c
c

I

KP s
K K

E s s s

M
E s

s

K M K M
P s

s s

K M
p t K M t t

 





   



 

  

 

The instantaneous change at t = 0 is KcM and the slope of the response is KcM/I  

From the data given in the table, the initial instantaneous change is -1.3 mA and the 

slope is -0.0335 mA/s for a step change of M = 2.5 mA. Thus,  

 1.3 mA 1.3mA
0.52

 2.5mA
CK

M

 
     

                  0.0335 mA/s 

0.52(2.5mA)
  =  = 26 s 

0.0335 mA/s 0.05 mA/s

C

I

C
I

K M

K M





 



 

 

 Because KC is negative, we classify this controller as direct acting. 

 

 

 

a) 
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



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









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













1

1

)(
1

21

12

21
s

s
KK

K

KK  

b) Kc = K1 + K2              K2 = Kc   K1 

 

  D1  

 

  
21

2

21

12

KK

K

KK

K D
D









   

 

8.2 
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or 
21

21
KK

K




  

 

    221 KKK  

 

   )1(2221  KKKK  

 

  Substituting, 

  111 )1()1()1)(( KKKKK cc   

 

  Then, 

  cKK 













1
1  

 

c) If  Kc = 3    ,   D = 2     ,     = 0.1       then,  

   

   273
1.0

9.0
1 


K  

 

   30)27(32 K    

 

   1 = 0.1   2 = 0.2 

   

Hence 

    K1 + K2 = -27 + 30 = 3 

 

           2
3

2.030

21

12 







KK

K
 

 

   













12.0

12
3)(

s

s
sGc  

 

 8.3 

 

 

a) From Eq. 8-14, the parallel form of the PID controller is :  

 












 s

s
KsG D

I

ci

1
1)(  
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From Eq. 8-15, for 0, the series form of the PID controller is: 

 

   1
1

1)( 







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s
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D

D
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I
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s

s
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1
11  

 Comparing Ga(s) with Gi(s) 

 

   













I

D
cc KK 1  

   













I

D
II 1  

   

I

D

D
D









1

 

b) Since 









I

D




1  1 for all D, I, therefore 

 cc KK      ,    II    and   DD   

 

c) For Kc = 4,  I=10 min ,  D =2 min 

 

8.4cK   ,    min12I   ,   min67.1D  

d) Considering only first-order effects, a non-zero value  will dampen all 

responses, making them slower. 

 

 

 8.4 

 

 

a) System I (air-to-open valve): as the signal to the control valve increases, 

the flow through the valve increases   Kv > 0. 

 

System II (air-to-close valve): as the signal to the control valve increases, 

the flow through the valve decreases   Kv < 0. 
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b) System I:  Flow rate too high   need to close valve   decrease 

controller output reverse acting controller 

  

 Or:  Process gain + 

  Valve gain + 

  Controller gain must be + (which means reverse acting) 

 

System II:  Flow rate too high   need to close valve   increase 

controller output  direct acting controller. 

 

Or: Process gain + 

 Valve gain – 

 Controller gain must be – (which means direct acting) 

 

c) System I:  Kc > 0. 

System II:  Kc < 0. 

 

 

 8.5 

 

 

a) From Eqs. 8-1  and  8-2, 

 

 )()()( tytyKptp mspc       (1) 

 

The liquid-level transmitter relation is 

 

 ym(t) = KT h(t)       (2) 

where: 

h is the liquid level 

KT  > 0 is the gain of the direct acting transmitter. 

 

The control-valve relation is 

 

 q(t) = Kvp(t)       (3) 

 

where 

q is the manipulated flow rate 

Kv is the gain of the control valve. 

 

(a)  Configuration (a) in Fig. E8.5: 

As h increases, we want to decrease qi, the inlet flow rate. For an air-to-close 

control valve, the controller output p should increase. Thus as h increases p 

decreases   a direct-acting controller. 
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   Configuration (b): 

As h increases, we want to increase q, the exit flow rate. For an air-to-close 

control valve, the controller output should decrease. Thus as h increases p 

decreases   a reverse-acting controller. 

 

(b) Configuration (a) in Fig. E8.5: 

As h increases, we want to decrease qi, the inlet flow rate. For an air-to-open 

control valve, the controller output p should decrease. Thus as h increases p 

decreases   a reverse-acting controller. 

 

   Configuration (b): 

As h increases, we want to increase q, the exit flow rate. For an air-to-open 

control valve, the controller output should increase. Thus as h increases p 

increases   a direct-acting controller. 
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 For PI control 

  















 

t

I

c dtteteKptp
0

**)(
1

)()(  

  















 

t

I

c dtteteKtp
0

**)(
1

)()(  

 Since  

e(t) = ysp – ym = 0 - 2 = - 2 

 

Then 

  



























  tKdtKtp

I

c

t

I

c

2
2*)2(

1
2)(

0

 

 

 The initial response at t = 0 is   2 Kc 

 The slope of the response is  
I

cK




2
 

Substitute the numerical values of the initial response and slope from Fig. E8.6: 

   

- 2 Kc = 6          Kc = -3 

 

 
I

cK




2
= 1.2 min-1          I = 5 min 
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 8.7 

 

 

(a) The error signal can be described by: 

 

2

( ) 0.5

0.5
( )





e t t

E s
s

 

 

The PID controller transfer function is given by (Eq. 8-14): 

 









 s

s
K

sE

sP
D

I

C 


1
1

)(

)('
 

 

Substituting gives the controller output: 

 

2

2

0.5 1
'( ) 1

1
'( ) 0.5 ( )

2







 
   

 

 
   

 

C
D

I

C D

I

K
P s s

s s

p t K t t S t

 

 

Substituting numerical values and adding 12 mAp  gives: 

 

21
( ) 12 0.5 ( )

3
PIDp t t t S t     

 

(b) The equation for a PI controller is obtained by setting τD to zero.  

 

21
( ) 12

3
PIp t t t    

 

(c) The plot of the controller response for both controllers is shown in Fig. S8.7. 

 

The two controllers have similarly-shaped responses. The difference is the 

sudden jump at t=0 that occurs with the PID controller as a result of the 

derivative term. When the set point begins to change with a constant slope, there 

is a step change in the error derivative from 0 to 0.5. The derivative term in the 

controller gives it a jumpstart right when the setpoint begins to change that the 

PID controller does not have.  
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Figure S8.7: PID controller output response 

 

 

 8.8 

 

From inspection of Eq. 8-25, the derivative kick = r
t

K D
c 



 

a) Proportional kick = rKc  

 

b) e1 = e2 = e3 = …. = ek-2 = ek-1 = 0 

 

ek = ek+1 = ek+2 = …= r 

 

  ppk 1  

  

















 r

t
r

t
rKpp D

I

ck  
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  












 r

t
irKpp

I

cik )1(      ,     i = 1, 2, … 

  

a) To eliminate derivative kick, replace (ek – ek-1) in Eq. 8-25 by - (yk-yk-1).  

  (Note the minus sign.) 

 

 

 8.9 

 

 

a) Let the constant set point be denoted by spy . The digital velocity P 

algorithm is obtained by setting 1/I = D = 0 in Eq. 8-27: 

 

pk = Kc(ek – ek-1) 

 

       =   1)(  kspkspc yyyyK  

  

       =  kkc yyK 1  

 

The digital velocity PD algorithm is obtained by setting 1/I = 0 in Eq. 8-

27: 

pk =  Kc [(ek – ek-1) + 
t

D




(ek – 2ek-1 + ek-2)]  

      =  Kc  [ (-yk + yk-1) + 
t

D




(-yk – 2yk-1 + yk-2) ] 

k k+1 k+2 k+3

r
t

K D
c 




rKc r
t

K
I

c 




kp

p

k-1
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  In both cases, pk does not depend on spy . 

 

b) For both these algorithms pk = 0 if yk-2 = yk-1 = yk. Thus a steady state is 

reached with a value of y that is independent of the value of spy . Use of 

these control algorithms is inadvisable if offset is a concern. 

 

c) If the integral mode is present, then pk contains the term Kc )( ksp

I

yy
t





.   

Thus, at steady state, pk  = 0 and  yk-2 = yk-1 = yk ,  yk = spy , and the offset 

problem is eliminated. 
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 a) 


















1

1
1

)(

)(

s

s

s
K

sE

sP

D

D

I

c  

 

              
 ( 1) 1

( 1)

I D D D I

c

I D

s s s s s
K

s s

       


  
 

              













)1(

)1()(1 2

ss

ss
K

DI

DIDI
c  

 

 Cross- multiplying  

 

    )()1()(1)()( 22 sEssKsPss DIDIcIDI   

 

Taking inverse Laplace transforms gives, 

    

 











dt

tde
teK

dt

tpd

dt

tpd
DIcIDI

)(
)()(

)()(
2

2







2

2 )(
)1(

dt

ted
DI  

 

 b) 



























1

1

)(

)(

s

s

s

s
K

sE

sP

D

D

I

I
c  

 

 Cross-multiplying  

 

    )()1)(1()()1(2 sEssKsPss DIcDI   
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  











dt

tde
teK

dt

tpd

dt

tpd
DIcIDI

)(
)()(

)()(
2

2







2

2 )(

dt

ted
DI  

 

c) The simulation is performed for the following parameter values: 

 

      2cK    ,    3 I  ,   5.0D  ,     1.0     ,   M = 1 

   

  The Simulink-MATLAB results are shown in Figure S8.10.: 

 

 
Figure S8.10.   Step responses for both parallel and series PID controllers  

  with a derivative filter. 
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The integral component of the controller action is determined by integrating the 

error between the measurement and the set point over time. As long as the sign on 

the error stays the same (i.e., if the measurement does not cross the set point), the 

integral component will continue to change monotonically. If the measurement 

crosses the set point, the error term will change sign and the integral component 

will begin to change in the other direction. Thus, it will no longer be monotonic. 

 

 

 

 

 

 

Step Response

Time 
0 2 4 6 8 10

2

4

6

8

10

12

14

16

18

20

22
Parallel PID with a derivative filter
Series PID with a derivative filter

p'(t) 



 

8-12 

 

 8.12 

 

 

a) False.  The controller output could saturate or the controller could be in the 

manual mode.  

b)  False.  Even with integral control action, offset can occur if the controller output 

saturates. Or the controller could be in the manual mode. 
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First consider qualitatively how h2 responds to a change in q2.  From physical 

considerations, it is clear that if q2 increases, h2 will increase.  Thus, if h2 is 

increasing, we want q2 to decrease, and vice versa. Since the q2 control valve is air-

to-open, the level controller output p should decrease in order to have q2 decrease. 

In summary, if h2 increases we want p to decrease; thus a reverse-acting controller 

is required. 

 

 

 8.14 

 

 

First consider qualitatively how solute mass fraction x responds to a change in steam 

flow rate, S.  From physical considerations, it is clear that if S increases, x will also 

increase.  Thus, if x is increasing, we want S to decrease, and vice versa. For a fail-

open (air-to-close) control valve, the controller output p should increase in order to 

have S decrease. In summary, if x increases we want S to decrease, which requires 

an increase in controller output p; thus a direct-acting controller is required. 

 

 

 8.15 

 

 

First consider qualitatively how exit temperature Th2 responds to a change in cooling 

water flow rate, wc.  From physical considerations, it is clear that if wc decreases, Th2 

will increase.  Thus, if Th2 is decreasing, we want wc to decrease, and vice versa. But 

in order to specify the controller action, we need to know if the control valve is fail 

open or fail close. Based on safety considerations, the control valve should be fail 

open (air-to-close). Otherwise, the very hot liquid stream could become even hotter 

and cause problems (e.g., burst the pipe or generate a two phase flow). 

For an air-to-close control valve, the temperature controller output p should 

increase in order to have wc decrease.  In summary, if Th2 decreases we want wc to 

decrease, which requires controller output p to increase; thus a reverse-acting 

controller is required. 
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 8.16 

 

 

Two pieces of information are needed to specify controller action: 

i) Is the control valve fail open or fail close 

ii) Is x1 > x2  or  x1 < x2 

 

If x1 > x2, then the mass balance is: 

  

1 1 2 2 1 2

1 2

1 2

2 1 2 2 1 2

2 1 1 2 2 1 2

2 1 2 1 1 2

1
2

1 2

( )

( ) ( )

( )

( ) ( )

( )

x w x w xw x w w

x x

x x

x w x w x w w

x w w x w x w w

x w w w x w w

w
x x

w w

   



   

    

    

    


 



 

Since all the variables in the equation are positive, then x > x2 . The only way to 

decrease x is to increase w2 (but x can never be less than x2). Therefore, w2 should be 

increased when x increases, in order to have x decrease. If the control valve is fail 

open (air-to-close), then the composition controller output signal p should decrease. 

Thus a reverse-acting controller should be selected. Conversely, for a fail close (air-

to-open) control valve, a direct-acting controller should be used. 

If x1 < x2, then 

  

1 1 2 2 1 2

1 2

1 2

2 1 2 2 1 2

2 1 1 2 2 1 2

2 1 2 1 1 2

1
2

1 2

( )

( ) ( )

( )

( ) ( )

( )

x w x w xw x w w

x x

x x

x w x w x w w

x w w x w x w w

x w w w x w w

w
x x

w w

   



  

   

   

   


 



 

Since all the variables are positive, then x < x2 . If x increases, the controller will 

need to decrease it to bring it back to the set point. The only way to decrease x is to 

decrease w2 (although x can never be smaller than x1).  If the control valve is fail 

open (air-to-close), then the composition controller output signal p should increase 

in order to reduce w2. Thus the composition controller should be direct acting. 

Conversely, for a fail close control valve, a reverse acting controller should be used. 
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 9.1 

 

 

a) Flow rate transmitter: 

qm(psig)=
15 psig - 3 psig

( gpm - 0 gpm) 3 psig
400 gpm-0 gpm

q
 

 
 

 

    = 
psig

0.03 (gpm) 3 psig
gpm

q
 

 
 

 

 Pressure transmitter: 
 

Pm(mA)=
20 mA - 4 mA

( in.Hg 10 in.Hg) 4 mA
30 in.Hg -10 in.Hg

p
 

  
 

 

    = 
mA

0.8 (in.Hg) 4 mA
in.Hg

p
 

 
 

 

 Level transmitter: 
 

hm(VDC)=
5 VDC -1 VDC

( (m) - 0.5m) 1 VDC
10 m - 0.5 m

h
 

 
 

 

      = 
VDC

0.421 (m) 0.789 VDC
m

h
 

 
 

 

 Concentration transmitter: 

Cm(VDC)=
10 VDC -1 VDC

( (g/L)-3 g/L)+1 VDC
20 g/L - 3 g/L

C
 
 
 

 

      = 
VDC

0.529 (g/L) 0.59VDC
g/L

C
 

 
 

 

  

b) The gains, zeros and spans are: 

 

 Flow Pressure Level Concentration 

Gain 0.03 psig/gpm 0.8 mA/in.Hg 0.421 VDC/m 0.529 VDC/g/L 
Zero 0 gpm 10 in.Hg 0.5 m 3 g/L 
Span 400 gpm 20 in.Hg 9.5 m 17 g/L 
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a) The safest conditions are achieved by the lowest temperatures and pressures 

in the flash vessel. 

 

VALVE 1.- Fail close (air-to-open) 

VALVE 2.- Fail open (air-to-close) 

VALVE 3.- Fail open (air-to-close) 

VALVE 4.- Fail open (air-to-close) 

VALVE 5.- Fail close (air-to-open) 

 

Setting valve 1 as fail close prevents more heat from going to flash drum and 

setting valve 3 as fail open to allow the steam chest to drain. Setting valve 3 

as fail open prevents pressure build up in the vessel. Valve 4 should be fail-

open to evacuate the system and help keep pressure low. Valve 5 should be 

fail-close to prevent any additional pressure build-up. 

 

b) Vapor flow to downstream equipment can cause a hazardous situation 

 

VALVE 1.- Fail close (air-to-open) 

VALVE 2.- Fail open (air-to-close) 

VALVE 3.- Fail close (air-to-open) 

VALVE 4.- Fail open (air-to-close) 

VALVE 5.- Fail close (air-to-open) 

 

Setting valve 1 as fail close (air-to-open) prevents more heat from entering 

flash drum and minimizes future vapor production. Setting valve 2 as fail 

open (air-to-close) will allow the steam chest to be evacuated, setting valve 3 

as fail close (air-to-open) prevents vapor from escaping the vessel. Setting 

valve 4 as fail open (air-to-close) allows liquid to leave, preventing vapor 

build up. Setting valve 4 as fail close (air-to-open) prevents pressure buildup. 

 

c) Liquid flow to downstream equipment can cause a hazardous situation 

 

VALVE 1.- Fail close (air-to-open) 

VALVE 2.- Fail open (air-to-close) 

VALVE 3.- Fail open (air-to-close) 

VALVE 4.- Fail close (air-to-open) 

VALVE 5.- Fail close (air-to-open) 

 

Set valve 1 as fail close to prevent all the liquid from being vaporized (This 

would cause the flash drum to overheat). Setting valve 2 as fail open will 

allow the steam chest to be evacuated. Setting valve 3 as fail open prevents 

pressure buildup in drum. Setting valve 4 as fail close prevents liquid from 

escaping. Setting valve 5 as fail close prevents liquid build-up in drum 
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 9.3 

 

  

Note: This exercise is best understood after the material in Ch. 11 has been considered. 

 

a) Changing the span of the temperature transmitter will change its steady-state 

gain, according to Eq. 9-1. Because the performance of the closed-loop 

system depends on the gains of each individual element (cf. Chapter 11), 

closed-loop stability could be adversely affected. 

 

b) Changing the zero of a transmitted does not affect its gain. Thus, this change 

will not affect closed-loop stability. 

 

c) Changing the control valve trim will change the (local) steady-state gain of 

the control valve, dq/dp. Because the performance of the closed-loop system 

depends on the gains of each individual element (cf. Chapter 11), closed-loop 

stability could be adversely affected 

 

d) For this process, changing the feed flow rate could affect both its steady-state 

gain and its dynamic characteristics (e.g., time constant and time delay). 

Because the performance of the closed-loop system depends on the gains of 

each individual element (cf. Chapter 11), closed-loop stability could be 

adversely affected. 

 

 

 9.4 

 

 

  Starting from Eq. 9-7: 

                                                                        (1)

( )

v

v

s

q
C

P
Nf l

g




 

 

  The pressure drop in the valve is: 

                                                                           (2)v sP P P     

  where  

   2                                                                                  (3)sP Kq   

Solve for K by plugging in the nominal values of q  and sP . First, convert 

the nominal value of q into units of m3/h to match the metric units version 

of N (the parameter N = 0.0865 m3/h(Kpa)1/2 when q has units of m3/h and 

pressure has units of KPa).  
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3 3

3 2

2 2 3 2

0.6 m / min 36 m / h

200 kPa

200 kPa
0.154 kPa/(m /h)

36  (m /h)

d

sd

sd

d

q

P

P
K

q

 

 


  

 

 Now substitute (3) into (2) to get an expression for 
vP  in terms of q.  

2                                                                         (4)vP P Kq     

Substitute (4) into (1) to get: 

2
                                                            (5)

( )

v

s

q
C

P Kq
Nf l

g


 

 

The problem specifies that qd should be 2/3 of qmax (where qmax is the flow 

rate through the valve when the valve is fully open).  

max

3

max

3

max

2

3

3 3
36 m /h

2 2

54m /h

d

d

q q

q q

q



 



 

Now find the Cv that will give qmax = 54 m3/h. Substitute q = qmax and f (l)=1 

(valve fully open) into (5). 

max

2

max

v

s

q
C

P Kq
N

g


 

 

Now that all of the variables on the right hand side of the equation are 

known, plug in to solve for Cv. 

   

3

3 2 1/2

3

max

kPa m
450 kPa,    0.154 ,    0.0865 ,

(m / ) h(kPa)

1.2,    54 m /hs

P K N
h

g q

   

 

 

  

 

3

2 3 2

3 3 2

1/2

3 3

3 3
1/2

1/2

m
54

h

kPa
450kPa 0.154 54 (m /h)

m (m /h)
0.0865

h(kPa) 1.2

m m
54 54

h h    
m m

0.0865 0.88(kPa) 0.076
h(kPa) h

710.5

v

v

C

C





 


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 9.5 

 

 

 Let Pv/Ps = 0.33 at the nominal 320 gpmq   

 

  Ps = Pb+ Po = 40 + 1.95310-4 q2 

 

  Pv= P - Ps = (1 –2.4410-6 q2)PDE – (40 + 1.95310-4 q2) 

 

  33.0
)32010 1.953 + (40

)32010 1.953 + (40 - )P32010 2.44- (1
2 4-

2 -4

DE

2 -6





 

 

  PDE = 106.4 psi 

 

 Let qd= 320 gpmq   

 

For the rated Cv, the valve is completely open at 110% qd i.e., at 352 gpm or the 

upper limit of 350 gpm 

 
1

2
v

v

s

p
C q

g



 
  

 
 

                         vC  

1
6 2 4 2 2(1 2.44 10 350 )106.4 (40 1.953 10 350 )

350
0.9


        

  
 

 

 

Then using Eq. 9-27, 

 

50ln

9.0

1055.44.66

6.101
ln

1

2/1
24






















 




 qq

l  

 

The plot of the valve characteristic is shown in Figure S9.5. From the plot of the 

valve characteristic for the rated Cv of 101.6, it is evident that the characteristic is 

reasonably linear in the operating region 250  q  350. 

 

The pumping cost could be further reduced by lowering PDE to a value that would 

make Pv/Ps = 0.25 at  320q  gpm. Then PDE = 100 and for qd = 320 gpm, the 

rated Cv = 133.5. However, as the plot shows, the valve characteristic for this design 

is only slightly more nonlinear in the operating region. Hence, the selected valve 

coefficient is Cv = 133.5. 
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              Figure S9.5.  Control valve characteristics.  

 

 

 9.6 

 
 

a) There are three control valves. The selection of air-to-close vs. air-to-open is 

based on safety considerations: 

 

i. Steam control valve: Air-to-open to prevent overheating of the 

evaporator. 

ii. Level control valve (that adjusts liquid flow rate B): Air-to-open to 

prevent the steam coils from being exposed to the vapor space, 

which could lead the coils to being burned out.  

iii. Pressure control valve (that adjusts solvent flow rate D): Air-to-close 

to prevent over-pressurization of the evaporator. 

 

b) For the three controllers: 

 

i. Concentration controller: As the product concentration xB increases, 

we want the steam pressure, Ps to increase.  Since the steam valve is 

air-to-open, this means that the controller output signal to the control 

valve (via the I/P) should increase. Thus, the controller should be 

direct-acting. 
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  -------  Cv = 101.6 

  

  - - - -   Cv = 133.5 

l (valve lift) 
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ii. Level controller: As the liquid level h increases, we want the product 

flow rate B to increase.  Since the control valve is air-to-open, this 

means that the controller output signal to the control valve (via the 

I/P) should increase. Thus, the controller should be direct-acting. 

iii. Pressure controller: As the pressure P increases, we want the solvent 

flow rate D to increase.  Since the control valve is air-to-close, this 

means that the controller output signal to the control valve (via the 

I/P) should decrease. Thus, the controller should be reverse-acting. 

 

 

 9.7 

 

 

Because the system dynamic behavior would be described using deviation 

variables, the dynamic characteristic can be analyzed by considering that the input 

terms (not involving x) can be considered to be constant, and thus deviations are 

zero. The starting form is the linear homogeneous ODE: 
2

2
0

c

M d x dx
R Kx

g dt dt
    

Taking the Laplace transform gives, 

 

2

2

( ) 0

( ) 1 0

c

c

M
X s s Rs K

g

M R
X s s s

Kg K

 
   

 

 
   

 

 

Calculate and ζ  by comparing this equation to the standard form of the second-

order model in (5-39) (keeping in mind that gc = 32.174 lbm ft/(lbf s2)). 

 

  

0.00965

2 2

155.3
2

c

c

c

M
s

Kg

M R

Kg K

gR

KM



 



 

 

 

 

 

The valve characteristics are highly overdamped and can be accurately 

approximated by a first-order model obtained by neglecting the d2x/dt2 term. 
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 9.8 

 

 

Configuration I: This series configuration will not be very effective because a 

large flow rate has to pass through a small control valve. Thus, the pressure drop 

will be very large and flow control will be ineffective. 

 

Configuration II: This parallel configuration will be effective because the large 

control valve can be adjusted to provide the nominal flow rate, while the small 

control valve can be used to regulate the flow rate. If the small valve reaches its 

maximum or minimum value, the large valve can be adjusted slightly so that the 

small valve is about half open, thus allowing it to regulate flow again. 

 

 

 9.9 

 

 

First write down the time-domain step response for a step change of 10°C. Then 

solve the equation to find when y(t) is equal to 5 (since the variables are in deviation 

variables, this represents when TM will reach 30°C). 

 

  

/

o

/10

/10

( ) (1 )

where  10 C,     1,   and  10s

( ) 10(1 )

5 10(1 )

6.93s

a

t

m

t

m

t

a

y t KM e

M K

y t e

e

t











 

  

 

 



 

  

 Therefore, the alarm will sound 6.93 seconds after 1:10PM. 
 

 

 

 9.10 

 

 precision = 
0.1 psig

0.5%
20 psig

  of full scale 

 accuracy is unknown since the "true" pressure in the tank is unknown 

 resolution = 
0.1 psig

0.5%
20 psig

  of full scale 

 repeatability = 
±0.1 psig

=±0.5%
20 psig

 of full scale 
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9.11 

 

 

Assume that the gain of the sensor/transmitter is unity (i.e. there is no steady-state 

measurement error). Then,  

 

  
)11.0)(1(

1

)(

)(








sssT

sTm  

 

where T is the temperature being measured and Tm is the measured value. For the 

ramp temperature change: 

  T  (t) = 0.3t  (C/s)   ,  T  (s) =
2

0.3

s
 

  
2

1 0.3
( )

( 1)(0.1 1)
mT s

s s s
  

 
 

 

  10( ) 0.00333 0.333 0.3 0.33t t

mT t e e t        

 

 The maximum error occurs as t : 

 

Maximum error = |0.3t   (0.3t  0.33)| = 0.33 C 

 

If the smaller time constant is neglected, the time domain response is slightly 

different for small values of t, although the maximum error (t) does not change. 

 

 
Figure S9.11.  Response for process temperature sensor/transmitter. Orange solid 

line is T’(t), and purple dashed line is T’m(t). 
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 Assumptions: 

1. Incompressible flow. 

2. Chlorine concentration does not affect the air sample density. 

3. T and P are approximately constant. 

 

The detection time, td, depends on the transportation time delay, , and the response 

time of the analyzer, tr = 10 s:  

 

td =  + tr  (1) 

 

Time delay can be calculated as the ratio of the volume of the tubing V divided 

by the volumetric flow rate of chlorine q: 

 

 θ
V

q
  (2) 

 

 where q = 10 cm3/s and, 

 
2π

4

iD L
V   (3) 

 where the inside diameter Di is: 

 

 Di = 6.35 mm – 2(0.762 mm) = 4.83 mm = 4.83 x 10-3 m 

 

 Substitute Di and L = 60 m into (3): 

 

 V = 1.10 x 10-3 m3 

 

Substitute Di into (2): 

 

 
33 3

3

1.10 10 m 100cm
θ 110 s

10 cm /s 1 m

V x

q

  
    

  
 

 

Substitute into (1): 

 

 td =  + tr = 110 + 10 = 120 s = 2 min 

Carbon monoxide (CO) is one of the most widely occurring toxic gases, especially 

for confined spaces. High concentrations of carbon monoxide can saturate a 

person’s blood in matter of minutes and quickly lead to respiratory problems or 
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even death. Therefore, the long detection time would not be acceptable if the 

hazardous gas is CO. 

 

  

10.2 

 

 

(a) Start with a mass balance on the tank. Then solve the equation to find how much 

time it takes for the height to decrease from 1 m to 0.25 m.  

 

   

0.5

0.5

0.25

0.5

1 0

0.5

0.5

2 2
0.5

2.5

( )
( )

( )
( )

2( 0.25[ ] 1[ ]) ( 0)

1

1[ ]

(0.5) [ ]
[ ]

0.065[ / min]

12.1[min]

ft

f

f

f

f

f

dV t
C h t

dt

Adh t
C h t

dt

dh C
h

dt A

C
h dh dt

A

C
h dh dt

A

C
m m t

A

C
m t

A

A
t m

C

m
t m

m

t







 

 

 

 

 

   

  







 

 

 

Therefore, the alarm will sound at 5:12:06AM 

 

(b) To find how much liquid has leaked out of the tank, calculate the difference in 

volume between the starting level and the alarm level.  

 

 
2

3

1 0.25

1
[ ] 1[ ] 0.25[ ] 0.59

2
h m h mV V V m m m m 

 
      

 
 

 

0.59m3 of liquid has leaked out when the alarm sounds. 

 

10.3 
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 The key safety concerns include: 

1. Early detection of leaks to the surroundings 

2. Over-pressurizing the flash drum 

3. Maintain enough liquid level so that the pump does not cavitate. 

4. Avoid having liquid entrained in the gas. 

 

 These concerns can be addressed by the following instrumentation. 

1. Leak detection: sensors for hazardous gases should be located in the vicinity 

of the flash drum.  

2. Over pressurization: Use a high pressure switch (PSH) to shut off the feed 

when a high pressure occurs. 

3. Liquid inventory: Use a low level switch (LSL) to shut down the pump if a 

low level occurs. 

4. Liquid entrainment: Use a high level alarm to shut off the feed if the liquid 

level becomes too high. 

   

This SIS system is shown in Fig. S10.3 with conventional control loops for 

pressure and liquid level. 

 
                                    

Figure S10.3:  SIS system 
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  The proposed alarm/SIS system is shown in Figure S10.4: 

 

   

C

O

L

U

M

N

PSH

S

  
             Figure S10.4:  Proposed alarm/SIS system 

 

The solenoid-operated valve is normally closed. But if the pressure in the 

column exceeds a specified limit, the high pressure switch (PSH) activates 

an alarm (PAH) and causes the valve to open fully, thus reducing the 

pressure in the tank. 

 

    

10.5 

 

 

Define k as the number of sensors that are working properly. We wish to calculate 

the probability that 2k , )2( kP . 

 

Because k = 2 and k = 3 are mutually exclusive events (cf. Appendix F), 

 

  )3()2()2(  kPkPkP    (1) 

 

These probabilities can be calculated from the binomial distribution 1 

 

   
1 2

3
( 2) 0.05 (0.95) 0.135

2
P k

 
   

 
 

 

     
0 3

3
( 3) 0.05 (0.95) 0.857

3
P k

 
   

 
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where the notation, 








r

n
, refers to the number of combinations of n objects taken r 

at a time, when the order of the r objects is not important. Thus 3
2

3









  and 

3
1.

3

 
 

 
 From Eq. 1, 

    ( 2) 0.135 0.857 0.992P k      

 
1 See any standard probability or statistics book, e.g., Montgomery D.C and G.C. Runger, 

Applied Statistics and Probability for Engineers, 6h edition, Wiley, New York, 2013. 
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Solenoid switch:  S  = 0.01 

Level switch:   LS = 0.45 

Level alarm:   A = 0.3 

Notation: 

PS  = the probability that the solenoid switch fails 

PLS = the probability that the level switch fails 

PA  = the probability that the level alarm fails 

PI  = the probability that the interlock system (solenoid & level switch fails) 

We wish to determine, 

P = the probability that both safety systems fail (i.e., the original system 

and the additional level alarm) 

Because the interlock and level alarm systems are independent, it follows that (cf. 

Appendix F): 

 P = PI PA (1) 

From the failure rates, the following table can be constructed, in analogy with 

Example 10.4: 

 

Component  R   P = 1 – R 

Solenoid:     

Level switch:  0.45 0.638 0.362 

Level alarm 0.3 0.741 0.259 
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Assume that the switch and solenoid are independent. Then, 

 

PI = PS + PSW - PS PSW 

PI = 0.01 + 0.362 – (0.01)(0.362) 

PI = 0.368 

Substitute into (1): 

 

P = PI PA = (0.368)(0.259) = 0.095 

 

Mean time between failures, MTBF: 

 

From (10-6) through (10-8):  

R = 1 – P = 1 – 0.095 = 0.905 

 = - ln (0.905) = 0.0998 

1
MTBF


  10.0 years 

 

10.7 

 

 

Let P2 = the probability that neither D/P flowmeter is working properly. Then P2 

and the related reliability, R2, can be calculated as (cf. Appendix F): 

 

P2 = (0.82)2 = 0.672 

R2 =1 - P2 = 1 - 0.672 = 0.33 

 

To calculate the overall system reliability, substitute R2 = 0.33 for the reliability 

value for a single D/P flowmeter, 0.18, in the R calculation of Example 10.4:  

 
5

1

(0.33)(0.95)(0.61)(0.55)(0.64)

0.067

i

i

R R

R



 



  

 

Thus, the addition of the second D/P flowmeter has increased the overall system 

reliability from 0.037 (for Example 10.4) to 0.067. 
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10.8 

 

 

Let P3 = the probability that none of the 3 D/P flowmeters are working properly. 

Then P3 and the related reliability, R3, can be calculated as (cf. Appendix F): 

 

P3 = (0.82)3 = 0.551 

R3 =1 – P3 = 1 – 0.551 = 0.449 

 

To calculate the overall system reliability, substitute R3 = 0.449 for the reliability 

value for two D/P flowmeters (R2=0.33) in the R calculation from Exercise 10.7: 

  
5

1

(0.449)(0.95)(0.61)(0.55)(0.64)

0.092

i

i

R R

R



 



  

 

Thus, the addition of the third D/P flowmeter has increased the overall system 

reliability from 0.067 (for Exercise 10.7) to 0.092. 
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Assume that the switch and solenoid are independent. From the failure rate data, 

the following table can be constructed, in analogy with Example 10.4: 

 

Component  R P = 1 – R 

Pressure switch 0.34 0.712 0.288 

Solenoid switch/valve:    

 

Assume that the switch and solenoid are independent. Then, the overall reliability 

of the interlock system is, 

 

R = (0.712)(0.657) = 0.468 

 

 = - ln (0.468) = 0.760 

1
MTBF


  1.32 years 
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 











s
KsG

I

cc

1
1)(  

The closed-loop transfer function for set-point changes is given by Eq. 11-36  

with Kc replaced by 











s
K

I

c

1
1 , 

 

1 1
1

( 1)( )

( ) 1 1
1 1

( 1)

c IP v p m

I

sp

c IP v p m

I

K K K K K
s sH s

H s
K K K K K

s s

 
 
    

  
  

   

 

    

 

where  Kp = R = 1.0 min/ft
2
 ,     

and  = RA = 3.0 min.  Note also that 𝜏𝐼 = 𝜏 = 3.0 min. 
 

 

Solution Manual for Process Dynamics and Control, 4th edition 

Copyright © 2016 by Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp, 

and Francis J. Doyle III 



11-2 

 
3

2

psi ft / min min mA
(5.33) 0.75 0.2 1.0 4 3.2

mA psi ft ft
OL c IP v p mK K K K K K

     
       

     
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𝐻𝑠𝑝
′ (𝑠)

=
3.2 (

3𝑠 + 1
3𝑠 ) (

1
3𝑠 + 1)

1 + 3.2 (
3𝑠 + 1

3𝑠 ) (
1

3𝑠 + 1)
=

3.2

3𝑠 + 3.2
=
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0.94𝑠 + 1
 

 

   

  For  
ss

sH sp

1)23(
)( 


  

 

   
1.07( ) 1h t e     

 

    0.94ln 1 ( )t h t    

 

  ft5.2)( th  ft5.0)(  th  0.65mint   

 
  ft0.3)( th  ft0.1)(  th  t  

 

  Therefore, 

 
   ( 0.65min) 2.5fth t    

 
   ft0.3)( th  
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 ma/ma5)(  cc KsG  

 

 Assume m = 0,  v = 0,   and K1 = 1,  in Fig 11.7. 

 

a) Offset = FFFTTsp

 86.014.45)()(   

b) 
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Using the standard current range of 4-20 ma, 
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Fma/32.0
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2.1vK   ,  psi/ma75.0IPK   ,   =5 min ,  
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sTsp
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  F14.4)( T  psi/F34.32

K  

 

c) From Fig. 11.7, since 0iT  

 

)()( 2  TKKP vt  , psi03.1)( tP  

 

and      TKTKKP ivt 
12

  ,  psi74.3tP  

 

 psi77.4)()(  ttt PPP  
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(a) Controlled variable: c3 

Manipulated variable: q2 

Disturbance variable: c2  (note: q1 and c1 are kept constant.)  

If c2 changes, then q2 must be adjusted to keep c3 at the set point. 
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(b)  
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For process and disturbance transfer function: 

 

Overall material balance for the tank, 

 

3213ft

USgallons
481.7 qqq

dt

dh
A 







     

 

As h is held constant at 4 ft by the overflow pipe: 

 

315100 q                                                                                   (1) 

 

Thus 253 q  

 

Component balance for the solute, 
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332211
3 )(

481.7 cqcqcq
dt

cd
Ah                       (2) 

 

Linearize each term on the right hand side of Eq. 2 as described in Section 4.3: 

 

33333333

22222222

11111111

''

''

''

cqcqcqcq

cqcqcqcq

cqcqcqcq







                                                                 (3) 

 

At steady state: 

3322110 cqcqcq                                                 (4) 

 

Put (2) into deviation variable by considering (3) and (4): 

 

33332222

3 ''''
'
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dt

dc
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As q1 is constant, q’3 = q’2: 
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Taking Laplace transform and rearranging gives 

 

)(
1

)(
1

)( 2
2

2
1

3 sC
s

K
sQ

s

K
sC 





                                                     (6) 

where
USGPM

sol/ftlb
08.0

3

3

32

1 



q

cc
K , 6.0

3

2
2 

q

q
K  and min15

481.7

3


q

Ah
  

 

since 
22 ft6.124/  DA  , and fth 4 . 

 

Therefore, 
115

08.0
)(




s
sG p  and 

115

6.0
)(




s
sGd  

 

(c)  

The closed-loop responses for disturbance changes and for setpoint changes can 

be obtained using block diagram algebra for the block diagram in part (a). 
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Therefore, these responses will change only if any of the transfer functions in the 

blocks of the diagram change. 

 

i. 2c changes. Then block transfer function )(sG p
changes due to K1. Hence Gc(s) 

does need to be changed, and retuning is required. 

 

ii. Km changes. The close loop transfer functions changes, hence Gc(s) needs to be 

adjusted to compensate for changes in Gm and Km. The PI controller should be 

retuned. 

 

iii. Km remains unchanged when zero is adjusted. The controller does not need to 

be retuned. 

 

 

To verify the linearization results, the nonlinear model is used: 

332211

3 )(
481.7 cqcqcq

dt

cd
Ah   

321 qqq   

 

Step response of c3 to q2: (Gain 0.077 compared with linearized gain (Kp) 0.08 in 

Eq. 6) 

 
 

 

Step response of c3 to c2: (Gain 0.6 compared with linearized gain (Kd) 0.6 in Eq. 

6) 
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The results agree with linearization. 

 

11.5 

 

(a)  

From Eq. 11-26 we get the closed loop transfer function for set point changes 

𝑌

𝑌𝑠𝑝
=

𝐾𝑚𝐺𝑐𝐺𝑣𝐺𝑝

1 + 𝐺𝑐𝐺𝑣𝐺𝑝𝐺𝑚
 

Substituting the information from the problem gives 

𝑌

𝑌𝑠𝑝
=

4
𝑠(𝑠 + 4)

1 +
4

𝑠(𝑠 + 4)

=
4

𝑠(𝑠 + 4) + 4
=

4

𝑠2 + 4𝑠 + 4
 

Or in standard form (Eq. 5-40), with 𝜏 =
1

2
  and ζ= 1 

𝑌

𝑌𝑠𝑝
=

1

1
4 𝑠2 + 𝑠 + 1

 

  (b)   

Given a unit step change in set point we obtain 
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𝑌(𝑠) =
4

𝑠(𝑠2 + 4𝑠 + 4)
 

Using the Final Value Theorem we get 

𝑙𝑖𝑚
𝑠 ⟶ 0

𝑠𝑌(𝑠) =
4

𝑠2 + 4𝑠 + 4
=

4

4
= 1 

  

Therefore y(∞) = 1 

 (c)      As the step change is a unit step change, and we have shown that y(∞) = 1, 

we can say that offset = 0.  This is consistent with the fact that the gain of 

the overall transfer function is 1, so no offset will occur.  Normally 

proportional control does not eliminate offset, but it does for this 

integrating process. 

  (d)     Using Eq. 5-50 or taking the inverse Laplace transform of the response 

given above we get 

    21 1 2 ty t t e    

            Substituting the value of 0.5 for t gives 

  0.264y t   

   (e) We can tell from the response derived above that the response will not be  

oscillatory, since 1   . 

 

11.6 

 

 

 For proportional controller, cc KsG )(  

 

Assume that the level transmitter and the control valve have negligible 

dynamics. Then, 

 

mm KsG )(  

  vv KsG )(  
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The block diagram for this control system is the same as in Fig.11.8. 

Hence Eqs. 11-26 and 11-29  can be used for closed-loop responses to 

setpoint and load changes, respectively. 

 

The transfer functions )(sG p
 and )(sGd  are as given in Eqs. 11-66 and 

11-67, respectively. 

 

a) Substituting for Gc, Gm, Gv, and Gp into Eq. 11-26  gives 

 

1

1

1
1

1

























s

K
As

KK

As
KKK

Y

Y

mvc

vcm

sp

             

where 
mvc KKK

A
       (1) 

 

For a step change in the setpoint, sMsYsp /)(   

 

M
s

sM
sssYtY

ss













 1

/
lim)(lim)(

00
 

 

Offset = 0)()(  MMtYtYsp
 

 

b) Substituting for Gc, Gm, Gv, Gp , and Gd into (11-29)  gives 

1

1

1
1

1

)(

)(












 























s

KKK

K
As

KK

As

sD

sY mvc

mvc

 

 

where  is given by Eq. 1. 

For a step change in the disturbance, sMsD /)(   

 

mvc

mvc

ss KKK

M

ss

KKKM
sssYtY

















 )1(

)/(
lim)(lim)(

00
 

 

Offset = 00)()( 








 


mvc

sp
KKK

M
tYtY  

 

Hence, offset is not eliminated for a step change in disturbance. 
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11.7 

 

 

 Using block diagram algebra 

 

  UGDGY pd         (1) 

 

    UGYYGU pspc

~
       (2) 

 

 From (2),  
pc

cspc

GG

YGYG
U ~

1


   

   

Substituting for U in Eq. 1 

 

  spcppcdppc YGGDGGGYGGG  )
~

1()
~

(1  

 

Therefore, 

 

 
)

~
(1 ppc

cp

sp GGG

GG

Y

Y


  

and 

 
(1 )

1 ( )

d c p

c p p

G G GY

D G G G




 
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 The available information can be translated as follows 

 

1. The outlets of both the tanks have flow rate q0 at all times. 

 

2. 0)( sTo  

 

3. Since an energy balance would indicate a first-order transfer function 

between T1 and Q0  ,   

 

1/
1

)(

)( 




 t
e

T

tT
     or      1/12

1
3

2 
 e   , 1 = 10.9 min 
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Therefore 

 

1

0

( ) 3 / ( 0.75 ) 4

( ) 10.9 1 10.9 1

T s F gpm

Q s s s


  

 
 

 

1

67.2

1

)75.0/()35(

)(

)(

220

3









ss

gpmF

sQ

sT





        for    T2(s) = 0 

 

4. 
110

4

110

)1012/()7078(

)(

)(

1

1









ss

VF

sV

sT 

 

 

110

5.2

110

)1012/()8590(

)(

)(

2

3









ss

VF

sV

sT 

 

 

5. 52 =50 min  or 2 = 10 min 

 

Since inlet and outlet flow rates for tank 2 are q0 and the volumes of 

the tanks are equal, 

 

        
10.10

1

1

/

)(

)(

2

00

2

3







ss

qq

sT

sT
 

6. 15.0
)(

)(

3

3 
sT

sV
 

7.  )5.0(
60

30
)( 112 








 tTtTtT  

      se
sT

sT 5.0

1

2

)(

)(   

 

 Using these transfer functions, the block diagrams are as follows. 
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a) 

 
 

b)  

 
c) The control configuration in part a) will provide the better control. As is 

evident from the block diagrams above, the feedback loop contains, in 

addition to Gc, only a first-order process in part a), but a second-order-

plus-time-delay process in part b). Hence the controlled variable responds 

faster to changes in the manipulated variable for part a). 
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11.9 

 

 

 

The given block diagram is equivalent to 

-+ +
+

Y
sp

E Y
G

c

P

Y
1

-+

E'

G
d

D

G*(1-e-s)
~ ~

~
Y

2

~
-

G

 

  For the inner loop, let 

 

   
)1(

~
1

~
* s

c

c

c
eGG

G
G

E

P


  

 

  In the outer loop, we have 

 

    

 

  Substitute for cG  , 

 

   

)1(
~

1
1 ~

* s

c

c

d

eGG

GG

GG

D

Y




  

 

   
 

GGeGG

eGGGG

D

Y

c

s

c

s

cd










)1(
~

1

)1(
~

1
~

*

~
*
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a) Derive CLTF: 

 

3 2 3 2Y Y Y G Z G P     

 

GG

GG

D

Y

c

d




1
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  3 1 2 cY G ( D Y ) G K E    

 

  EKGEKGGDGY cc 2133   

 

  EKGKGGDGY cc )( 2133   YKE m  

 

  YKGGGKDGY mc )( 2133   

 

  
mc KGGGK

G

D

Y

)(1 213

3


  

 

b) Characteristic Equation: 

 

0)(1 213  mc KGGGK  

0
12

4

1

5
1 















ss
Kc

 

 

0
)12)(1(

)1(4)12(5
1 














ss

ss
K c  

 

    0)1(4)12(5)12)(1(  ssKss c  

 

  0)44510(12 2  ssKss c
 

 

  0)1()114(2 2  cc KsKs  

 

  Necessary conditions: 14/1cK  and 1cK  

 

For a 2
nd

 order characteristic equation, these conditions are also sufficient. 

  Therefore,  1cK  for closed-loop stability. 
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a) 

Q'
A

G
PI G

p-+

E P'
+

+G
v

K
m

C'
sp

(s)
~

P
v
'

G
m

G
L

X
1

X
2

C'
sp

(s)

K
IP

C'(s)

C'
TL

C'
m

(s)

Kg/m3 ma ma
ma psig m3/min

C
F
'(s)

ma Kg/m3

G
TL

C'

Kg/m3

+
+

G
D

Kg/m3

 

   

 b) 

 

Transfer Line: 

 

Volume of transfer line =   /4 (0.5 m)
2
(20m)= 3.93 m

3
 

 

Nominal flow rate in the line = min/m5.7 3 FA qq  

 

  Time delay in the line = min52.0
/minm7.5

m3.93
3

3

  

 

  
s

TL esG 52.0)(   

 

  Composition Transmitter: 

 

  
33 kg/m

ma
0.08

kg/m0)(200

ma4)(20
)( 




 mm KsG  

 

  Controller 

 

  From the ideal controller in Eq. 8-14   

 

   )()(
~

)(
1

1)( sCsCsKsE
s

KsP mspDc

I

c











  

In the above equation, set 0)(
~

 sCsp  in order to get the derivative on the 

process output only. Then, 

  











s
KsG

I

cPI

1
1)(  
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  sKsG DcD )(  

 

with Kc >0 as the controller should be reverse-acting, since P(t) should 

increase when Cm(t) decreases. 

 

  I/P transducer 

 

  
ma

psig
0.75

ma4)(20

psig3)(15





IPK  

 

  Control valve 

 

  
1

)(



s

K
sG

v

v

v  

 

  15 v  ,    min2.0v   

 

  12

3

)20)(20)(ln12/1(03.0






v

vv

p

ppv

A
v

dp

dq
K   

 

  12

3

)20(03.017.05.0




vp

Aq  

 

  33.017.05.0)20(03.0 12

3



vp

 

 

  
psig

/minm
082.0)33.0)(20)(ln12/1(

3

vK  

 

  
12.0

082.0
)(




s
sGv  

 

  Process 

 

  Assume cA is constant for pure A. Material balance for A: 

 

  cqqcqcq
dt

dc
V FAFFAA )(       (1) 

 

  Linearizing and writing in deviation variable form 
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  AFAFFAA qccqqcqqc
dt

cd
V 


)(  

 

  Taking Laplace transform 

 

    )()()()()( sCqsQccsCqqVs FFAAFA
    (2) 

 

  From Eq. 1 at steady state, 0/ dtdc , 

 

  3kg/m100)/()(  FAFFAA qqcqcqc  

 

  Substituting numerical values in Eq. 2, 

 

    )(7)(700)(5.75 sCsQsCs FA
  

 

    )(93.0)(3.93)(167.0 sCsQsCs FA
  

 

   
167.0

3.93
)(




s
sGp  

   
167.0

93.0
)(




s
sGd  

 

 

 

11.12    

 

 

 

The stability limits are obtained from the characteristic Eq. 11-83. Hence 

if an instrumentation change affects this equation, then the stability limits 

will change and vice-versa. 

 

a) The transmitter gain, Km, changes as the span changes. Thus Gm(s) 

changes and the characteristic equation is affected. Stability limits would 

be expected to change. 

 

b) The zero on the transmitter does not affect its gain Km. Hence Gm(s) 

remains unchanged and stability limits do not change. 

 

c) Changing the control valve trim changes  G s  . This affects the 

characteristic equation and the stability limits would be expected to 

change as a result. 
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11.13    

 

 

 

(a) 
  

21 0 5 6 1 0
5 1 1

c
c

K
s s K

s s
      

 
 

     Applying the quadratic formula yields the roots: 

 

 6 36 20 1

10

cK
s

   
   

To have a stable system, both roots of the characteristic equation must have 

negative real parts. Thus,  20 1 0 1c cK K       

(b)  
  

 3 2

1
1

1 0 5 6 0
5 1 1

c

I

I c c

K
s

s s s K s K
s s




 
 

 
       

 
 

 When 0.1I   ,  3 20.5 0.6 0.1 1 0c cs s K s K       

Using direct substitution, and set s j  : 

  3 20.5 0.1 1 0.6 0c cK j K         

Re:    −0.6𝜔2 + 𝐾𝑐 = 0  (1) 

Im:   −0.5𝜔3 + 0.1(1 + 𝐾𝑐)𝜔 = 0 (2) 

0 : 0.136cmK    

 

To have a stable system, we have: 

0 0.136cK    

 

 When 1I   ,  3 25 6 1 0c cs s K s K       

Set s j  : 

  3 25 1 6 0c cK j K         

 

Re:    −6𝜔2 + 𝐾𝑐 = 0  (1) 

Im:   −5𝜔3 + (1 + 𝐾𝑐)𝜔 = 0 (2) 

0 : 6cmK     

To have a stable system, we have: 

0cK    
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 When 10I   ,  3 250 60 10 1 0c cs s K s K       

Set s j  : 

  3 250 10 1 60 0c cK j K         

 

Re:    −60𝜔2 + 𝐾𝑐 = 0  (1) 

Im:   −50𝜔3 + 10(1 + 𝐾𝑐)𝜔 = 0 (2) 

0 : 1.09cmK     

To have a stable system, we have: 

0cK    

(c) Adding larger amounts of integral weighting (decreasing I  ) will destabilize 

the system 
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      From the block diagram, the characteristic equation is obtained as 

2
(1)

2 13
1 0

2 1 10
1 (1)

3

c

s
K

s s

s

  
                        

 

that is, 

0
10

1

1

2

5

2
1 






























sss
K c

 

Simplifying, 

 0)504(3514 23  cKsss  

Set s j  : 

   3 235 14 4 50 0cj K         

Re:    −14𝜔2 + 4𝐾𝑐 − 50 = 0  (1) 

Im:   (𝑗) − 𝜔3 + 35𝜔 = 0 (2) 

0 : 135

0 : 12.5

cm

cm

K

K





 

 
 

12.5 135cK   
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11.15    

 

 

Substituting the transfer functions into the characteristic equation in (11-81) 

gives: 

1

1 1
1

1

ps

c v s

m c v p p c v p

s
pssp c v p m p c v p

c v

p

K
K K e

K G G G s K K K eY

KY G G G G s K K K e
K K e

s






















  

  




  

Let 1c v p pK K K        , we have 
1

s

s

sp

Y e

Y s e






 
; thus, 

1

s

OL

e
G

s






  

Simulate the above relation through MATLAB, we have: 

 
 

 
Figure S11.15 Step response of a closed loop function 

As shown in the figure, the time delay will not lead to an inverse response. 
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11.16    

 

 











s
KsG

I

cc

1
1)(  

 

 
1167.0

3.1

1)60/10(
)(









ss

K
sG v

v
 

 

 
sAs

sGp
4.22

11
)(   since   

ft

gal
4.22ft3 2 A  

 

 4)(  mm KsG  

 

 Characteristic equation is 

 

 











s
K

I

c

1
11 0)4(

4.22

1

1167.0

3.1








 













ss
 

 

 0)2.5()2.5()4.22()73.3( 23  cIcII KsKss  

            Use direct substitution, and set s j  : 

 3 23.73 5.2 22.4 5.2 0I c I I cK j K           

Re:    −22.4𝜏𝐼𝜔2 + 5.2𝐾𝑐 = 0 (1) 

Im:   (𝑗) − 3.73𝜏𝐼𝜔3 + 5.2𝐾𝑐𝜏𝐼𝜔 = 0 (2) 

0 : 0.167cm    

           To have a stable system, we have: 

0, 0.167c IK     
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)(

)(

)110(

51
)(

2 sD

sN

ss

s
KsG

I

I
cOL 





















  

  

 0)1(5)120100()()( 2  sKssssNsD IcI
 

 

           05)51(20100 23  cIcII KsKss  

 

Set s j  , we have: 
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 3 2100 1 5 20 5 0I c I I cK j K              

 

Re:    −20𝜏𝐼𝜔2 + 5𝐾𝑐 = 0  (1) 

 

Im:   (𝑗) − 100𝜏𝐼𝜔3 + (1 + 5𝐾𝑐)𝜏𝐼𝜔 = 0 (2) 

 

Im

25
0 :

1 5

0 : 0

c

c

cm

K

K

K

 



 


 

 

To have a stable system, we have: 

25
0,

1 5

c
c I

c

K
K

K
 


 

The stability region is shown in the figure below: 

 
c) Find I    as   cK  

 

 
25 25

lim lim 5
1 5 1/ 5c c

c

K K
c c

K

K K 

   
    

    
 

 

    5 I   guarantees stability for any value of Kc. Appelpolscher is 

wrong yet again. 
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11.18    

  

  cc KsG )(  

  
1

)(



s

K
sG

V

V

V  

  
12

0.6 lbm/s
0.106

ma2 12 4

s
v

p

dw
K

dp


  


 

  5 20 sv   4 sv   

  
110

5.2
)(






s

e
sG

s

p  

  
FF

KsG mm 

ma
4.0

)120160(

ma)420(
)( 




  

 

  Characteristic equation is 

 

    04.0
110

5.2

14

106.0
)(1 
























s

e

s
K

s

c      (1) 

 

a) Substituting s=j in (1) and using Euler's identity 

 

e
-j

=cos – j sin  

gives 

 

 -40
2  

+14j  + 1 +  0.106 Kc (cos – jsin)=0 

Thus 

 -40
2  

+ 1 +  0.106 Kc cos = 0    (2) 

  

and       14 - 0.106Kc sin =0     (3) 

 

From (2) and (3), 

 
140

14
tan

2 


       (4) 

 

Solving (4),   = 0.579  by trial and error. 

 

Substituting for  in (3) gives 

 

 Kc = 139.7 = Kcm 

 

Frequency of oscillation is 0.579 rad/sec 

 

b) Substituting the Pade approximation into (1) gives: 
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s

s
e s

5.01

5.01






 

0)106.01()053.05.14(4720 23  cc KsKss  

Substituting s=j in above equation, we have: 

 
2 347 1 0.106 20 14.5 0.053 0c cK K j              

Thus, we have: 
2

3

0.58747 1 0.106K 0

143.4620 14.5 0.053 0

c

cc
KK



  

     
 

    
  

Therefore, the maximum gain, Kc = 143.46, is a satisfactory 

approximation of the true value of 139.7 in (a) above 
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a) 
)12)(14)(125(

)51(4
)(






sss

s
sG  

cc KsG )(  

0)51(4)12)(14)(125()()(  sKssssNsD c  

041)2031(158200 23  cc KsKss  

Substituting s=j in above equation, we have: 
2 3158 1 4 200 31 20 0c cK K j               

  Thus, we have: 
2

3

0.191158 1 4K 0

1.19200 31 20 0

c

cmc
KK



  

     
 

    
  

 

b) 04)12)(14)(125(  cKsss  

0)41(31158200 23  cKsss  

Substituting s=j in above equation, we have: 
2 3158 1 4 200 31 0cK j             

Thus, we have: 
2

3

0.394158 1 4K 0

5.873200 31 0

c

cmK



 

    
 

   
  

c) Because Kc can be much higher without the RHP zero being present,  

the process can be made to respond faster. 
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11.20    

 

 The characteristic equation is 

   0
110

5.0
1

3







s

eK s

c       (1) 

a) Using the Pade approximation 

s

s
e s

)2/3(1

)2/3(13




  

in (1) gives 

0)5.01()75.05.11(15 2  cc KsKs  

Substituting s=j in above equation, we have: 

 215 1 0.5 11.5 0.75 0c cK K j          

Thus, we have: 
2 0.76015 1 0.5K 0

15.3311.5 0.75 0

c

cmc
KK



 

    
 

  
  

 

b) Substituting s = j in (1) and using Euler's identity. 

 

)3sin()3cos(3  je j  

gives 

   0)3sin()3cos(5.0110  jKj c  

Then, 

 0)3cos(5.01  cK       (2) 

and      0)3sin(5.010  cK      (3) 

  From (2) and (3) 

   tan(3) = -10                                                                        (4) 

Eq. 4 has infinite number of solutions. The solution for the range  

/2 < 3 < 3/2 is found by trial and error to be  = 0.5805. 

  Then from Eq. 2, Kc = 11.78 

The other solutions for the range 3 > 3/2 occur at values of  for which 

cos(3) is smaller than cos(35.805). Thus, for all other solutions of , 

Eq. 2 gives values of Kc that are larger than 11.78. Hence, stability is 

ensured when 

        0 < Kc < 11.78 

To solve Eqs. 2 and 3, another way is to use Newton’s method. With 

initial guess Kc = 5,  = 0 ( steady state), the solution to Eqs. 2 and 3 is: 

  Kc = -2,  = 0 

 

With a different initial guess ( e.g., Kc = 5,  = 5), the solution is: 

Kc = 11.78,  = 0.5805 

Again, c = 0.5805 and the stability is ensured when 

        0 < Kc < 11.78 
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(c). 

 

 

 

 
Figure S11.20 Simulation results of different 𝐾𝑐 settings 
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11.21    

 

 

a) To approximate GOL(s) by a FOPTD model, the Skogestad approximation 

technique in Chapter 6 is used. 

Initially, 

)12)(13)(15)(160(

3

)12)(13)(15)(160(

3
)(

2)2.03.05.1(









ssss

eK

ssss

eK
sG

s

c

s

c

OL  

Skogestad approximation method to obtain a FOPTD model: 

 Time constant  60 + (5/2) 

 Time delay  2 +(5/2) + 3 + 2 =9.5 

Then  

 
15.62

3
)(

5.9






s

eK
sG

s

c

OL
 

  

(b)  The characteristic equation is 

   
9.53

1 0
62.5 1

s

cK e

s



 


      (1) 

                   Substituting s = j in (1) and using Euler's identity. 

 
9.5 cos(9.5 ) sin(9.5 )je j      

gives 

    3 cos 9.5 1 62.5 3 sin(9.5 ) 0c cK K j       

Then, 

 1 3 cos(9.5 ) 0cK         (2) 

and      62.5 3 sin(9.5 ) 0cK        (3) 

  

  From (2) and (3) 

                                                tan 9.5 62.5                                                           (4) 

Eq. 4 has infinite number of solutions. The solution for the range 

/2 < 9.5 < 3/2 (to make sure 𝐾𝑐 is positive) is found by trial and error 

to be  = 0.1749. 

  Then from Eq. 2, Kc = 3.678 

Hence, stability is ensured when 

        0< Kc < 3.678 

 

c) Conditional stability occurs when 3.678; 0.1749c cuK K     
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Figure S11.21 Simulation results of different 𝐾𝑐 settings 
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11.22 

11.23 

 

 

 

 

 Characteristic equation is: 

 

3

23

3

23

3

)1(

51)3(3

)1(

5133

)1(

5
11
















s

sKsaKss

s

saKKsss

s

as
KGGGG

cc

cc

cmvpc

 
 

A necessary condition for stability is all the coefficients of the numerator 

are positive.  

When a < 3/Kc (Kc > 0), the coefficient of s becomes negative so the 

control system becomes unstable.  

 

 

 

 

 

(a) 

Offset = hss – hfinal = 22.00 – 21.92 = 0.08 ft 

(b) 

ftmA
ft

mA
Km /6.1

10

420





  

mApsiK IP /75.0
420

315







 
psicfmKV /4.0

 and 
5cK

 

We have: 

pppVIPcmOL KKGKKKKK 4.24.075.056.1 
 

 

Offset equals to: 

08.0
4.21

2022

1










pOL KK

M
offset

 
cfmftK p /10

 
 

(c) 

Add integral action to eliminate offset. 
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11.24  

 

 

The open loop process transfer function is: 

)1)(14(

2

)1)(1( 21 





ssss

K
G

p

p


                    

 

The controller transfer function is: 

ss
KG

I

cc
2

1
2)

1
1( 


                                     

 

(a) According to Eq. 11-26, the closed loop transfer function for set point 

tracking is: 

)
2

1
2(

)1)(14(

2
1

)
2

1
2(

)1)(14(

2

1

sss

sss

GGGG

GGGK

Y

Y

vcpm

vcpm

sp 










  

1

1

)
2

1
2(

)1)(14(

2
1

)
2

1
2(

)1)(14(

2

1 2 














ss

sss

sss

GGGG

GGGK

Y

Y

vcpm

vcpm

sp

 

The closed loop transfer function is: 

1

1
2 


ssY

Y

sp

                                        

 

(b) 

The characteristic equation is the denominator of the closed loop transfer 

function, which is underdamped (ζ = 0.5): 

12  ss                                                                  

 

(c) 

For stability analysis, )
4

1
1(

s
KG cc   is substituted into 

vcpm GGGG1  

and we get: 

)1(2

22

)1(2

)1(2

)
4

1
1(4

)1)(14(

2
11

2
















ss

Kcss

ss

Kcss

sss
GGGG vcpm

 

To find the stability region, the roots of the numerator polynomial should 

be on the right half plane. For this 2
nd

 order polynomial, this means: 

0cK  
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11.25 

Kc can be arbitrarily large for this PI controlled second order system and 

still maintain stability.  

 

 

 

 

 

 

First we use Eq. 11-26 to get the closed loop transfer function 

𝑌

𝑌𝑠𝑝
=

10
(𝑠 + 1)(2𝑠 + 1)

1 +
10

(𝑠 + 1)(2𝑠 + 1)

=
10

(𝑠 + 1)(2𝑠 + 1) + 10
=

10

2𝑠2 + 3𝑠 + 11
 

Or in standard form 

                      

𝑌

𝑌𝑠𝑝
=

10
11⁄

2
11 𝑠2 +

3
11 𝑠 + 1

                     ζ=
3√22

44
                𝜏 =

√22

11
 

  

The time at which the maximum occurs is given by Eq. 5-52 

𝑡𝑝 = 𝜋𝜏

√1 − ζ
2⁄

                             𝑡𝑝 = 1.41 

(b)    

 The response is given by 

𝑌(𝑠) =
20

𝑠(2𝑠2 + 3𝑠 + 11)
 

The Final Value Theorem gives the steady state value as 

𝑦(∞) =
20

11
 

Subtracting the steady state value from the set point change gives offset as 

offset=
2

11
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11.26 

(c)      

 The period of oscillation is given by Eq. 5-55 

𝑃 =
2𝜋𝜏

√1 − ζ
2

                      𝑃 = 2.83 

                    

 (d)      

 

Figure S11.25 y(t) responses as a function of time.  

 Hint:     You do not need to obtain the analytical response y(t) to answer 

the above questions.  Use the standard second order model expressed in 

terms of ζ and τ (see Chapter 5). 

 

 

 

 

 

The closed loop transfer function for a set point change (Eq. 11-26), is 

given by 

𝑌

𝑌𝑠𝑝
=

𝐾𝑚𝐺𝑐𝐺𝑣𝐺𝑝

1 + 𝐺𝑐𝐺𝑣𝐺𝑝𝐺𝑚
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Substituting the values from above and in part (a), we get, 

𝑌

𝑌𝑠𝑝
=

𝐾𝑐𝐸

1 + 𝐾𝑐𝐸
 

Multiplying by a unit step change in set point gives 

𝑌(𝑠) =
𝐾𝑐𝐸

1 + 𝐾𝑐𝐸

1

𝑠
⟹ 𝑦(𝑡) =

𝐾𝑐𝐸

1 + 𝐾𝑐𝐸
 

A sketch might look like this (the step change at t = 5) 

 

Figure S11.26a Step response to unit step change with 

proportional control. 

As evidenced by the sketch, there is offset for this controller. 

For part (b), we substitute the values into Eq. 11-26 to get 

𝑌

𝑌𝑠𝑝
=

𝐸

𝜏𝐼𝑠 + 𝐸
=

1
𝜏𝐼

𝐸 𝑠 + 1
 

Multiplying by a unit step change in set point gives 

𝑌(𝑠) =
1

𝜏𝐼

𝐸 𝑠 + 1
 
1

𝑠
⟹ 𝑦(𝑡) = 1 − exp (−

𝐸

𝜏𝐼
𝑡) 

1

c

c

K E

K E
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11.27 

    A sketch would look like this 

 

      Figure S11.26b Step response to unit step change with integral control 

      As evident in the sketch, there is no offset for this controller. 

 

 

      
 

 

3

3 2

3

8

2 8

81 6 12 8 8
1 1 1

2

d

c v p m c
c

sGY

D G G G G s s s K
K

s


  

    
   



  

     The characteristic equation for above is shown as: 

      3 26 12 8 8 0cs s s K       

     Substituting s=j in above equation, we have: 
2 36 8 8 12 0cK j            

     Thus, we have: 

     
2

3

6 8 8K 0 2 3

12 0 8

c

cmK

 

 

    
 

   
  

      So 1cK   is stable; 8cK   is marginally stable, and 27cK   is unstable 

     For a step change 
1

D
s

  , applying the final value theorem: 
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Offset:   3 20

1
8

1
lim lim

6 12 8 8 1t s
c c

sy t s
s s s K K 

 
 

  
     

 

  

(b) 

        

 

 
   

3

3

3

8

2 8

1 1 8 2 1
1 1 1 1

2

d I

c v p m I c I
c

I

sG sY

D G G G G s s K s
K

s s



 




  

     
     

 

 For a step change 
1

D
s

  , applying the final value theorem: 

Offset:  
   

3
0

1
8

lim lim 0
2 1

I

t s
I c I

s
sy t s

s s K s



  

 
 

  
   

 

  

So there is no offset for PI controller. 

 

 

The closed loop transfer function for set point changes is given by 

𝑌

𝑌𝑠𝑝
=

𝐾𝑚𝐺𝑐𝐺𝑣𝐺𝑝

1 + 𝐺𝑐𝐺𝑣𝐺𝑝𝐺𝑚
 

Substituting the information in the problem gives 

𝑌

𝑌𝑠𝑝
=

𝐾𝑐(𝑠 + 3)

(𝑠 + 1)(0.5𝑠 + 1)(𝑠 + 3) + 3𝐾𝑐
=

𝐾𝑐(𝑠 + 3)

0.5𝑠3 + 3𝑠2 + 5.5𝑠 + 3 + 3𝐾𝑐
 

So the characteristic equation is  

0.5𝑠3 + 3𝑠2 + 5.5𝑠 + 3 + 3𝐾𝑐 = 0 

Substituting s=j in above equation, we have: 
2 33 3 3 5.5 0.5 0cK j            

Thus, we have: 
2

3

,max

113 3 3K 0

105.5 0.5 0

c

cK



 

     
 

   
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So the answers to parts (a)-(c) are: 

  (a)   stable 

(b)   unstable 

(c)    unstable 

The following plot shows the Simulink responses and confirms the above 

answers: 

 

Figure S11.28 y(t) responses with different Kc 

 

 

a) Proportional controller: 

     We derive the transfer function as follows: 

 
 

 
 

3

3 3 2

3

1

1

1

1 3 3 111
1

m c v p

SP m c v p

c

c c

SP cc
c

K G G GY

Y G G G G

K
s K KY

Y s s s Ks KK
s





  

    


 (1) 

          The characteristic equation of (1) is the following: 

 3 23 3 1 0cs s s K      (2) 

            Substituting s=j in above equation, we have: 
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2 33 1 3 0cK j            

Thus, we have: 
2

3

,max

33 1 0

83 0

c

c

K

K



 

     
 

   

  

We conclude that the system will be stable if  

8cK   (3) 

Simulation results are in Figure S11.29a. 

 

Figure S11.29a: System response to a unit step setpoint change. Note that the 

system is stable at Kc=7.9, marginally stable at Kc=8, and unstable at Kc=8.1. 

b) PD controller: 

We derive the transfer function as follows: 

 

 

 
 

 
 

3

3

1

1

1
1

1

1
1 1

1

c c D

m c v p

SP m c v p

c D

SP
c D

G K s

K G G GY

Y G G G G

K s
sY

Y
K s

s







 









 


 

 
 

3 2

1

3 3 1

c D

c D c

K s

s s s K K s








    
, (4) 

where Kc=10. 
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The characteristic equation of (4) is the following: 

  3 23 10 3 11 0Ds s s      (5) 

   Substituting s=j in above equation, we have: 

 2 33 11 10 3 0D j            

    Thus, we have: 

 

2

,min3

3 11 0 1
0.0667

10 3 0 15
D

D




  

   
  

  
  

 
(i) 𝜏𝐷 > 𝜏𝐷,𝑚𝑖𝑛 

 
(ii) 𝜏𝐷 < 𝜏𝐷,𝑚𝑖𝑛 

Figure S11.29b Simulation results of different 𝜏𝐷 settings 
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Chapter 12 
©
 

 

 

 

 

 12.1 

 

 

For K = 1, 1=10, 2=5, and =0, the PID controller settings are obtained using 

Eq.12-14 as 

 

cc

c
K

K








151 21       ,     I = 1+2=15       , 33.3
21

21 



D  

 

 The characteristic equation for the closed-loop system is 

 

  0
)15)(110(

0.11
11 


































ss
s

s
K D

I

c  

 

 Substituting for Kc, I, and D, and simplifying gives 

 

   0)1(  sc  

 

In order for the closed loop system to be stable, the coefficients of this first-order 

polynomial in s must be positive. Thus, 

  

   c > 0   

and 

      (1+) > 0          > 1. 

 

           Results: 

 

a) The closed loop system is stable for  > 1 

 

b) Choose c > 0 

 

c) The choice of c does not affect the robustness of the system to changes in 

. For c  0, the system is unstable regardless of the value of . For  

c  > 0 , the system is stable if  >1, regardless of the value of c . 
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4(1 )

v p m

s
G G G G

s


 

 

a) Let G G . Factor the model as 
 

 
 G G G  

with: 

4
1 ,           G s G

s
     

The controller design equation in (12-20) is: 

* 1
cG f

G

  

with a given first-order “filter”, 

1

1c

f
s




 

Substitute, 

* 1

4 1
c

c

s
G

s



 

b) The equivalent controller in the classical feedback control configuration in 

Fig. 12.6(a) is: 

 
*

*1

c
c

c

G
G

G G



 

Substitute to give, 

  
1

4( 1)
c

c

G





 

Thus Gc is a proportional-only controller. 

 

 

 12.3 

 

 

 For the FOPTD model, K = 2,    = 1, and  = 0.2. 
 

a) Using entry G in Table 12.1 for c = 0.2 

 

1
1.25

( ) 2(0.2 0.2)

1

c

c

I

K
K



 

 

  
 

 

 

b) Using entry G in Table 12.1 for c = 1 

12.2 
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1
0.42

( ) 2(1 0.2)

1

c

c

I

K
K



 

 

  
 

 

 

 

c) From Table 12.4  for a disturbance change 
 

KKc = 0.859(/)-0.977   or     Kc = 2.07 

/I = 0.674(/)-0.680     or     I = 0.49 
 

d) From Table 12.4 for a set-point change 
 

KKc = 0.586(/)-0.916     or     Kc = 1.28 

/I = 1.03 0.165(/)  or     I = 1.00 
 

e) Conservative settings correspond to low values of Kc and high values of I. 

Clearly, the IMC method (c = 1.0) of part (b) gives the more conservative 

settings; the ITAE method of part (c) gives the least conservative settings. 

The controller setting for (a) and (d) are essentially identical. 
 

f) A comparison for a unit step disturbance is shown in Fig. S12.3 

 

 
  Figure S12.3.  Comparison of PI controllers for a unit step disturbance. 
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 The process model is, 
 

34
( )




se

G s
s

   (assume the time delay has units of minutes) (1) 

 

(a) Proportional only control, Gc(s) =Kc. The characteristic equation is: 

 

 1 ( ) 0 cK G s  
 

Substitute and rearrange, 

 

 34 0 s

cs K e  
 

Substitute the stability limit conditions from Section 11.4.3: s = j,  = u, and 

Kc.= Kcu: 
 

3
4 0u j

u cuj K e
 

        (2) 

 

Apply Euler’s identity, θe cos(θ) sin(θ)j j   : 
 

  3

ue cos(3 ) sin(3 )u j

u j
  

   
 

 Substitute into (2), 
 

  4 [cos(3 ) sin(3 )] 0u cu u uj K j      
  

 Collect terms for the real and imaginary parts: 
 

4 cos(3 ) 0cu uK    (3) 
 

4 sin(3 ) 0u cu uK    (4) 
 

For (3), because 0cuK  , it follows that: 
 

cos ( 3 u ) = 0       
π

3
2

u    (5) 

 

  
π

0.5236  rad/min
6

u       (6) 

 

From (4) – (6), 
 

0.5236
0.5236 4 sin ( ) 0    0.130

2 4


    cu cuK K  

12.4 
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(b) Controller settings using AMIGO method 

 

 The model parameters are: 4,  =3K   

 For this model, use the right-hand column of Table 12.5. 

  

 

0.35 0.35
0.029

12

13.4 13.4(3) 40.2

c

I

K
K

 

  

  

 

  

 

 12.5 

 

 

Assume that the process can be modeled adequately by the first-order-plus-time 

delay-model in Eq. 12-10. The step response data and the tangent line at the 

inflection point for the slope-intercept identification method of Chapter 7 are shown 

in Fig. S12.5. 

  Figure S12.5.  Step response data and tangent line at the inflection point. 

 

 This estimated model parameters are: 
 

  K = KIP Kv(KpKm) = 




























psi

mA

1820

0.129.16

psi

psi
9.0

mA

psi
75.0 = 1.65 

   = 1.7 min  
  

   +  = 7.2 min         = 5.5 min 

a) Since / > 0.25, a conservative choice of c = 
2

1
 is used. Thus, c = 2.75 

min. From Case H in Table 12.1: 
 

12
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14

15

16

17

18
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O
u

tp
u

t

Time
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θ
1 2 1.76

θ

2

c

c

K
K







 



      

 

 
θ θ

6.35min,     0.736min
2 2 θ

I D


  


    


     

 

 b) From Table 12.6, the AMIGO tuning parameters are: 

   

  

1 1 5.5
0.2 0.45 0.2 0.45 1

1.65 1.7

0.4 0.8 0.4(1.7) 0.8(5.5)
(1.7) 3.8min

0.1 1.7 0.1(5.5)

0.5 0.5(1.7)(5.5)
0.78min

0.3 0.3(1.7) 5.5

c

I

D

K
K





 
 

 




 

   
       

   

 
  

 

  
 

 

 

c) From Table 12.4, the ITAE PID settings for a step disturbance are 

 

KKc = 1.357(/)-0.947     or     Kc = 2.50 

/I   = 0.842 (/)-0.738  or     I  =  2.75 min 

D/  = 0.381 (/)0.995    or     D = 0.65 min 

 

d) The most aggressive controller is the one from part c, which has the 

highest value of Kc and smallest value of τI 

 

 

12.6 

 

 

The model for this process has K=5, τ=4, and θ=3. The PI controller parameters 

for an FOPDT model using IMC tuning are given by entry G in Table 12.1: 

 

4
0.13

( ) 5(3 3)

4

c

c

I

K
K



 

 

  
 

 

 

 

The parameters for a PID controller are given by entry H in Table 12.1: 
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3
4

2 2 0.24
3

( ) 5(3 )
2 2

3
4 5.5

2 2

4(3)
1.1

2 2(4) 3

c

c

I

D

K

K








 




 

 

  

 

    

  
 

 

 

The simulated process for a step change in the set point is plotted below for both 

the PI and PID controllers. Note that the PID controller was implemented in the 

proper form to eliminate derivative kick (see chapter 8). 

 

 
 
Figure S12.6: Responses to a step change in the set point at t = 1for PI and PID 

controllers.  
 

The PID controller allows the controlled variable to reach the new set point more 

quickly than the PI controller, due to its larger Kc value. This large Kc allows an 

initially larger response from the controller during times from 1 to 4 minutes. The 

reason that the Kc can be larger is that, after the controlled variable begins to change 

and move toward the set point, the derivative term can “put on the brakes” and slow 

down the aggressive action so the controlled variable lands nicely at the set point.  
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12.7 

 

a.i) The model reduction approach of Skogestad gives the following 

approximate model: 

 

)122.0)(1(
)(

028.0






ss

e
sG

s

 

 

Since / < 0.25, an aggressive choice of c =  = 0.028 is made. From 

Case I in Table 12.1 with 3 = 0, the IMC settings are: 
 

1 21
21.8

θ
c

c

K
K

 




 


 

 1 2
1 2

1 2

1.22,       0.180I D

 
   

 
    


 

 

  

 a.ii) To use the AMIGO tuning relations in Table 12.6, the model reduction 

method of Skogestad can be used to reduce the model to a FOPDT model. 

The time constant in the resulting FOPDT model is the largest time constant 

in the full-order model plus one half of the next biggest time constant, 1 + 

0.5(0.2) = 1.1. The time delay in the resulting FOPDT model is half of the 

second-biggest time constant in the full-order model, 0.5(0.2) = 0.1. The 

other smaller time constants are neglected. 

 

   
0.1

( )
1.1 1

se
G s

s






 

   

 The AMIGO rules for a PID controller in Table 12.6 give: 

 

   

1 1.1
0.2 0.45 0.2 0.45 5.15

0.1

0.4 0.8 0.4(0.1) 0.8(1.1)
(0.1) 0.44

0.1 0.1 0.1(1.1)

0.5 0.5(0.1)(1.1)
0.049

0.3 0.3(0.1) 1.1

c

I

D

K
K





 
 

 




 

   
       

   

 
  

 

  
 

 

 

b) The simulation results shown in Figure S12.7 indicate that the IMC 

controller is superior for a step disturbance due to its smaller maximum 

deviation and lack of oscillations. This result makes sense, given that we 

made an aggressive choice for τC for the IMC controller. 
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 Figure S12.7.  Closed-loop responses to a unit step disturbance at t=1. 

 

 

12.8   

 

 

 From Eq. 12-40 (with γ=0): 

   
1

( ) ( ) ( ) ( *) * m
c sp m c D

I

dy
p t p K y t y t K e t dt

dt
 



 
       

 
  

 This control law can be implemented with Simulink as follows: 
: 

 

-+ß

WEIGHTING FACTOR

+
+

K
C

-
+

INTEGRAL 

ACTION
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ACTION
SET-POINT

CONTROLLER

CONTROLLER

INPUT

CONTROLLER 

OUTPUT
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Closed-loop responses are compared for four values of β: 1, 0.7, 0.5 & 0.3. 

 

 
 

               Figure S12.8.  Closed-loop responses for different values of β. 

 

As shown in Figure S12.8, as β increases the set-point response becomes faster 

but exhibits more overshoot. The value of β =0.5 seems to be a good choice. The 

disturbance response is independent of the value of β. 
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a) From Table 12.2, the controller settings for the series form are: 

 

971.01 













I

D
cc KK  

 

52.26 DII  

 

753.2





DI

DI
D  

 

Closed-loop responses generated from Simulink are shown in Fig. S12.9. 

The series form results in more oscillatory responses; thus, it produces more 

aggressive control action for this example.  

 

b) By changing the derivative term in the controller block, the Simulink results 

show that the system becomes more oscillatory as D increases. For the 
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parallel form, the closed-loop system becomes unstable for D   5.4; for the 

series form, it becomes unstable for D   4.5. 

 
     Figure S12.9.  Closed-loop responses for parallel and series controller forms. 
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a) Block diagram 
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b) Process and disturbance transfer functions: 

 

Overall material balance:  

 021  www     (1) 

Solute balance: 

dt

dx
Vwxxwxw  2211    (2) 

  Substituting (1) into (2) and putting into deviation variables: 

 

   
dt

xd
Vxwxwxwxwxw


 2212211  

 

  Taking the Laplace transform: 

 

   )()()()()( 212211 sXVswwsWxxsXw   

 

  Finally: 

   
s

ww

xx

Vsww

xx

sW

sX
sG p


















1)(

)(
)( 21

2

21

2

2

 

 

   
s

ww

w

Vsww

w

sX

sX
sGd














1)(

)(
)( 21

1

21

1

1

 

   

    where  
21 ww

V




  

 

  Substituting numerical values: 

 

   
s

sGp
71.41

106.2
)(

4








 

 

   
s

sGd
71.41

65.0
)(


  

 

  Composition measurement transfer function: 

 

   ss

m eesG  


 32
5.0

420
)(  

 

  Final control element transfer function: 
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10833.0

5.187

10833.0

2.1/300

420

315
)(












ss
sGv  

   

  Controller: 

 

    Let        mpv GGGG
10833.0

5.187

s s71.41

106.2 4



 
se32     

 

  then  
)10833.0)(171.4(

56.1






ss

e
G

s

 

 

For process with a dominant time constant, 3/domc   is recommended. 

Hence . 57.1c  min. From Table 12.1 

 

 Kc = 1.92    and    I = 4.71 min 

 

c) Simulink results: 

 
                      Figure S12.10c. Closed-loop response for the step disturbance. 
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d) Figure S12.10d indicates that 57.1c  min gives very good results. 

 
         Figure S12.10d. Closed-loop response for set-point change. 

 

 

e)   Improved control can be obtained by adding derivative action: 4.0D
 min. 

 
Figure S12.10e. Closed-loop response after adding derivative action. 

 

0 2 4 6 8 10 12 14 16 18 20
-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

Time

y(t)

0 2 4 6 8 10 12 14 16 18 20
-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

Time

y(t)



 

12-15 
 

f) For  =3 min, the closed-loop response becomes unstable. It is well known that 

the presence of a large time delay in a feedback control loop limits its 

performance. In fact, a time delay adds phase lag to the feedback loop, which 

adversely affects closed-loop stability (cf. Ch 13). Consequently, the controller 

gain must be reduced below the value that could be used if a smaller time delay 

were present. 

 

 
              Figure S12.10f. Closed-loop response for  = 3 min. 
 

 

12.11   

 

 

The controller retuning decision is based on the characteristic equation, which 

takes the following form for the standard feedback control system. 

 

 1 + GcGI/PGvGpGm = 0 

 

The PID controller may have to be retuned if any of the transfer functions, GI/P, 

Gv, Gp or Gm, change. 

 

a) Gm changes. The controller may have to be retuned. 
 

b) The zero does not affect Gm. Hence the controller does not require 

retuning. 
 

c) Gv changes. Retuning may be necessary. 
 

d) Gp changes. The controller may have to be retuned. 
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12.12   

 
 

The process model is given as: 
2

( )
3 1






se
G s

s
 

 

a) From Table 12.1, the IMC settings are: 

 

1
0.75

θ

3min





 

 


 

c

c

I

K
K   

 

b) Cohen-Coon tuning relations: 
 

1
[0.9 θ /12 ] 1.39

θ

θ[30 3(θ / )]
   1.98min

9 20(θ / )









  


 



c

I

K
K

 

 

The IMC settings are more conservative because they have a smaller Kc 

value and a larger I value.   

  

c) The Simulink simulation results are shown in Fig. S12.12. Both controllers 

are rather aggressive and produce oscillatory responses. The IMC controller 

is less aggressive (that is, more conservative).  

 

      Figure S12.12. Controller comparison. 
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12.13   

 

 

From the solution to Exercise 12.5, the process reaction curve method yields, 
 

   K = 1.65,   = 1.7 min,   = 5.5 min 

 

a) IMC method: 

 

From Table 12.1, Controller G with c = /3: 

 

 

I =  = 5.5 min 

 

b) Ziegler-Nichols settings: 
 

    

 

  First, determine the stability limits; the characteristic equation is:  

 

 1 + GcG = 0 

 

  Substitute the Padé approximation,  

 

 

 

 

into the characteristic equation: 

 

   0 = 1 + GcG   

Rearrange, 

 

   4.675s2 + (6.35 –1.403Kc)s + 1 + 1.65Kc = 0 

 

  Substitute s=ju at Kc = Kcu: 

 

   4.675 u
2 + j(6.35  1.403Kcu) u + 1 +1.65Kcu = 0 + j0 

 

  Equate real and imaginary coefficients, 

 

   (6.35  1.403Kcu)u = 0  ,   

1+ 1.65Kcu  4.675 u
2 = 0 

94.0
7.1)3/5.5(

5.5

65.1

11










c

c
K

K

1 71 65
( )

5 5 1

. s. e
G s

. s






1 0 85

1 0 85

s . s
e

. s

 




2

1 65 (1 0 85 )
1

4 675 6 35 1

c. K . s

. s . s


 

 
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  Ignoring u= 0, the approximate values are:  

 

Kcu = 4.53  and  u= 1.346 rad/min 

 

   
2

4.67 min



 u

u

P  

  The Z-N PI settings from Table 12.7 are: 

 

Kc = 2.04 and I = 3.89 min   (approximate) 
 

Note that the values of Kcu and u are approximate due to the Padé 

approximation. By using Simulink, more accurate values can be obtained 

by trial and error. For this case, no Padé approximation is needed and: 

 

Kcu = 3.76 Pu = 5.9 min  

 

  The Z-N PI settings from Table 12.7 are: 

 

Kc = 1.69 I =  4.92 min    (more accurate) 

 

Compared to the Z-N settings, the IMC method setting gives a smaller Kc 

and a larger I, and therefore provides more conservative controller settings. 
 

 

12.14   

 

 

Eliminate the effect of the feedback loop by opening the loop. That is, operate 

temporarily in an open loop mode by switching the controller to the manual mode. 

This change provides a constant controller output and a constant manipulated input. 

If oscillations persist, they must be due to external disturbances. If the oscillations 

vanish, they were caused by the feedback loop. 

 

 

12.15   

 

 

The sight glass has confirmed that the liquid level is rising. Because the controller 

output is saturated, the controller is working fine. Hence, either the feed flow is 

higher than recorded, or the liquid flow is lower than recorded, or both. Because 

the flow transmitters consist of orifice plates and differential pressure transmitters, 

a plugged orifice plate could lead to a higher recorded flow. Hence, the liquid-flow-

transmitter orifice plate would be the prime suspect. 
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12.16   

 

 

a) IMC design: 

 

From Table 12.1, Controller H with c = /2 =3.28 min is: 

 

c

1 τ θ / 2 1 6.5 2 / 2

τ θ / 2 220 3.25 2 / 2

0.00802

c

c

K
K

K

 
 

 



 

 

θ 2
τ τ 6.5 7.5min

2 2

τθ (6.5)(2)
τ 0.867min

2τ+θ 2(6.5) 2

I

D

    

  


 

 

 

b) Relay auto tuning (RAT) controller 

  

From the documentation for the RAT results, it follows that: 

 

a = 54,  d = 0.5 

 

From (12-46), 

 

4 4(0.5)
0.0118

(54)

14 min

cu

u

d
K

a

P

 
  



 

 

From Table 12.7, the Ziegler-Nichols controller settings are: 

 

0.6 0.0071

7 min,      1.75 min 
2 8

c cu

u u
I D

K K

P P
 

 

   
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c) Simulation results 

 

The closed-loop responses for the IMC and RAT controller settings and a step 

change in feed composition from 0.5 to 0.55 are shown in Figs. S12.16a and 

S12.16b, respectively. 

 
Fig. S12.16a. Performance of the IMC-PID controller for a step change in 

hydrocarbon flow rate from 0.035 to 0.040 m3/min. 
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Fig. S12.16b. Performance of the RAT controller for a step change in 

hydrocarbon flow rate from 0.035 to 0.040 m3/min. 

 

The RAT controller is superior due to its smaller maximum deviation and shorter 

settling time. 

 

d) Due to the high noise level for the xD response, it is difficult to obtain 

improved controller settings. The RAT settings are considered to be 

satisfactory. 
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12.17   

 

 

a) IMC design: 

 

  From Table 12.1, Controller H with c = /2 =381 is: 

 

c

1 τ θ / 2 1 762 138 / 2

τ θ / 2 0.126 381 138 / 2

14.7

c

c

K
K

K

 
 

 



 

 

θ 138
τ τ 762 831min

2 2

τθ (762)(138)
τ 63.3min

2τ+θ 2(762) 138

I

D

    

  


 

 

 

b) Relay auto tuning (RAT) controller 

 

The distillation column model includes an RAT option for the xB control loop, 

but not the xD control loop. Thus, the Simulink diagram must be modified by 

copying the RAT loop for xB and adding it to the xD portion of the diagram. 

Also, the parameters for the relay block must be changed. The new Simulink 

diagram and appropriate relay settings are shown in Fig. S12.17a. The results 

from the RAT are shown in Fig.S12.17b. 

 

From the documentation from the RAT results, it follows that: 

 

a = 5.55 x 10-3,  d = 0.2 

 

From (12-46), 

 

3

4 4(0.2)
45.9

(5.55 10 )

950 s

cu

u

d
K

a x

P

  
  


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From Table 12.7, the Ziegler-Nichols controller settings are: 

 

0.6 27.5

425 s,    119 s 
2 8

c cu

u u
I D

K K

P P
 

 

   

 

 

 

 
 

Fig. S12.17a. Modified RAT Simulink diagram and relay settings. 
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Fig. S12.17b. Results from RAT.  

 

c)  Simulation results 

 

The closed-loop responses for the IMC and RAT controller settings and a step 

change in feed composition from 0.5 to 0.55 are shown in Figs. S12.17c and 

S12.17d, respectively. 

 

The RAT controller provides a somewhat better response with a smaller 

maximum deviation and a shorter settling time. 

 

d) Due to the high noise level for the xD response, it is difficult to obtain 

improved controller settings. The RAT settings are considered to be 

satisfactory. 
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Fig. S12.17c. Performance of the IMC-PID controller for a step change in feed 

composition from 0.5 to 0.55. 
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Fig. S12.17d. Performance of the RAT controller for a step change in feed 

composition from 0.5 to 0.55. 
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Chapter 13 
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 13.1 

 

 

According to Guideline 6, the manipulated variable should have a large 

effect on the controlled variable. Clearly, it is easier to control a liquid level 

by manipulating a large exit stream, rather than a small stream. Because R/D 

>1, the reflux flow rate R is the preferred manipulated variable.  

 

 

13.2 

 

 

Exit flow rate w4 has no effect on x3 or x4 because it does not change the 

relative amounts of materials that are blended. The bypass fraction f  has a 

dynamic effect on x4 but has no steady-state effect because it also does not 

change the relative amounts of materials that are blended. Thus, w2 is the 

best choice. 

 

 

13.3 

 

 

Both the steady-state and dynamic behaviors need to be considered. From a 

steady-state perspective, the reflux stream temperature TR would be a poor 

choice because it is insensitive to changes in xD, due to the small nominal 

value of 5 ppm. For example, even a 100% change in from 5 to 10 ppm 

would result in a negligible change in TR. Similarly, the temperature of the 

top tray would be a poor choice. An intermediate tray temperature would be 

more sensitive to changes in the tray composition but may not be 

representative of xD. Ideally, the tray location should be selected to be the 

highest tray in the column that still has the desired degree of sensitivity to 

composition changes. 

 

The choice of an intermediate tray temperature offers the advantage of early 

detection of feed disturbances and disturbances that originate in the 

stripping (bottom) section of the column. However, it would be slow to 

respond to disturbances originating in the condenser or in the reflux drum. 

But on balance, an intermediate tray temperature is the best choice. 

 

 
 

13.4 
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For the flooded condenser in Fig. E13.4, the area available for heat transfer 

changes as the liquid level changes. Consequently, pressure control is easier 

when the liquid level is low and more difficult when the level is high. By 

contrast, for the conventional process design in Fig. 13.2, the liquid level 

has a very small effect on the pressure control loop. Thus, the flooded 

condenser is more difficult to control because the level and pressure control 

loops are more interacting, than they are for the conventional process design 

in Fig. 13.2. 

 

 

13.5 

 

  

(a) The larger the tank, the more effective it will be in “damping out” 

disturbances in the reactor exit stream. A large tank capacity also provides 

a large feed inventory for the distillation column, which is desirable for 

periods where the reactor is shut down. Thus a large tank is preferred from 

a process control perspective. However a large tank has a high capital cost, 

so a small tank is appealing from a steady-state, design perspective. Thus, 

the choice of the storage tank size involves a tradeoff of control and design 

objectives. 

 

 

           (b)  After a set-point change in reactor exit composition occurs, it would be 

desirable to have the exit compositions for both the reactor and the storage 

tank change to the new values as soon as possible. But concentration in the 

storage tank will change gradually due to its liquid inventory. The time 

constant for the storage tank is proportional to the mass of liquid in the tank 

(cf. blending system models in Chapters 2 and 4). Thus, a large storage tank 

will result in sluggish responses in its exit composition, which is not 

desirable when frequent set-point changes are required. In this situation, the 

storage tank size should be smaller than for case (a). 

 

   

 

13.6 

 

 

  Variables : q1, q2,…. q6, h1, h2      Nv= 8 

 

   

 

 

Equations :   
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Three flow-head relations:     113 hCq V  

       225 hCq V  

       
4 1 2( , )q f h h  

   

Two conservation of mass equations: 

 

 )( 4361
1

1 qqqq
dt

dh
A   

 )( 542
2

2 qqq
dt

dh
A   

 

Conclude:   NE = 5 

 

Degrees of freedom:   = NF = NV – NE = 8  5 = 3 

   

 

Disturbance variable:    q6     ND = 1 

  

   NF = NFC + ND  

   NFC = 3  1 = 2 

  

 

13.7 

 

 

Consider the following energy balance assuming a reference temperature 

of Tref = 0: 

 

Heat exchanger: 

 

  
0 1 1 2(1 ) ( ) ( )c c c c h h h hC f w T T C w T T      (1) 

 

Overall: 

 

  2 1 1 2( ) ( )c c c c h h h hC w T T C w T T      (2) 

 

Mixing point: 

 

  ccc fwwfw  )1(      (3) 

 

 

Thus, 
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  NE =3   ,       NV = 8      ),,,,,,,( 21021 hhccchc TTTTTwwf  

 

  NF =NV   NE  = 8  3 = 5 

 

  NFC = 2        (f, wh) 

also 

 

  ND = NF  NFC = 3        (wc, Tc1, Tc2) 

 

The degree of freedom analysis is identical for both cocurrent and 

countercurrent flow because the mass and energy balances are the same for 

both cases. 

   

 

13.8 

 

 

  The dynamic model consists of the following balances: 

 

  Mass balance on the tank: 

 

   321)1( wwwf
dt

dh
A                 (1) 

 

  Component balance on the tank: 

 

   332211
3 )1(
)(

wxwxwxf
dt

hxd
A     (2) 

 

  Mixing point balances: 

 

   w4 = w3 + fw1       (3) 

   x4w4 = x3w3 + fx1w1      (4) 

  

  Thus, 

 

   NE = 4           (Eqs. 1- 4) 

 

   NV = 9          ),,,,,,,,( 4321432 xxxxwwwfh  

 

   NF = NV  NE = 5 
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Since three flow rates )    ,( 321 wandwfw  can be independently adjusted, it 

would appear that there are three control degrees of freedom. But the bypass 

flow rate, 1fw , has no steady-state effect on x4. To confirm this assertion, 

consider the overall steady-state component balance for the tank and the 

mixing point: 

 

   442211 wxwxwx       (5) 

 

This balance does not depend on the fraction bypassed, f, either directly or 

indirectly, 

 

   Conclusion:      NFC = 2     (w2 and w4) 

 

 

13.9 

 

 

(a)  In order to analyze this situation, consider a steady-state analysis.  

 

Assumptions: 

1. Steady-state conditions with w, Th, and Tc at their nominal 

values. 

2. Constant heat capacities 

3. No heat losses 

4. Perfect mixing 

 

Steady-state balances: 
 

  
                                           (1)

                                  (2)

 

 

c h

c c h h

w w w

w T w T wT
 

 

 Assume that T=Tsp, where Tsp is the set point. 
 

                                           (3)

                                (4)

 

 

c h

c c h h sp

w w w

w T w T wT
 

 

Equations (3) and (4) are two independent equations with two 

unknown variables, wh and wc. For any arbitrary value of Tsp, these 

equations have a unique solution. Thus the proposed multiloop 

control strategy is feasible.  

 

This simple analysis does not prove that the liquid level h can also 

be controlled to an arbitrary set point hsp. However, this result can 
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be demonstrated by a more complicated theoretical analysis or by 

simulation studies. 

 

(b) Consider the steady-state model in (1) and (2). Substituting (1) into 

(2) and solving for T gives: 

 
 

                                      (5)c c h h

c h

w T w T
T

w w





 

 

Since w does not appear in (5), it has no steady-state effect on T. 

Consequently, the proposed multiloop control strategy is not 

feasible. 

 

 

13.10 

 

 

(a) Model degrees of freedom, NF 
 

NF = NV  -  NE (13-1) 

 

NV = 11   (xF, TF, F, wL, L, wV, V, T, P, h, VT) 

where TF is the feed temperature and VT is the volume of the 

flash separator.  

 

NV = 7: 

Mass balance 

Component balance 

Energy balance 

Vapor-liquid equilibrium relation 

Valve relations (2) 

Ideal gas law 

   

Thus,      NF = 11 – 7 = 4   

 

(b) Control degrees of freedom, NFC 
 

NF = NFC + ND (13-2) 

 

Typically, some knowledge of the feed conditions would be 

available. We consider two cases: 

 

Case 1: xF and TF are disturbance variables 
   

Here ND =2 and:  
 



 

13-7 

NFC = NF -  ND = 4 – 2 =  2     
 

The two degrees of freedom can be utilized by manipulating two of 

the three flow rates, for example, V and L, or F and V. 

  

Case 2:  xF, TF, and F are disturbance variables 
   

Here ND =3 and:  
 

NFC=  NF -  ND = 4 – 3 =  1     
 

The single degree of freedom could be utilized by manipulating one 

of the exit flow rates, either V or L. 
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Chapter 14 
 

 

 

 

14.1 

 

  
)()(

)(3
)(

32

1






jGjG

jG
jGAR  

 

         
14

13

1)2(

1)(3

2

2

2

2









  

 

From the statement, we know the period P of the input sinusoid is 0.5 min 

and, thus, 

 

 rad/min4
5.0

22








P
 

 

Substituting the numerical value of the frequency: 

 

 24.0212.02
1644

1163ˆ
2

2





 AARA  

Thus the amplitude of the resulting temperature oscillation is 0.24 degrees. 

 

  

 

14.2 

 

First approximate the exponential term as the first two terms in a truncated 

Taylor series 

 

se s  1  

 

Then  jjG 1)(  

and 
222 1)(1 termtwoAR  

 

  )(tan)(tan 11  

termtwo  
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For a first-order Pade approximation 

 

 

2
1

2
1

s

s

e s







  

from which we obtain 

 

 1PadeAR  

 






 
 

2
tan2 1

Pade  

Both approximations represent the original function well in the low 

frequency region. At higher frequencies, the Padé approximation matches 

the amplitude ratio of the time delay element exactly (ARPade = 1), while 

the two-term approximation introduces amplification (ARtwo term >1). For 

the phase angle, the high-frequency representations are: 

 

 
90 termtwo   

 180Pade  

 

Since the angle of  je is negative and becomes unbounded as  , 

we see that the Pade representation also provides the better approximation 

to the time delay element's phase angle, matching   of the pure time delay 

element to a higher frequency than the two-term representation. 

 

 

 

14.3 

 

 

  Nominal temperature 
128 F 120 F

124 F
2

T


   

   
1ˆ (128 F 120 F) 4 F
2

A     

  5sec.,   rad/s189.0sec)60/8.1(2   

 

  Using Eq. 13-2 with K=1, 

 

    2 2 2 2ˆ 1 4 (0.189) (5) 1 5.50 FA A        

 

  Actual maximum air temperature = 129.5 FT A   

  Actual minimum air temperature = 118.5 FT A   
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14.4 

 

 

 
( ) 1

( ) 0.1 1

mT s

T s s




 
 

 

 ( ) (0.1 1) ( )mT s s T s    

 amplitude of T =3.464 2(0.1 ) 1 3.465    

 phase angle of T =  + tan
-1

(0.1) =  + 0.02 

 

Since only the maximum error is required, set  = 0 for the comparison of T   and 

mT  . Then 

 

Error = mT    T =3.464 sin (0.2t) – 3.465sin(0.2t + 0.02) 

         = 3.464 sin(0.2t) –3.465[sin(0.2t) cos 0.02 + cos(0.2t)sin 0.02] 

         = 0.000 sin(0.2t)  0.0693 cos(0.2t) 

 

Since the maximum absolute value of cos(0.2t) is 1,  

 

maximum absolute error = 0.0693 

 

 

 

14.5 

 

 

(a) No, cannot make 1
st
 order closed-loop system unstable. 

 

(b) No, cannot make 2
nd

 order overdamped system unstable for closed-loop. 

 

(c) Yes, 3
rd

 order system can be made unstable. 

 

(d) Yes, anything with time delay can be made unstable. 

 

 

 

14.6 

 

 

Engineer A is correct. 

Second order overdamped process cannot become unstable with a proportional 

controller. 

FOPTD model can become unstable with a large Kc due to the time delay. 
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14.7 

 

 

  Using MATLAB 

 
            Figure S14.7.  Bode diagram of the third-order transfer function. 

 

 

The value of  that yields a -180 phase angle and the value of AR at that 

frequency are: 

 

 = 0.807 rad/sec   

AR = 0.202  

  

 

14.8 

 

  Using MATLAB, 

Bode Diagram
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        Figure S14.8.  Bode diagram  for G(s) and G(s) with Pade approximation. 

As we can see from the figures, the accuracy of Pade approximation does not 

change as frequency increases in magnitude plot, but it will be compromised in 

the phase plot as frequency goes higher. 

 

 

14.9 

 

 =2f      where f is in cycles/min 

 For the standard thermocouple, using Eq. 14-13b  

 

  1 = -tan
-1

(1) = tan
-1

(0.15) 

 

 Phase difference  = 1 – 2 

 

 Thus, the phase angle for the unknown unit is 

 

   2 = 1   

 

 and the time constant for the unknown unit is 

 2 = )tan(
1

2


 

 

Bode Diagram
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using Eq. 14-13b . The results are tabulated below 

 
f  1  2 2 

0.05 0.31 -2.7 4.5 -7.2 0.4023 

0.1 0.63 -5.4 8.7 -14.1 0.4000 

0.2 1.26 -10.7 16 -26.7 0.4004 

0.4 2.51 -26.6 24.5 -45.1 0.3995 

0.8 6.03 -37 26.5 -63.5 0.3992 

1 6.28 -43.3 25 -68.3 0.4001 

2 12.57 -62 16.7 -78.7 0.3984 

4 25.13 -75.1 9.2 -84.3 0.3988 

 

That the unknown unit is first order is indicated by the fact that 0 as , 

so that 21-90 and 2-90 for  implies a first-order system. This is 

confirmed by the similar values of 2 calculated for different values of , 

implying that a graph of tan(-2) versus  is linear as expected for a first-order 

system. Then using linear regression or taking the average of above values, 2 = 

0.40 min. 

 

 

 

14.10 

 

 

 From the solution to Exercise 5-19, for the two-tank system 

 

  
1132.1

01.0

)(

/)(

1

max11











s

K

ssQ

hsH

i

 

  
22

1

max22

)1()132.1(

01.0

)(

/)(











s

K

ssQ

hsH

i

 

 

  
22

1

2

)1(

1337.0

)132.1(

1337.0

)(

)(











sssQ

sQ

i

 

 

 and for the one-tank system 

 

  
12164.2

01.0

)(

/)(

1

max











s

K

ssQ

hsH

i

 

 

  
12

1337.0

164.2

1337.0

)(

)(

1 









sssQ

sQ

i

 

For a sinusoidal input ,sin)(1 tAtq i  the amplitudes of the heights and flow 

rates are 
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   14//ˆ 22

max  KAhhA     (1) 

 

   14/1337.0ˆ 22  AqA      (2) 

 

for the one-tank system, and 

 

   1//ˆ 22

max11  KAhhA      (3) 

 

   222

max22 )1(//ˆ  KAhhA     (4) 

 

   222

2 )1(/1337.0ˆ  AqA     (5) 

 

for the two-tank system. 

 

Comparing (1) and (3), for all  

 

    maxmax11 /ˆ/ˆ hhAhhA   

 

Hence, for all , the first tank of the two-tank system will overflow for a smaller 

value of A than will the one-tank system. Thus, from the overflow consideration, 

the one-tank system is better for all . However, if A is small enough so that 

overflow is not a concern, the two-tank system will provide a smaller amplitude in 

the output flow for those values of  that satisfy 

   

    qAqA  ˆˆ
2  

 

or    
14

1337.0

)1(

1337.0

22222 




AA
 

 

or   /2 = 1.07 

 

Therefore, the two-tank system provides better damping of a sinusoidal 

disturbance for    1.07 if and only if  

 

   1/ˆ
max11  hhA   , that is, 

01.0

132.1 22 



A  
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14.11 

 

  Using Eqs. 14-28 , 14-13, and 14-17, 

 

   AR=
141100

12

22

22



 a
 

 

    = tan
-1

(a) – tan
-1

(10) – tan
-1

(2)  

 

  The Bode plots shown below indicate that 

 

i) AR does not depend on the sign of the zero. 

ii) AR exhibits resonance for zeros close to origin. 

iii) All zeros lead to ultimate slope of –1 for AR. 

iv) A left-plane zero yields an ultimate   of -90. 

v) A right-plane zero yields an ultimate   of -270. 

vi) Left-plane zeros close to origin can give phase lead at low . 

vii) Left-plane zeros far from the origin lead to a greater lag (i.e., 

smaller phase angle) than the ultimate value. u 90 º with a left-

plane zero present. 

 
      Figure S14.11.  Bode plot for each of the four cases of numerator dynamics. 
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14.12 

 

a) From Eq. 8-14 with I = 4D 

 

s

s
K

s

ss
KsG

D

D
c

D

DD
cc











4

)12(

4

)414(
)(

222

 













 


D

D
c

D

D

cc KKjG
4

14

4

14

)(
22

2
22

 

 

b) From Eq. 8-15 with I = 4D  and  = 0.1 

 

 
 11.04

1)14(
)(






ss

ss
KsG

DD

DD
cc  

 

101.04

1116

)(
22

2222








 




 



DD

DD

cc KjG  

 

The differences are significant for 0.25 < D < 1 by a maximum of 0.5 Kc 

at D = 0.5, and for D >10 by an amount increasing with D . 

  
          Figure S14.12.   Nominal amplitude ratio for parallel and series controllers 
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14.13 

 

 

cvcpmOL K
sss

GGGGG
12

4

150

6.0

1

2
111





 

 

Characteristic equation: 

0)6.0)(2)(4()12)(150)(1(  cKsss                                                           (1) 

 

For a third order process, a Kc can always be chosen to make the process unstable. 

A stability analysis would verify this but was not required. 

 

Substitute s = jω into Eq. (1), we have: 

0)6.0)(2)(4()12)(150)(1(  cKjjj   

For τ = 1, we have: 

           (−100𝜔3 + 53𝜔)𝑗 + (1 + 4.8𝐾𝑐 − 152𝜔2) = 0                                                (2) 

Thus, we have ωc = 0.53 and Kcu = 16.58. 

 

For τ = 0.4, we have:  

           (−40𝜔3 + 52.4𝜔)𝑗 + (1 + 4.8𝐾𝑐 − 120.8𝜔2) = 0                                            (3) 

So we have: 

ωc = 1.31 and Kcu = 41.28 

  

 The second measurement is preferred because of a larger stability region of Kc. 

 

14.14 

 

(a) Always true. Increasing the gain does speed up the response for a set point 

change. Care must be taken to not increase the gain too much or oscillations will 

result. 

 

(b) False. If the open loop system is first order, increasing Kc cannot result in 

oscillation. 

 

(c) Generally true. Increasing the controller gain can cause real part of the roots of 

the characteristic polynomial to turn positive. However, for first or second order 

processes, increasing Kc will not cause instability. 

 

(d) Always true. Increasing the controller gain will decrease offset. However, if 

the gain is increased too much, oscillations may occur. Even with the oscillations 

the offset will continue to decrease until the system becomes unstable.  
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14.15 

 

(a) 

 
Figure S14.15a Bode plot of GOL. (Kc = 10) 

 

ccOL K
ss

GGG
)12)(14(

1




 
Cannot become unstable – max phase angle 2

nd
 order overdamped process 

(GOL) is -180 degree. 

(b)  

 
Figure S14.15b Bode plot of GOL. (Kc = 10) 
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)12)(14(5

)15(

)12)(14(

5/11











sss

Ks
K

ss

s
GGG c

ccOL

 
 

Cannot become unstable – max phase angle (GOL) is -180 degree while at 

low frequency the integrator has -90 degree phase angle.  

 

(c) 

 
Figure S14.15c Bode plot of GOL. (Kc = 10) 

 

)14(

)1(12
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ss

Ks

s

s
K

ss

s
GGG c
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Cannot become unstable – lead lag unit has phase lag larger than -90, 

integrator contributes -90 degree; the total phase angel is larger than -180. 
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(d)  

 
Figure S14.15d Bode plot of GOL. (Kc = 10) 
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Can become unstable – max phase angle (GOL) is -270 degree.  

 

(e) 

 
Figure S14.15e Bode plot of GOL. (Kc = 10) 

 



14-14 

c

s

cOL K
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e
GGG

)14( 




 
 

Can become unstable due to time delay at high frequency. 

 

 

 

14.16 

 

  By using MATLAB, 

  Figure S14.16 Bode plot  for Exercise 13.8 Transfer Function multiplied by  

PID Controller Transfer Function. Two cases: a)Parallel  b) Series with Deriv. 

 Filter (=0.2). 

. 
  Amplitude ratios: 

 

   Ideal PID controller: AR= 0.246  at   = 0.80 

   Series PID controller: AR=0.294  at  = 0.74 

 

  There is 19.5% difference in the AR between the two controllers. 
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14.17 

 

 

a) Method discussed in Section 6.3: 

 

)12.2)(18(

12
)(ˆ

3.0

1





ss

e
sG

s

 

 

Method discussed in Section 7.2.1: 

 

 
Figure S14.17a  Step response of G(s) 

Based on Figure S14.17, we can obtain the time stamps corresponding to 

20% and 60% response: 𝑡20 = 4.034; 𝑡60 = 10.09;
𝑡20

𝑡60
⁄ = 0.4. Based 

on Figure 7.7, we have  
𝑡60

𝜏
= 2.0; 𝜁 = 1.15, so we have 𝜏 = 5.045.Using 

the slope of the inflection point we can estimate the time delay to be 0.8. 
So we have: 

0.8

2 2

12ˆ ( )
25.45 11.60 1

se
G s

s s




 

 

 

b) Based on Figure S14.17a, we can obtain θ = 0.8; τ = 15 − 0.8 = 14.2 
0.8

3

12ˆ ( )
14.2 1

se
G s

s






 

 

Comparison of three estimated models and the exact model in the 

frequency domain using Bode plots: 
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    Figure S14.17b  Bode plots for the exact and approximate models. 

 

 

 

14.18 

 

 

  The original transfer function is 
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  The approximate transfer function obtained using Section 6.3 is: 
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             Figure S14.18 Bode plots for the exact and approximate models. 

 

 

  As seen in Fig.S14.18, the approximation is good at low frequencies, but  

  not that good at higher frequencies. 

 

14.19 
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ωc occurs where φ = -180: 

227.0)(152.0  cc AR 
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Figure S14.19a Bode plot of to find ωc. 

 

Simulation results with different Kc are shown in Fig. S14.19b. Kc > Kcu, the 

system becomes unstable as expected. 

 
Figure S14.19b Step response of closed loop system with different Kc. 

 

 

(b) 

Use Skogestad’s half rule 

5.92235.2

5.6255.060









 
 

The approximated FOPTD model: 
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15.62

3 5.9
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

s

e
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s

 
 

Using Table 12.3, 
10.13/)5.62/5.9(586.0 916.0  

cK
 ; 

19.62
03.1)5.62/5.9(165.0

5.62



I

 
Then,  

 

)
19.62

1
1(10.1

s
Gc 

, cOL GGG 
 

 

ωc occurs where φ = -180: 

249.0)(153.0  cc AR 
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)(
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c

cu
AR

K


 
 

 
Figure S14.19c Bode plot of FOPTD model. 
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 Using the Bode plot, at a phase angle of -180°, we require that 1mpVc KKKK  

s

p esG )(        5.0VG         0.1mG  
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The gain of Gp = 1.0 for all . 

 At the critical frequency (c), a sine wave is formed with period 

min
628.0

min10

2
,

2
min10

radrad
sosP c

c

m 






 

 (a)        The critical gain is easily found from 

 1mpVc KKKK  at c   

1)1)(1)(5.0( cuK , or 0.2cuK  

(b)        The phase angle of  cuc GGG   = phase angle of se  , or Φ = - θ (rad) 

(Eq. 14-33) 

 when Φ = -180° = - π= -c θ 

Because 
min

rad

10

2
 c

  then min5
2

10
 . 
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a) Using Eqs. 14-56 and 14-57 
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5
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
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
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
















 cOL K  

 

 = tan
-1

(-1/5) + 0   + (-2  tan
-1

(10)) + (- tan
-1

()) 
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         Figure S14.21a   Bode plot  

b) Set  = 180 and solve for  to obtain c = 0.4695 

 

Then 
c

OL 
AR = 1 = Kcu(1.025) 

 

Therefore, Kcu = 1/1.025 = 0.976 

 

System is stable for Kc  0.976 

 

 

c) For Kc = 0.2, set AROL = 1 and solve for  to obtain g = 0.1404 

 

Then g = 
g

 = -133.6 

 

From Eq. 14-61,  PM = 180 + g = 46.4 

 

 

d) From Eq. 14-60 

 

GM = 1.7 = 
cA

1
 = 

c
OL 

AR

1
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From part   b),     
c

OL 
AR = 1.025 Kc 

 

Therefore        1.025 Kc = 1/1.7      or        Kc = 0.574 

 
         Figure S14.21b  Solution for part b) using Bode plot 

 
         Figure S14.21c  Solution for part c) using Bode plot 
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  From modifying the solution to the two tanks in Section 6.4, which have a  

  slightly different configurations,  
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   Gp(s) = 
1)()( 2212112211

1

2  sRARARAsRARA

R
 

 

  For R1=0.5, R2 = 2, A1 = 10, A2 = 0.8 

 

   Gp(s) = 
178

5.0
2  ss

      (1) 

For R2 = 0.5,   Gp(s) = 
18.52

5.0
2  ss

   (2) 

 a) For R2=2 

 

Gp= tan
-1
















2

81

7

c

c      ,       |Gp| = 













 222
)7()81(

5.0

cc

 

 

Kcu and c are obtained using Eqs. 14-7 and 14-8: 

 

  -180 = 0 + 0 + tan
-1
















2

81

7

c

c   tan
-1

(0.5c) 

   

Solving,  c = 1.369 rad/min 

 

  

















222
)7()81(

5.0
)5.2)((1

cc

cuK














 1)5.0(

5.1

2

c

 

 

  Substituting c = 1.369 rad/min,  Kcu = 10.96,  cKcu = 15.0 

 

For R2=0.5 

 

  Gp = tan
-1
















2

21

8.5

c

c     ,       |Gp| = 













 222
)8.5()21(

5.0

cc

 

 

For Gv = Kv = 2.5,  v=0,      |Gv| = 2.5 

 

For Gm = 
15.0

5.1

s
,     m= -tan

-1
(0.5)  ,    |Gm| = 

1)5.0(

5.1

2 c

 

 



14-24 

  -180 = 0 + 0 + tan
-1
















2

21

8.5

c

c   tan
-1

(0.5c) 

 

Solving,  c = 2.51 rad/min 

   

  Substituting c = 2.51 rad/min,  Kcu = 15.93,  cKcu = 40.0 

 

 

b)         From part a), for R2=2, 

 

c = 1.369 rad/min,     Kcu = 10.96 

Pu = 
c

2
= 4.59 min 

 

Using Table 12.4, the Ziegler-Nichols PI settings are 

 

Kc  =   0.45 Kcu  =   4.932     ,    I= Pu/1.2 = 3.825 min 

 

Using Eqs. 13.63 and 13-62 , 

 

c= -tan
-1

(-1/3.825) 

 

|Gc| = 4.932 1
825.3

1
2











 

 

Then, from Eq. 14-56  

 

-180 =  tan
-1














c825.3

1
 + 0 + tan

-1
















2

81

7

c

c  tan
-1

(0.5c) 

 

Solving,  c = 1.086 rad/min 

 

  Using Eq. 14-57 

 

  Ac  =  AROL|=c  = 

 

=









































 222

2

)7()81(

5.0
)5.2(1

825.3

1
932.4

cc
c















 1)5.0(

5.1

2

c

 

 

= 0.7362 

 



14-25 

Therefore, gain margin GM =1/Ac = 1.358 

 

Solving Eq.(14-16) for g  

 

 AROL|=c  = 1     at     g = 0.925 

 

 Substituting into Eq. 14-57 gives g=|=g  = 172.7 

 

 Therefore, phase margin  PM = 180+ g  = 7.3 
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 a) K=2  ,    = 1  ,   = 0.2  ,  c=0.3 

 

  Using Eq. 12-11, the PI settings are 
 

1
1







c

c
K

K  , I =  = 1 min,   

   

Using Eq. 14-58 , 

 

  -180 =  tan
-1
















c

1
  0.2c  tan

-1
(c)  = -90  0.2c 

 

  or  c = 
2.0

2/
= 7.85 rad/min 

 

  Using Eq. 14-57, 

 

  255.0
2

1

2
1

1
AR

22


























c

cc

OLc
c

A  

 

  From Eq. 14-60, GM = 1/Ac = 3.93 

 

 

b) Using Eq. 14-61,   

 

  g = PM  180 =  140  = tan
-1

(-1/0.5g)  0.2g  tan
-1

(g) 

 

Solving,  g = 3.04 rad/min 
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














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




















1

2
1

5.0

1
1AR

2

2

g
g

cOL K
g

 

 

Substituting for g gives Kc = 1.34.  Then from Eq. 14-8 

 

180 =  tan
-1
















c5.0

1
  0.2c  tan

-1
(c)   

 

Solving, c =7.19 rad/min 

From Eq. 14-56, 

383.0
1

2
1

5.0

1
34.1AR

2

2















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














c
c

OLc
c

A  

 

From Eq. 14-60, GM = 1/Ac = 2.61 

 

 

c) By using Simulink-MATLAB, these two control systems are compared for 

a unit step change in the set point. 

   
  Figure S14.23 Close-loop response for a unit step change in set point. 

 

   

The controller designed in part a) (Direct Synthesis) provides better 

performance giving a first-order response. Part b) controller yields a large 

overshoot. 
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14.24 

 

 

a) Using Eqs. 14-56 and 14-57 
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= tan
-1

(2)  tan
-1

(0.1)  tan
-1

(0.5) – (/2)  tan
-1

(5) 

 
   Figure S14.24a  Bode plot  

 

b) Using Eq.14-61 

 

g = PM – 180 = 30 180 = 150 

 

From the plot of  vs. ,               g = -150 at g = 1.72 rad/min 
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From the plot of 
c

OL

K

AR
 vs ,      

g
c

OL

K


AR
= 0.144 

Since 
g

OL 
AR = 1  ,     Kc = 

144.0

1
= 6.94 

 

 c) From the plot of    vs. ,             = -180 at c = 4.05 rad/min 

 

From the plot of 
c

OL

K

AR
 vs ,     

c
c

OL

K


AR
= 0.0326 

Ac = 
c

OL 
AR = 0.326 

From Eq. 14-60,  GM = 1/Ac = 3.07 

 
            Figure S14.24b  Solution for part b) using Bode plot 
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          Figure S14.24c Solution for part c) using Bode plot 

 

 

 

 

14.25 

 

 

 

a) Schematic diagram: 
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  Block diagram: 

T
R

-
+ Gc Gv

Gp G

Gm

Controller Valve
Mixing

Process

Transfer

line

TL

T

 
   

b) GvGpGm = Km = 6 ma/ma 

 

GTL = e
-8s

 

 

  GOL = GvGpGmGTL = 6e
-8s

 

 

 

If GOL =  6e
-8s

 

   

   | GOL(j) | = 6 

 

    GOL (j)  = -8 [rad] 

 

Find c:   The critical frequency corresponds to an open-loop phase angle 

of   180 phase angle =   radians 

    

     -8c = -    or    c = /8 rad/s 

 

  Find Pu:    Pu = 
2 2

16s
8c /

 

 
     

  Find Kcu:  Kcu = 167.0
6

1

|)(|

1


cp jG
 

 
[ Note that for this unusual process, the process AR is independent of frequency] 

 

  Ziegler-Nichols ¼ decay ratio settings: 

 

  PI controller: 

 

Kc = 0.45 Kcu = (0.45)(0.167) = 0.075 

   I = Pu/1.2 = 16 s/1.2 = 13.33 s 

 

  PID controller: 

 

Kc = 0.6 Kcu = (0.6)(0.167) = 0.100 

   I = Pu/2 = 16/2 = 8 s 
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  D = Pu/8 = 16/8 = 2 s 

 

 c)  

 
  Figure S14.25 Set-point responses for PI and PID control. 

 

Note:  The MATLAB version of PID control uses the following controller 

settings: ki=Kc/I and kd= KcD. 

 

 d) Derivative control action improves the closed-loop response by reducing the 

settling time, at the expense of a more oscillatory response. 
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Kcu and c are obtained using Eqs. 14-56 and 14-57. Including the filter GF into 

these equations gives 

 

-180 = 0 + [-0.2c  tan
-1

(c)]+[-tan
-1

(Fc)]  

 

 Solving, 
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   c = 8.443    for  F = 0 

   c = 5.985  for F = 0.1 

 

Then, from Eq. 14-57,  

 

 













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
















1

1

1

2
1

222

cFc

cuK  

 

Solving for Kcu gives, 

 

   Kcu = 4.251     for  F = 0 

   Kcu = 3.536   for F = 0.1 

 

Therefore, 

   

   cKcu = 35.9     for  F = 0 

   c Kcu= 21.2   for F = 0.1 

 

Since cKcu  is lower for F = 0.1, filtering the measurement results in 

worse control performance. 
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a) 
1083.0

264.5
112

1083.0

047.0
)(







ss
sGv  

 

)1017.0)(1432.0(

2
)(




ss
sG p  

 

  
)1024.0(

12.0
)(




s
sGm  

 

  Using  Eq. 14-61 

 

  -180= 0  tan
-1

(0.083c)  tan
-1

(0.432c)  tan
-1

(0.017c)  

 tan
-1

(0.024c) 

 

  Solving , c = 18.19 rad/min 

 

  Using Eq. 14-60 
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
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
















1)024.0(

12.0

2

c

 

  Substituting c=18.19   ,    Kcu = 12.97 

   

Pu = 2/c = 0.345 min 

 

  Using Table 12.4, the Ziegler-Nichols PI settings are 

 

  Kc = 0.45 Kcu = 5.84    ,     I=Pu/1.2 = 0.288 min 

  

 

b) Using Eqs.14-39 and 14-40 

 

c =  Gc =  tan
-1

(-1/0.288)= -(/2) +  tan
-1

(0.288) 

 

|Gc| = 5.84 1
288.0

1
2











 

 

  Then, from Eq. 14-57, 

 

 

- =  (/2) + tan
-1

(0.288c)  tan
-1

(0.083c)  tan
-1

(0.432c)  

 

          tan
-1

(0.017c)  tan
-1

(0.024c) 

 

 

Solving, c = 15.11 rad/min. 

 

Using Eq. 14-56 
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= 0.651 
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Using Eq. 14-60,  GM = 1/Ac = 1.54 

 

Solving Eq. 14-56 for g gives 

 

g
OL 

AR = 1       at    g = 11.78 rad/min 

  Substituting into Eq. 14-57 gives 

 

g = 
g

 =  (/2) + tan
-1

(0.288g)  tan
-1

(0.083g)  tan
-1

(0.432g)  

 

                       tan
-1

(0.017g)  tan
-1

(0.024g) = -166.8 

 

Using Eq. 14-61 

 

 PM = 180 + g = 13.2  
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a)       From Exercise 14.28, 

 

1083.0

264.5
)(




s
sGv  

)1017.0)(1432.0(

2
)(




ss
sG p  

  
)1024.0(

12.0
)(




s
sGm  

  The PI controller is     









s
sGc

3.0

1
15)(  

  Hence the closed-loop transfer function is 

 

  mpvcOL GGGGG   

 

  Rearranging, 

 

  
sssss

s
GOL






 23455 556.005738.000168.01046.1

06.21317.6
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  By using MATLAB, the Nyquist diagram for this open-loop system is 

  
     Figure S14.28a The Nyquist diagram for the open-loop system. 

 

b)       Gain margin = GM = 
cAR

1
 

 

where ARc is the value of the open-loop amplitude ratio at the critical 

frequency c. By using the Nyquist plot 

 
   Figure S14.28b  Graphical solution for part b) 
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    = -180           ARc = | G(jc)| = 0.5   

 

  Therefore the gain margin is  GM = 1/0.5 = 2 
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15.1 

 

 

For Ra=d/u 

 

  
2u

d

u

R
K a

p 



  

 

which can vary more than Kp in Eq. 15-2, because the new Kp depends on both d 

and u. 

 

 

15.2 

 

 

 By definition, the ratio station sets 

 

  um = um0 + KR (dm - dm0) 

 

 Thus 

2

1

2

2

1

2

2

0

0















d

u

K

K

dK

uK

dd

uu
K

mm

mm

R           (1) 

 

For constant gain KR, the values of u and d in Eq. 1 are the desired steady-state 

values so that u/d = Rd, the desired ratio. Moreover, the transmitter gains are 

 

1 2

(15 3) mA

d

K
S


    , 2 2

(15 3) mA

u

K
S


  

 

Substituting for K1, K2 and u/d into (1) gives, 

 
2

2

2

2













u

d

dd

d

u

R
S

S
RR

S

S
K  
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15.3 

 

 

(a) Block diagram of the feedforward control system 

 

 
 

(b) Feedforward design based on a steady-state analysis 

 

The starting point in feedforward controller design is Eq. 15-21.  For a design based 

on a steady-state analysis, the transfer functions in (15-21) are replaced by their 

corresponding steady-state gains: 

 

( ) d
F

t v p

K
G s

K K K
 

  (1) 

 

From the given information,  

 

mA
0.08

L/min

gal/min
4

mA

t

v

K

K




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Next, calculate Kp and Kd from the given data. Linear regression gives: 

 

ppm
2.1

gal/min

ppm
0.235

L/min

p

d

K

K

 



 

 

Substitute these gains into (1) to get: 

 

ppm
0.235

L/min( )
mA gal/min ppm

0.08 4 2.1
L/min mA gal/min

( ) 0.35

F

F

G s

G s

 
   
   

   


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(TBA) 
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a) Using steady-state gains 

 

Gp=1,     Gd=2,     Gv = Gm = Gt =1 

 

From Eq.15-21   

 

Gf = 
2

2
(1)(1)(1)

 
  d

v t p

G

G G G
 

 

b) Using Eq. 15-21  

 Gf = 

2

2( 1)(4 1)

1 4 1
(1)(1)

1

d

v t p

G s s

G G G s

s



  
 

 
 

 
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c) Using Eq. 12-19  

    


 GG
s

GGGG mpv

~~

1

1~
 

where  
1

1,      
1

  


G G
s

 

 

For c=3, and r=1, Eq. 12-21 gives, 

 

    f = 
1

3 1s 
 

 

From Eq. 12-20, 

 

* 1 1 1
( 1) ( )

3 1 3 1
c

s
G G f s

s s






   

 
 

  

From Eq. 12-16, 

1

13 1
11 3

1
3 1

c
c

c

s
G ssG
G G s

s







  





 

 

d) For feedforward control only, Gc = 0 for a unit step change in disturbance, 

D(s) = 1/s 

 

Substituting into Eq. 15-20 gives 

 

 Y(s) = (Gd+GtGfGvGp)
s

1
 

 

For the controller of part (a) 

 

 Y(s) = 
2 1 1

(1)( 2)(1)
( 1)(4 1) 1s s s s

  
    

    
 

 

  Y(s) = 
8 8 / 3 32 / 3 8 / 3 8 / 3

( 1)(4 1) 1 4 1 1 1/ 4s s s s s s

 
    

      
 

 

Taking inverse Laplace transforms, 

 

  /48
( ) ( )

3

t ty t e e    
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For the controller of part (b) 

 

 Y(s) = 
2 2 1 1

(1) (1) 0
( 1)(4 1) 4 1 1s s s s s

    
     

       
 

 
 

  or        y(t) =  0 
 

  The step responses are shown in Fig. S15.5 (left panel). 
 

e) Using Eq. 15-20 

 

For the controller of parts (a) and (c), 

    Y(s) = 

2 1
(1)( 2)(1)

1( 1)(4 1) 1

1 1
1 (1) (1)

3 1

s s s

s s

s s

  
        

             

 

 

  or Y(s) = 

24 36 32 4

( 1)(4 1)(3 1) 3 1 4 1 1

12 8 4

1/ 3 1/ 4 1

s

s s s s s s

s s s

 
  

     


  

  

 

 

      

Thus, 
/3 /4( ) 12 8 4t t ty t e e e       

 

and for controllers of parts (b) and (c)  

 

Y(s) = 

2 2 1
(1) (1)

1( 1)(4 1) 4 1 1

1 1
1 (1) (1)

3 1

s s s s

s s

s s

     
            
             

 = 0 

 

  Thus, y(t) = 0 
 

  The closed-loop responses are shown in Fig. S15.5 (right panel). 
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Figure S15.5. Closed-loop responses for feedforward-only control (FFC, left 

panel) and  feedforward-feedback control (FFC+FBC, right panel). 

 

 

15.6 

 

 

a) The steady-state energy balance for both tanks takes the form 

 

0 = w1 C T1 + w2 C T2  w C T4 + Q 

where: 

Q is the power input of the heater. 

 C is the specific heat of the fluid. 

 

Solving for Q and replacing unmeasured temperatures and flow rates by 

their nominal values, 

 

 Q = C ( )42211 TwTwTw       (1) 

 

Neglecting heater and transmitter dynamics, 

 

 Q = Kh p       (2) 
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 T1m = T1m
0 + KT(T1-T1

0)     (3) 

  

   wm = wm
0 + Kw(w-w0)      (4) 

 

 

  Substituting into (1) for Q,T1, and w from (2),(3), and (4), gives 

 

  ))](
1

())(
1

([
00

422

0

11

0

11 mm

w

mm

Th

ww
K

wTTwTT
K

Tw
K

C
P   

   

b) Dynamic compensation is desirable because the process transfer function 

Gp= T4(s)/P(s) is different from each of the disturbance transfer functions 

Gd1= T4(s)/T1(s), and Gd2= T4(s)/w(s); especially for Gd1 which has a higher 

order. 
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 a) 

 

G K

K

Q1

Q5 H2

G

G

f t

d

v p
+

+
  

 

 

b)      A steady-state material balance for both tanks gives, 

 

0 = q1 + q2 + q4  q5 

 

Because 2q  = 4q  = 0, the above equation in deviation variables is: 

 

 0 = 1q  – 5q           (1) 

 

From the block diagram (which uses deviation variables), 
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 Q5(s) = Kv Gf Kt Q1(s) 

 

  Substituting for Q5(s) into (1) gives 
 

 0 = Q1(s)  Kv Gf(s) Kt Q1(s)  or 
 

Thus 

Gf   = 
tv KK

1
 

 

 c) To find Gd and Gp, the mass balance on tank 1 is 

 

1121
1

1 hCqq
dt

dh
A     

 

  where A1 is the cross-sectional area of tank 1. 

 

  Linearizing and setting 2q  = 0 leads to 

 

   '
2

'
'

1

1

1
1

1
1 h

h

C
q

dt

dh
A   

 

  Taking Laplace transform, 

 

1)(

)(

11

1

1

1




sRA

R

sQ

sH
     where   

1

1

1

2

C

h
R   (2) 

 

  Linearizing    q3 = C1 1h   gives 
 





1

1

3

1
h

R
q       

Thus 

11

3 1

)(

)(

RsH

sQ
                                      (3) 

 

  Mass balance on tank 2 is 
 

543
2

2 qqq
dt

dh
A   

 

Using deviation variables, setting 4q  = 0, and taking the Laplace 

transforms gives: 
 

   A2 sH2(s) = Q3(s)  Q5(s) 
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sAsQ

sH

23

2 1

)(

)(
                                                         (4) 

and 
 

          )(
1

)(

)(

25

2 sG
sAsQ

sH
p  

 

Substitution from (2), (3), and (4) yields, 
 

                               
)1(

1

)(

)(

)(

)(

)(

)(

)(

)(
)(

1121

1

1

3

3

2

1

2




sRAsAsQ

sH

sH

sQ

sQ

sH

sQ

sH
sGd  

 

Using Eq. 15-21 

 
)/1(

)1(

1

2

112

sAKK

sRAsA

GGG

G
G

vtpvt

d
f









  

 

 Gf   

1 1

1 1

1


v tK K A R s
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a) Feedforward controller design 
 

A dynamic model will be developed based on the following assumptions: 
 

1.  Perfect mixing 

2.  Isothermal operation 

3.  Constant volume 

 

Component balances: 

 

1 2

1 2

( ) ( )

( )

A
Ai A A B

B
B A B

dc
V q c c V k c k c

dt

dc
V qc V k c k c

dt

   

   

 

Linearize, 

11 12 1

21 22 2

                                (1)

                                          (2)

A
A B Ai

B
A B

dc
V a c a c b q dc

dt

dc
V a c a c b q

dt


      


    
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where: 

11 1 12 2

21 1 22 2

1 2

,         

,                                                 (3) 

,     ,     

  and  denotes the nominal steady-state value

Ai A B

A A A A

q
a k a k

V

q
a k a k

V

c c cq
d b b

V V V

c c c c

   

   


   

  

 

 

Take Laplace transforms and solve, after substituting the first equation for 

( )AC s  into the second equation. The result is: 
 

21 1 2 11

21 1

22 11 21 12

         ( ) ( ) ( ) ( ) ( )                    (4)

where:

( )
         ( )                                  (5) 

( )

         ( )
( )

           ( ) ( )( )

B p d Ai

p

d

C s G s Q s G s C s

a b b s a
G s

s

a d
G s

s

s s a s a a a

   

 







          

  and  denotes the nominal steady-state valueA A A Ac c c c  

 

 

Feedforward controller design equation (based on Eq. 5-21): 

 

( )
   ( )   

( )

d
f

t v p

G s
G s

K K G s
         (6) 

 

Substitute for Gd(s) and Gp(s): 

 

21

21 1 2 11

1
  ( )

( )
f

t v

a d
G s

a b b s a K K

  
    

    
 (7) 

 

Rearrange and substitute from (3): 

 

   ( )   
1

f

K
G s

s



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where: 

1

1 1

1 1

1

( )

( )

t v A Ai B B

B

A Ai B B

k qV
K

K K k V c c q c c k V

c V

k V c c q c c k V


   
    

     


  

 

 

b) Reverse or direct acting controller? 

From Ch. 11, we know that in order for the closed-loop system to be 

stable, 

 

KcKvKpKm > 0 

 

The available information indicates that Kv > 0 and Km > 0, assuming that 

q is still the manipulated variable. Thus Kc should have the same sign as 

Kp and we need to determine the sign of Kp. 

 

From (5) Kp can be calculated as: 

 

21 1 2 11

0
11 22 21 12

lim ( )p p
s

a b b a
K G s

a a a a


 


 

 

Substitute from (3) and simplify to get:  

 

2

1 2

2

1 2

( ) ( )1

( )

Ai A B
p

t v

k qV c c c V q Vk
K

K K q V k k

     
    

     (8) 

 

Because both the numerator and denominator terms of (8) are positive,  

Kp > 0. Thus Kc should be positive. 

 Conclusion: The feedback controller should be reverse acting. 

 

c) The advantages of using a steady-state controller are that the calculations 

are quite simple and a detailed process model is not required. The 

disadvantage is that the control system may not perform well during 

transient conditions. 

 

To decide whether or not to add dynamic compensation, we would need to 

know whether controlled variable cB is affected more rapidly, or more 

slowly, by the disturbance variable cAi than it is by the manipulated variable, 

q. If the response times are quite different, then dynamic compensation 
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could be beneficial. An unsteady-state model (or experimental data) would 

be required to resolve this issue. Even then, if tight control of cB is not 

essential, it might be decided to use the simpler design method based on the 

steady-state analysis. 
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The block diagram for the feedforward-feedback control system is shown in Fig. 

15.12. 

 

(a) Not required 

 

(b) Feedforward controllers 

  From Example 15.5,  

0.75 psi/mA,

250
( )

1 0.0833 1

IP IP

v
v

v

G K

K
G s

s s

 

 
 

 

Since the measurement time delay is now 0.1 min, it follows that: 

0.1( ) ( ) 32   s s

t m tG s G s K e e  

The process and disturbance transfer functions are: 

4

2 1

( ) 2.6 10 ( ) 0.65
,

( ) 4.71 1 ( ) 4.71 1

 
 

  

X s x X s

W s s X s s
 

   The ideal dynamic feedforward controller is given by Eq. 15-21:  

 d
f

I P t v p

G
G

K G G G
      (15-21) 

  Substituting the individual transfer functions into Eq. 15-21 gives, 

   0.1( ) 0.417 0.0833 1    s

fG s s e  (1) 

The static (or steady-state) version of the controller is simply a gain, Kf: 

 Kf  = - 0.417  (2) 
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Note that Gf(s) in (1) is physically unrealizable. In order to derive a 

physically realizable dynamic controller, the unrealizable controller in (1) 

is approximated by a lead-lag unit, in analogy with Example 15.5: 

 
0.1833 1

( ) 0.417
0.01833 1


 


f

s
G s

s
 (3) 

Equation 3 was derived from (1) by: (i) omitting the time delay term, (ii) 

adding the time delay of 0.1 min to the lead time constant, and (iii) 

introducing a small time constant of x0.1833= 0.01833 for  = 0.1. 

 

(c)  Feedback controller 

    Define G as, 

     
4

0.125 2.6 10
0.75 32

0.0833 1 4.71 1

s

IP v p

x
G G G G Gm e

s s


  

    
   

 

First, approximate G as a FOPTD model, G  using Skogestad’s half-rule 

method in Section 6.3: 

  = 4.71 + 0.5(0.0833) = 4.75 min 

   = 0.1 + 0.5(0.0833) = 0.14 min 

  Thus, 

 
0.140.208

4.75 1

se
G

s






 

   The ITAE controller settings are calculated as: 

 

0.977 0.977

0.680 0.680

0.14
0.859 0.859    134

4.752

0.14
0.874 0.674       0.642 min

4.752





 


 

 

 

   
      

   

   
      

   

c c

I

I

K K K

 

(d)   Combined feedforward-feedback control 

This control system consists of the dynamic feedforward controller of part 

(b) and the PI controller of part (c). 

The closed-loop responses to a +0.2 step change in x1 for the two feedforward controllers 

are shown in Fig. S15.9a. The dynamic feedforward controller is superior to the static 
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feedforward controller because both the maximum deviation from the set point and the 

settling time are smaller. Figure S15.9b shows that the combined feedforward-feedback 

control system provides the best control and is superior to the PI controller. A comparison 

of Figs. S15.9a and S15.9b shows that the addition of feedback control significantly 

reduces the settling time due to the very large value of Kc that can be employed because 

the time delay is very small. (Note that  = 0.14/4.75 = 0.0029.) 

 

 
Fig. S15.9a. Comparison of static and dynamic feedforward controllers for a step 

disturbance of +0.2 in x1 at t =2 min. 

 

 

 
Fig. S15.9b. Comparison of feedback and feedforward-feedback controllers for a step 

disturbance of +0.2 in x1 at t =2 min. 
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15.10 

 

  

a) For steady-state conditions, 

 

Gp=Kp,     Gd=KL,     Gv = Gm = Gt =1 

 

Using Eq. 15-21  

 

Gf = 25.0
)2)(1)(1(

5.0







ptv

d

GGG

G
 

 

b)     From Eq. 15-21, 

 

 Gf = s

s

s

ptv

d e
s

s

s

e

s

e

GGG

G 10

20

30

)160(

)195(
25.0

195

2
)1)(1(

160

5.0






























  

c)     Using Table 12.1, a PI controller is obtained from item G, 

 

95.0
)2030(

95

2

11










cp

c
K

K  

95i  

 

d) As shown in Fig.S15.10a, the dynamic controller provides significant 

improvement. 
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             Figure S15.10a.  Closed-loop response using feedforward control only. 
 e)  

   
Figure S15.10b. Closed-loop response for the feedforward-feedback control. 

 

 

f) As shown in Fig. S15.10b, the feedforward-feedback configuration with 

the dynamic controller provides the best control. 
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15.11 

 

 

Energy Balance: 

 

  )()()1()( aLLcci TTAUTTAqUTTwC
dt

dT
VC   (1) 

 

 Expanding the RHS, 

 

  )()( ci TTUATTwC
dt

dT
VC    

         )( aLLccc TTAUTUAqTUAq     (2) 

 

 Linearizing the nonlinear term, 

 

   cccc qTTqTqTq       (3) 

 

Substituting (3) into (2), subtracting the steady-state equation, and introducing 

deviation variables, 

 

  TqUAqTUATUATTwC
dt

Td
VC cci




 )(  

          TAUqUAT LLcc
      (4) 

 

 Taking the Laplace transform and assuming steady-state at t = 0 gives, 

 

  )()()()( sqTTUAsTwCsTVCs cci
  

 

         )()( sTAUqUAUAwC LLc
    (5) 

 

 Rearranging, 

 

   )()()()()( sqsGsTsGsT cpiL
     (6) 

 

 where: 

 

   ( )
1

d
d

K
G s

s



 

   
1

)(



s

K
sG

p

p  
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   d

wC
K

K
        (7) 

   
K

TTUA
K c

p

)( 
  

   
K

VC
  

   LLc AUqUAUAwCK   

 

 The ideal FF controller design equation is given by, 

 

   d
F

t v p

G
G

G G G


            (15-21) 

 

But, s

tt eKG     and  Gv=Kv      (8) 

   

 Substituting (7) and (8) gives, 

 

   
)( TTUAKK

wCe
G

cvt

s

F







     (9) 

 

 In order to have a physically realizable controller, ignore the e+s term, 

 

   
)( TTUAKK

wC
G

cvt

F



      (10) 

 

 

15.12 

 

 

Note: The disturbance transfer function is incorrect in the first printing. It should 

be: 

2

42.82

4.3 1

s
Oc e

FG s


 


 

 

(a)  The feedforward controller design equation is (15-21): 

 
4

4

3

2.82

4.2 14.3 1 20.1
4.3 10.14

(1)(1)
4.2 1

20.1 m /min

s

d
f s

v t p

f

e
G ssG

G G G se

s

G






    

 
 

 


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b)     Using Item G in Table 12.1, a PI controller is obtained from for  

    G= GvGpGm,  Assume that c =/2 = 2.1 min. 

 

I

D

1 τ θ / 2 1 4.2 2
10.8

τ θ / 2 0.14 (2.1 2)

τ  = τ+θ/2 = 4.2+2 = 6.2 min

τθ (4.2)(4)
τ 1.35min

2τ θ 2(4.2) 4

c

c

K
K

 
  

 

  
 

 

95i  

 

c) As shown in Fig.S15.12a, the FF-FB controller provides the best control 

with a small maximum deviation and no offset. The oscillation due to the 

feedback controller can be damped by using a larger value of design 

parameter, c. 
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Figure S15.12a: Controller Comparison for step change in fuel gas purity 

from 1.0 to 0.9  at t = 0. Top: full scale; Bottom: expanded scale. 

 

 

15.13 

 

 

 Steady-state balances: 

 

   3150 qqq        (1) 

 

   4230 qqq        (2) 

       0 

   3311550 qxqxqx        (3) 

 

   4422330 qxqxqx       (4) 

 

 Solve (4) for 33qx  and substitute into (3), 

        

   4422550 qxqxqx       (5) 

 

 Rearrange, 

 

 

2

5544
2

x

qxqx
q


       (6) 
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In order to derive the feedforward control law, let 

 

sp
xx 44   )(22 txx   )(55 txx    and  )(22 tqq   

 

Thus, 

 

 
2

5544

2

)()(
)(

x

tqtxqx
tq

sp 
      (7) 

 

Substitute numerical values: 

 

 
990.0

)()()3400(
)(

554

2

tqtxx
tq

sp 
     (8) 

 or 

 

 )()(01.13434)( 5542 tqtxxtq
sp
     (9) 

 

Note: If the transmitter and control valve gains are available, then an expression 

relating the feedforward controller output signal, p(t), to the measurements , x5m(t) 

and q5m(t), can be developed. 

 

Dynamic compensation: It will be required because of the extra dynamic lag 

introduced by the tank on the left hand side. The stream 5 disturbance affects x3 

while q3 does not. 

 

 

15.14 

 

 

The three xD control strategies are compared in Figs. S15.14a-b for the step 

disturbance in feed composition. The FF-FB controller is slightly superior because 

it minimizes the maximum deviation from set point. Note that the PCM feedforward 

controller design ignores the two time delays, which are quite different. Thus, the 

feedforward controller overcorrects and is not effective as it could be.  
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Fig. S15.14a. Comparison of feedback control and no control for a step change in feed 

composition from 0.5 to 0.55 at t = 0. 

 

 

 

 
Fig. S15.14b. Comparison of feedforward and feedforward-feedback control for a step 

change in feed composition from 0.5 to 0.55 at t = 0. 
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Chapter 16 
 

 

 

16.1 

 

The difference between systems A and B lies in the dynamic lag in the 

measurement elements Gm1 (primary loop) and Gm2(secondary loop). With a faster 

measurement device in A, better control action is achieved. In addition, for a 

cascade control system to function properly, the response of the secondary control 

loop should be faster than the primary loop. Hence System A should be faster and 

yield better closed-loop performance than B. 

 

Because Gm2 in system B has an appreciable lag, cascade control has the potential 

to improve the overall closed-loop performance more than for system A. Little 

improvement in system A can be achieved by cascade control versus conventional 

feedback. 

 

Comparisons are shown in Figs. S16.1a/b. PI controllers are used in the outer 

loop. The PI controllers for both System A and System B are designed based on 

Table 12.1 ( 3c   ). P controllers are used in the inner loops. Because of 

different dynamics the proportional controller gain of System B is about one-

fourth as large as the controller gain of System A 

 

System A:   Kc2 = 1      Kc1=0.5       I=15 

System B:   Kc2 = 0.25            Kc1=2.5       I=15 

 
Figure S16.1a  System A. Comparison of D2 responses (D2=1/s) for cascade control and 

conventional PI control. 
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In comparing the two figures, it appears that the standard feedback results are 

essentially the same, but the cascade response for system A is much faster and has 

much less absolute error than for the cascade control of B 
 

 

 
Figure S16.1b  System B .Comparison of D2 responses (D2=1/s) for cascade control and 

conventional PI control. 
 

 

 

 

 

Figure S16.1c   Block diagram for System A 
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  Figure S16.1d   Block diagram for System B 
 

 

 

16.2 

 

 

a) The transfer function between Y1 and D1 is 

 

11

1 2
1 1

2 2

1
1

d

c v
c p m

c v m

GY

D G G
G G G

G G G


 

  
 

 

 

and that between Y1 and D2 is 

 

21

2 2 2 2 1 11

p d

c v m c v m c p

G GY

D G G G G G G G G


 
 

 

using   
1

5




s
Gv  ,             2 1dG   ,           

1

1

3 1
dG

s



  , 

 



16-4 

 
)14)(12(

4




ss
G p   , 05.01 mG   ,    2.02 mG    

For Gc1 = Kc1 and Gc2 = Kc2, we obtain 

 
3 2

2 2 21

4 3 2

1 2 2 1 2 2 1

8 (14 8 ) (7 6 ) 1

24 (50 24 ) [10 (9 3 )] (35 26 ) (1 ) 1

c c c

c c c c c c

s K s K s KY

D s K s K K s K s K K

     


         
  

   
1

3 2

2 2 2 2 1

4( 1)

8 (14 8 ) (7 6 ) (1 ) 1c c c c

Y s

D s K s K s K K




      
 

 

 

The figures below show the step load responses for Kc1=43.3 and for 

Kc2=25. Note that both responses are stable. You should recall that the 

critical gain for Kc2=5 is Kc1=43.3. Increasing Kc2 stabilizes the controller, 

as is predicted. 
 

   
Figure S16.2a  Responses for unit load change in D1 (left) and D2 (right) 

 

 

b) The characteristic equation for this system is  

 

1+Gc2GvGm2+Gc2GvGm1Gc1Gp = 0     (1) 

 

Let Gc1=Kc2 and Gc2=Kc2. Then, substituting all the transfer functions into 

(1), we obtain  

 
3 2

2 2 2 18 (14 8 ) (7 6 ) (1 ) 1 0c c c cs K s K s K K          (2) 

 

Now we can use the direct substitution: 

 3 2

2 2 2 18 7 6 (14 8 ) (1 ) 1 0c c c cK j K K K              (3) 

 

  
 

   

3

2

2

2 2 1

: 8 7 6 0

14 8 1 1 0

c

c c c

j K

K K K

 



   

     
  

Hence, for normal (positive) values of Kc1 and Kc2, 
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Kc2 

Kc2 Kc1,u 

1 33.75 

2 34.13 

3 38.25 

4 43.31 

5 48.75 

6 54.38 

7 60.11 

8 65.91 

9 71.75 

10 77.63 

11 83.52 

12 89.44 

13 95.37 

14 101.30 

15 107.25 

16 113.20 

17 119.16 

18 125.13 

19 131.09 

20 137.06 
 

2

2 2
1,

2

24 66 45

4

c c
c u

c

K K
K

K

 
  

The results are shown in the table and figure below. Note the nearly linear 

variation of Kc1 ultimate with Kc2. This is because the right hand side is 

very nearly 6 Kc2+16.5. For larger values of Kc2, the stability margin on 

Kc1 is higher. There don’t appear to be any nonlinear effects of Kc2 on Kc1, 

especially at high Kc2. 

 

There is no theoretical upper limit for Kc2, except that large values may 

cause the valve to saturate for small set-point or load changes. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S16.2b  Effect of Kc2  on the critical gain of Kc1 
c) With integral action in the inner loop, 

 

11 cc KG   











s
Gc

5

1
152  

 

Substitution of all the transfer functions into the characteristic equation 

yields 

 

  1)05.0(
1

5

5

1
15)2.0(

1

5

5

1
151 cK

ssss 



















  

 

  0
)12)(14(

4


 ss
 

 

  Rearrangement gives 
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01)512(45548 11

234  cc KsKsss  

 

Now we can use the direct substitution: 

 3 4 2

1 154 12 5 8 45 1 0c cK j K              

  
 3

1

4 2

1

: 54 12 5 0

8 45 1 0

c

c

j K

K

 

 

   

   
  

Solve the equations above, and we obtain: 

1, 44.2c uK   

 

The ultimate 1cK  is 44.2, which is close to the result as for proportional 

only control of the secondary loop. 

 

With integral action in the outer loop only, 

 











s
KG cc

5

1
111  

52 cG  

 

Substituting the transfer functions into the characteristic equation. 

 

0
)12)(14(

4

5

1
1)05.0(

1

5
5)2.0(

1

5
51 1 


















sss
K

ss
c  

 

 0)56(37548 11

234  cc KsKsss  

 

Now we can use the direct substitution: 

 3 4 2

1 154 6 5 8 37 0c cK j K             

 3

1

4 2

1

: 54 6 5 0

8 37 0

c

c

j K

K

 

 

   

  
 

Solve the equations above, and we obtain: 

1, 34.66c uK   

 

Hence, Kc1<34.66 is the limiting constraint. Note that due to integral 

action in the primary loop, the ultimate controller gain is reduced. 

 

 

Calculation of offset: 

 

For  1 1

1

1
1c c

I

G K
s

 
  

 
        ,           22 cc KG        ,     2( )I    
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  1 2 21

1

2 2 2 1 1

1

(1 )

1
1 1

d c v m

c v m c v m c p

I

G K G GY

D
K G G K G G K G

s




 
   

 

 

  1

1

( 0) 0
Y

s
D

   

 

Since Gc1 contains integral action, a step-change in D1 does not produce an 

offset in Y1. 

 

21

2

2 2 2 1 1

1

1
1 1

p d

c v m c v m c p

I

G GY

D
K G G K G G K G

s


 

   
 

 

1

2

( 0) 0
Y

s
D

   

 

Thus, for the same reason as before, a step-change in D2 does not produce 

an offset in  Y1. 

 

For  11 cc KG   (ie. 1 )I          ,           2 2

2

1
1c c

I

G K
s

 
  

 
          

  

1 2 2

21

1

2 2 2 1 1

2 2

1
(1 1 )

1 1
1 1 1

d c v m

I

c v m c v m c p

I I

G K G G
sY

D
K G G K G G K G

s s

 
  

 
   

      
    

 

1

1

( 0) 0
Y

s
D

   

 

Therefore, when there is no integral action in the outer loop, a primary 

disturbance produces an offset. 

 

Thus, there is no offset for a step-change in the secondary disturbance. 

. 

 

 

 

  
21

2

2 2 2 1 1

2 2

1 1
1 1 1

p d

c v m c v m c p

I I

G GY

D
K G G K G G K G

s s


   

      
    
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  1

2

( 0) 0
Y

s
D

   

 

  Thus, there is no offset for a step-change in the secondary disturbance. 

 

 

16.3 

 

 

For the inner controller (Slave controller), IMC tuning rules are used 

 

 
2 3

2 2

1 (2 1)(5 1)( 1)
*

( 1)
c

c

s s s
G

G s

  
 

 
 

 

Closed-loop responses for different values of c2 are shown below. A c2 value of 

3 yields a good response. 

 

  

For the Master controller, 

 

 



1

1

1
*

G
Gc      where    1 3

1

(2 1)(5 1)( 1) 1

( 1) (10 1)c

s s s
G

s s

   


  
 

 

This higher-order transfer function is approximated by first order plus time delay 

using a step test: 

 
Figure S16.3a  Reaction curve for the higher order transfer function 

 

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

O
u
tp

u
t



16-9 

 Hence 
)132.15(

38.0

1







s

e
G

s

  

 

From Table 12.1:  (PI controller, Case G):   
1

15.32

0.38
c

c

K 
 

   and    15.32i   

Closed-loop responses are shown for different values of c1. A c1 value of 7  

yields a good response. 

  
 Figure S16.3b Closed-loop response for c2  Figure S16.3c Closed-loop response for c1 

  

Hence for the master controller,  Kc = 2.07     and       I = 15.32 

 

16.4 

 

 
(a) The single control loop configuration is shown as in Figure S16.4a: 

 

 
 

Figure S16.4a Single control loop configuration 

 

Assuming 0spT  , the closed-loop transfer function for temperature output is shown as 

follows: 
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2 1

1
1

1 1 1
1 1 1 1 1 1

in in

c v p

d p dI

sp P T

c T v p c T v p c T v p

I I I

K G G
G G Gs

T T D D

K G G G K G G G K G G G
s s s


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 
 

   
     

          
     

  

The characteristic equation of above equation is: 

1
1 1 0c T v p

I

K G G G
s

 
   

 
 

Or : 

 4 3 215 23 9 1 5 0c cs s s K s K       

Set s j  : 

  3 4 223 1 15 9 5 0c cK j K           

Re: 
4 215 9 5 0cK     

Im:  323 1 0cK      

0.08cmK   

To have a stable system, we have: 

0 0.08cK    

(b). The cascade control loop configuration is shown as in Figure S16.4b: 

 
Figure S16.4b Cascade control loop configuration 

 

(c)  From (a) we can derive the closed-loop transfer function with the standard PI 

controller for a disturbance in steam pressure: 
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 

 
2

1
1 1in

d p

P

c T v p

I

G GT s

D s
K G G G

s


 

  
 

 

Assuming 0
isp TT D  , based on Figure S16.4b, we can derive the closed-loop 

transfer function with the cascade controller for a disturbance in steam pressure: 

 

 
2

1 2 21
in

d p

P c c T v p m c v

G GT s

D s G G G G G G G G


 
 

Set 1 23; 2; 5c c c IK K K     in a Simulink diagram, and we obtain results 

shown in Figure S16.4c: the cascade control system improves stability 

characteristics by dampening aggressive control responses. 
 

 
Figure S16.4c Comparison of closed-loop response with PI controller and cascade 

controller 
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16.5 

 

  

a) The T2 controller (TC-2) adjusts the set-point, T1sp, of the T1 controller (TC-

1). Its output signal is added to the output of the feedforward controller.  

 

Q
2

T
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R
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Feedforward

controller
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Q
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T
2

w

T
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TC
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T
Om

T
O

w

+
+

V
1

T
1m

S

C

R

 
    
   Figure S16.5a  Schematic diagram for the control system 

 

b) This is a cascade control system with a feedforward controller being used 

to help control T1. Note that T1 is an intermediate variable rather than a 

disturbance variable since it is affected by V1. 

c) Block diagram: 
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 Figure S16.5b  Block diagram for the control system in Exercise 16.5. 

 

 

 

16.6 

 

 

 (a) 

FF control can be more beneficial in treating D2. D1 can be compensated by 

feedback loop right after the sensor Gm detected. D2 needs to go through Gp1 first 

where significant time delay may exist before being measured and corrected. 

Thus, FF control on D2 can cancel out the disturbance much faster.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 
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Fig. S16.6. Block diagram of a feedforward control system. 

 

 

(c) 

Cold oil temperature sensor is required. 

 

 

 

16.7 

 

 

Using MATLAB-Simulink, the block diagram for the closed-loop system is 

shown below.  
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    Figure S16.7a  Block diagram for Smith predictor 

 

where the block             represents the time-delay term e
-s

. 

 

 

The closed-loop response for unit set-point and disturbance changes are 

shown below. Consider a PI controller designed by using Table 12.1(Case 

A) with c = 3  and set Gd = Gp. Note that no offset occurs, 

 
   Figure S16.7b  Closed-loop response for setpoint and disturbance changes. 
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16.8 

 

  The block diagram for the closed-loop system is 

 

 

 
Figure S16.8  Block diagram for the closed-loop system 

  

  where  
1

1 1

s

pI
c c ps

I

K es
G K and G

s e s





  
  

     
 

 a)  

  

1

1 1

1 1
1

1 1

s

I
c p s

c p I

s
sp c p I

c p s

I

s e
K K

G G s e sY

Y G G s e
K K

s e s









  
 
      

   
  

     

 

Since    
p

c
K

K
1

      and      I =  

  
1

1
1

1

s

s s
I

s ss
sp I

s

I

e

s eY e

Y s e ee

s e



 

 



 
 
    

    
  

   

 

 

  Hence dead-time is eliminated from characteristic equation: 

 

  
1

s

sp I

Y e

Y s




 

 

 

 

b) The closed-loop response will not exhibit overshoot, because it is a first 

order plus dead-time transfer function. 
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16.9 

For a first-order process with time delay, use of a Smith predictor and 

proportional control should make the process behave like a first-order 

system, i.e., no oscillation. In fact, if the model parameters are accurately 

known, the controller gain can be as large as we want, and no oscillations 

will occur. 

Appelpolscher has verified that the process is linear, however it may not 

be truly first-order. If it were second-order (plus time delay), proportional 

control would yield oscillations for a well-tuned system. Similarly, if there 

are errors in the model parameters used to design the controller even when 

the actual process is first-order, oscillations can occur. 
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a) Analyzing the block diagram of the Smith predictor 

1 (1 )

s

c p

s s
sp c p c p

G G eY

Y G G e G G e



 




   
 

        
1

s

c p

s s

c p c p c p

G G e

G G G G e G G e



 




    
 

Note that the last two terms of the denominator can when pp GG 
~

 and  

    

The characteristic equation is 

1 0s s

c p c p c pG G G G e G G e         

 

b)       The closed-loop responses to step set-point changes are shown below for 

 the various cases. 
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Figure S16.10a   Simulink diagram block; base case 

 

     

Figure S16.10b   Base case           Figure S16.10c     Kp = 2.4 

 

       

Figure S16.10d    Kp = 1.6              Figure S16.10e    = 6 

 

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

O
u
tp

u
t

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time

O
u
tp

u
t

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

O
u
tp

u
t

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time

O
u
tp

u
t



16-19 

       

Figure S16.10f  = 4      Figure S16.10g     =2.4 

  

  Figure S16.10h      = 1.6 

It is immediately evident that errors in time-delay estimation are the most 

serious. This is because the terms in the characteristic equation which 

contain dead-time do not cancel, and cause instability at high controller 

gains. 

When the actual process time constant is smaller than the model time 

constant, the closed–loop system may become unstable. In our case, the 

error is not large enough to cause instability, but the response is more 

oscillatory than for the base (perfect model) case. The same is true if the 

actual process gain is larger than that of the model. If the actual process 

has a larger time constant, or smaller gain than the model, there is no 

significant degradation in closed loop performance (for the magnitude of 

the error,  20% considered here). Note that in all the above simulations, 

the model is considered to be  
15

2 2





s

e s

 and the actual process parameters 

have been assumed to vary by  20% of the model parameter values. 

 

c)  The proportional controller was tuned so as to obtain a gain margin of 2.0.   

This resulted in Kc = 2.3. The responses for the various cases are shown 

below 
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        Base case        Kp = 3 

      

           Kp = 1          = 1 

         

           = 2.5                    = 3 
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   = 1 

  

 Nyquist plots were prepared for different values of Kp,  and , and 

 checked to see if the stability criterion was satisfied. The stability regions 

 when the three parameters are varied one to time are. 

Kp  4.1    ( = 5   ,     = 2) 

     2.4     (Kp=2  ,    = 2) 

     0.1   and 1.8    2.2    (Kp = 2    ,     = 5)  

16.11 

 

 

 From Eq. 16-24, 

 

   
  1 1

1

s

d c

c

G G G eY

D G G

 



 



 

 

 that is, 

        

 3 32 2
1 1

2
1

s sc c I

I

c c I

I

K K s
e e

s s sY

K K sD

s s

   
  

 
 




 

 

 Using the final value theorem for a step change in D: 
 

   )(lim)(lim
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  
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00

lim)(lim



ss

ssY

 3 32 2
1 1

1

2
1

s sc c I

I

c c I

I

K K s
e e

s s s
s

K K s s

s s

   
  

 
 




 

 

         
0

lim



s

 3 32 2
( ) 1

2
( )

s s

I c c I

I c c I

e s K K s e
s s

s K K s
s

  
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 
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 Multiplying both numerator and denominator by s
2
, 

 

        
0

lim



s

  3 2 3

3

2 ( )2 1

( )2

s s

I c c I

I c c I

e s K K s e

s K K s s

     

   
 

 

 Applying L'Hopital's rule: 

 

     
0

lim



s

   
  3 2 3

2

6 ( )2 1

3 2( 2 )

s s

I c c I

I c c I

e s K K s e

s K K s

      
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+ 
3 3 3 3

2

2 (2 6 2 2 6 )

3 2( 2 )

s s s s

I c c I c I c I

I c c I

e s K e K K e K se

s K K s

          

   
  =  6 

Therefore  

 

)(lim)(lim
0

ssYty
st 

  = 6 

 

 and the PI control will not eliminate offset. 
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For a Smith predictor, we have the following system 
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      Figure S16.12.   Smith Predictor diagram block 

where the process model is Gp(s) = Q(s) e
-s

 

For this system, 

pc
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sp GG
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1
 

where Gc’ is the transfer function for the system in the dotted box.  
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c
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Simplification gives 

( )
1

s
sc

sp c

G QeY
P s e

Y G Q


 


 

where   ( )
1

c

c

G Q
P s

G Q



 

If P(s) is the desired system performance (after the time delay has elapsed) 

under feedback control, then we can solve for Gc in terms of P(s). 

 

 
))(1)((

)(

sPsQ

sP
Gc


  



16-24 

 

 The IMC controller requires that we define 

 sG e

   

 )(
~

sQG    (the invertible part of Gp) 

  Let the filter for the controller be  f(s) = 
1

1F s 
 

  Therefore, the controller is  

 
)(

)(
)(

~ 1

sQ

sf
sfGGc 



  

The closed-loop transfer function is 

 

 
1

s

c p

sp F

Y e
G G G f

Y s



  
 

 

 

Note that this is the same closed-loop form as analyzed in part (a), which 

led to a Smith Predictor type of controller. Hence, the IMC design also 

provides time-delay compensation. 
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Referring to Example 4.8, if flow rate q and inlet temperature Ti are constant, then 

(4-88) is the starting point for the derivation: 

 22 21 2A c( s a )T ( s ) a C ( s ) b T ( s )        (4-88) 

Rearranging gives, 

 22 2

21 21
A c

s a b
C ( s ) T ( s ) T ( s )

a a


     
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Replacing AC ( s )  by its estimate, AĈ ( s ) , provides an inferential estimate of exit 

composition from T and Tc.  However, the first term on the right hand side is not 

realizable, consequently, a small time constant  is added to the denominator to 

provide a lead-lag unit that is physically realable:  

 22 2

21 21

1

1
A c

s a b
Ĉ ( s ) T ( s ) T ( s )

a s a

 
    

 
 

Thus, inferential control of concentration based on T and Tc temperature is 

feasible. If q and Ti measurements were available, these variables could be 

included in the linearized model of Example 4.8. Then, in an analogous manner, 

CA can be inferred from the available measurements: T, Tc, q and Ti. 
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One possible solution would be to use a split range valve to handle the 100 p 

200 and higher pressure ranges. Moreover, a high-gain controller with set-point = 

200 psi can be used for the vent valve. This valve would not open while the 

pressure is less than 200 psi, which is similar to how a selector operates. 

Stephanopoulos (Chemical Process Control, Prentice-Hall, 1989) has described 

many applications for this so-called split-range control. A typical configuration 

consists of 1 controller and 2 final control elements or valves. 
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  Figure S16.14.  Process instrumentation diagram  

 

 

16.15 

The amounts of air and fuel are changed in response to the steam pressure. 

If the steam pressure is too low, a signal is sent to increase both air and 

fuel flowrates, which in turn increases the heat transfer to the steam. 

Selectors are used to prevent the possibility of explosions (low air-fuel 

ratio). If the air flowrate is too low, the low selector uses that 

measurement as the set-point for the fuel flow rate controller. If the fuel 

flowrate is too high, its measurement is selected by the high selector as the 

set-point for the air flow controller. This also protects against dynamic 

lags in the set-point response. 
 
16.16 

 

        

Figure S16.16.  Control condensate temperature in a reflux drum 
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16.17  

 

 

  Supposing a first-order plus dead time process, the closed-loop transfer  

  function is  

    ( )
1

c p
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c p

G G
G s

G G
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
      

1
1

( 1)
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1
1

1
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s

D

I

c p

p

CL

s

D

I

c p

p

s e
s

K K
s

G s

s e
s

K K
s





 
   
 

 


 
   
 
 

 

Notice that Kc and Kp always appear together as a product. Hence, if we 

want the process to maintain a specified performance (stability, decay 

ratio specification, etc.), we should adjust Kc such that it changes inversely 

with Kp; as a result, the product KcKp is kept constant. Also note, that since 

there is a time delay, we should adjust Kc based upon the future estimate 

of Kp: 

  ( )
ˆ ( )

ˆ ( )

c p c p

c

p

K K K K
K t

bK t a
M t

 
  

 

 

  where  ˆ ( )pK t    is an estimate of Kp   time units into the future. 
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This is an application where self-tuning control would be beneficial. In order to 

regulate the exit composition, the manipulated variable (flowrate) must be 

adjusted. Therefore, a transfer function model relating flowrate to exit 

composition is needed. The model parameters will change as the catalyst 

deactivates, so some method of updating the model (e.g., periodic step tests) will 

have to be derived. The average temperature can be monitored to determine a 

significant change in activation has occurred, thus indicating the need to update 

the model. 
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16.19 

 

 a) 
1

1 1

c p

c p c

G G

G G s

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1

1 1 1

1
1

1

c
c

p c
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c

s
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G s
G

s

 
  

 
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  

 

  Substituting for Gp 

  
2

1 2 1 2( ) 11
( )c

c p

s s
G s

s K

      



 1 2 1 2

1 1
( )

p c

s
K s

 
          

 

Thus, the PID controller tuning constants are  

1 2( )
c

p c

K
K

  



  

1 2I      

1 2

1 2

D

 
 

  
 

  (See Eq. 12-14 for verification)   

b)  For 1 = 3     and   2 = 5  and  c = 1.5, we have  

  Kc = 5.333    I = 8.0   and D = 1.875 

Using this PID controller, the closed-loop response will be first order 

when the process model is known accurately. The closed-loop response to 

a unit step-change in the set-point when the model is known exactly is 

shown above. It is assumed that c was chosen such that the closed loop 

response is reasonable, and the manipulated variable does not violate any 

bounds that are imposed. An approximate derivative action is used by 

Simulink-MATLAB, namely 
1

Ds

s




when =0.01 
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    Figure S16.19a.  Simulink block diagram. 

 

             

            Figure S16.19b.  Output (no model error)   Figure S16.19c. Manipulated variable (no 

model error) 

              

 Figure S16.19d.  Output (Kp = 2)           Figure S16.19e.  Manipulated variable 

  (Kp = 2) 
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Figure S16.19f.  Output (Kp = 0.5)                 Figure S16.19g.   Manipulated variable 

(Kp =0.5) 

             

 Figure S16.19h.  Output (2 = 10)          Figure S16.19i.  Manipulated variable 

    (2 = 10) 

              

 Figure S16.9 j. Output (2 = 1)                    Figure S16.9 k. Manipulated variable 

(2 = 1) 

 
(1) The closed-loop response when the actual Kp is 2.0 is shown above. The 

controlled variable reaches its set-point much faster than for the base case 

(exact model), but the manipulated variable assumes values that are more 

negative (for some period of time) than the base case. This may violate 

some bounds. 
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(2) When Kp = 0.5, the response is much slower. In fact, the closed-loop time 

constant seems to be about 3.0 instead of 1.5. There do not seem to be any 

problems with the manipulated variable. 
 

 
(3) If  (2 = 10), the closed-loop response is no longer first-order. The settling 

time is much longer than for the base case. The manipulated variable does 

not seem to violate any bounds. 

 

(4) Both the drawbacks seen above are observed when 2 = 1. The settling 

time is much longer than for the base case. Also the rapid initial increase 

in the controlled variable means that the manipulated variable drops off 

sharply, and is in danger of violating a lower bound. 
 

 
 

   

16.20 

 

Based on discussions in Chapter 12, increasing the gain of a controller makes it 

more oscillatory, increasing the overshoot (peak error) as well as the decay ratio. 

Therefore, if the quarter-decay ratio is a goal for the closed-loop response (e.g., 

Ziegler-Nichols tuning), then the rule proposed by Appelpolscher should be 

satisfactory from a qualitative point of view. However, if the controller gain is 

increased, the settling time is also decreased, as is the period of oscillation. 

Integral action influences the response characteristics as well. In general, a 

decrease in I gives comparable results to an increase in Kc. So, Kc can be used to 

influence the peak error or decay ratio, while I can be used to speed up the 

settling time (a decrease in I decreases the settling time). See Chapter 8 for 

typical response for varying Kc and I. 

 

 

16.21 
 

 SELECTIVE CONTROL 

Selectors are quite often used in forced draft combustion control system to 

prevent an imbalance between air flow and fuel flow, which could result in unsafe 

operating conditions. 

For this case, a flow controller adjusts the air flowrate in the heater. Its set-point is 

determined by the High Selector, which chooses the higher of the two input 

signals: 

 .- Signal from the fuel gas flowrate transmitter (when this is too high) 
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 .- Signal from the outlet temperature control system. 

Similarly, if the air flow rate is too low, its measurement is selected by the low 

selector as the set-point for the fuel-flow rate. 

CASCADE CONTROLLER 

The outlet temperature control system can be considered the master controller that 

adjusts the set-point of the fuel/air control system (slave controller). If a 

disturbance in fuel or air flow rate exists, the slave control system will act very 

quickly to hold them at their set-points. 

FEED-FORWARD CONTROL 

The feedforward control scheme in the heater provides better control of the heater 

outlet temperature. The feed flowrate and temperature are measured and sent to 

the feedback control system in the outflow. Hence corrective action is taken 

before they upset the process. The outputs of the feedforward and feedback 

controller are added together and the combined signal is sent to the fuel/air 

control system. 
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 ALTERNATIVE A. 

 
Since the control valves are "air to close", each Kv is positive (cf. Chapter 

9). Consequently, each controller must be reverse acting (Kc>0) for the 

flow control loop to function properly. 

 

Two alternative control strategies are considered: 

 

Method 1: use a default feed flowrate when Pcc > 80% 

 

 Let :  Pcc = output signal from the composition controller (%) 

  spF
~

(internal) set point for the feed flow controller (%) 

 

 Control strategy: 
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  If  Pcc > 80%  , spF
~

lowspF ,
~

 

 

 where lowspF ,
~

 is a specified default flow rate that is lower than the normal 

 value, nomspF
~

. 

  Method 2: Reduce the feed flow when Pcc > 80% 
 

  Control strategy: 

 

  If  Pcc < 80%,  spF
~

nomspF
~

   K(Pcc – 80%) 

 

 where K is a tuning parameter (K > 0) 

 

 Implementation: 

 Note: A check should be made to ensure that   0  spF
~

  100% 

  

ALTERNATIVE B.-  

  A selective control system is proposed: 

HS

Pcc

80 % F
nom

-
+ K -

+

80 %

~

F
sp

~
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    Figure S16.22.  Proposed selective control system 

Both control valves are A-O and transmitters are “direct acting”, so the controller 

have to be “reverse acting”. 

When the output concentration decreases, the controller output increases. Hence 

this signal cannot be sent directly to the feed valve (it would open the valve). 

Using a high selector that chooses the higher of these signals can solve the 

problem 
 

    .- Flow transmitter 

    .- Output concentration controller 

Therefore when the signal from the output controller exceeds 80%, the selector 

holds it and sends it to the flow controller, so that feed flow rate is reduced. 
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16.23 

 

ALTERNATIVE A.- 

Time delay.-  Use time delay compensation, e.g., Smith Predictor 

 

Variable waste concentration.-  Tank pH changes occurs due to this 

unpredictable changes. Process gain changes also (c,f. literature curve for strong 

acid-strong base) 

 

Variable waste flow rate.-  Use FF control or ratio qbase to qwaste. 

 

Measure qbase .-  This suggests you may want to use cascade control to 

compensate for upstream pressure changes, etc 

ALTERNATIVE B.- 

Several advanced control strategies could provide improved process control. A 

selective control system is commonly used to control pH in wastewater treatment 

.The proposed system is shown below (pH T = pH sensor; pH C = pH controller) 

  Figure S16.23.  Proposed selective control system. 

where S represents a selector ( <  or   >, to be determined) 

In this scheme, several manipulated variables are used to control a single process 

variable. When the pH is too high or too low, a signal is sent to the selectors in 

either the waste stream or the base stream flowrate controllers. The exactly 

configuration of the system depends on the transmitter, controller and valve gains.  

In addition, a Smith Predictor for the pH controller is proposed due to the large 

time delay. There would be other possibilities for this process such as an adaptive 

control system or a cascade control system. However the scheme above may be 

good enough 

 Necessary information: 
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16.25 

 

.- Descriptions of measurement devices, valves and controllers; direct 

action or reverse action. 

.- Model of the process in order to implement the Smith Predictor  

 

 

16.24 

 

 

For setpoint change, the closed-loop transfer function with an integral controller 

and steady state process (Gp = Kp) is:  

 

  

1
1

11 1 1

P
C P I P

sp IC P I PP
I P

K
G G s KY

Y G G s KK ss K


   

   

 

Hence a first order response is obtained and satisfactory control can be achieved. 

 

 

For disturbance change (Gd = Gp): 

 

( )

11 1 1

d P P I I

IC P I PP
I P

G K K s sY
D G G s KK ss K

 
   

   

 

 

Therefore a first order response is also obtained for disturbance change. 

 

 

 

MV: insulin pump flow rate 

CV: body sugar level 

DV: food intake (sugar or glucose) 

 

The standard PID control algorithm could be used to provide a basic control level.  

However, it may be subject to saturation in order to keep the blood glucose within 

the stated bounds.  Feedforward control could be used if the effect of the meal 

intake (disturbance) can be quantified according to its glucose level.  Then the 

insulin injection can anticipate the effect of the meal by taking preventative 

actions before the change in blood glucose is sensed.  A pitfall of a FF/FB control 

could be that high insulin pump flow rates may be required in order to keep the 

blood glucose within the desired range, and the pump flow rate may saturate.  

Another enhancement would be adaptive control, which would allow the 

controller to be automatically tuned for a given human in order to obtain a better 

response (every person’s body chemistry is different).  A drawback of adaptive 
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16.26 

 

16.27 

 

control is that it may be too aggressive and cause rapid changes in blood glucose.  

A less aggressive adaptive controller could employ gain scheduling, where a 

higher controller gain is used when the blood glucose level goes too high or too 

low. 

 

 

In the event that the feed temperature is too high, the slave controller will sense 

the increase in temperature and increase the signal to the coolant valve, which will 

increase the flow of coolant to reduce the temperature of the feed.  The master 

controller will sense a slight increase in temperature in the reactor and will 

increase the set point of the slave controller, which will in turn increase the flow 

rate of the coolant a second time.  In this case, both the slave and the master 

controller work together to counteract the disturbance.  As a result, the 

disturbance is dealt with quickly and the reactor temperature is only affected 

slightly. 

 In the event that the feed flow rate is too high, the temperature of the feed exiting 

the heat exchanger will increase.  The slave controller will sense this and will act 

as above by increasing the coolant flow rate.  The increased flow rate of higher 

temperature feed in the reactor will most likely increase the reactor temperature, 

and the master controller will alter the set point of the slave controller 

accordingly.  Again the master controller and slave controller work together 

to counteract the disturbance. 
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Figure S16.7a Cascade control of an exothermic chemical reactor 

 

 

 
Figure S16.7b Block diagram of Cascade control of an exothermic chemical reactor 

1D
 : Reactor temperature 

2D
 : Cooling water 

3D
 :  Temperature of the reactor wall 

The control system measures the temperature of the reactor wall to gather information on 

the temperature gradients in the tank contents, compares to a set point, and adjusts the 

cooling water makeup. The principal advantage of the new cascade control strategy is 

that the reactor wall temperature is located close to a potential disturbance of temperature 
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16.28 

 

gradients in the tank contents and its associated feedback loop can react quickly, thus 

improving the closed-loop response.   
 

 

 

For a one-input-two-output linear algebraic model shown in Eqs. (1)~(2): 

1 12 1 1y K u b           (1) 

2 21 2 2y K u b           (2) 

The output 1y  can reach the set-point 
1

spy  by tuning 1u  based on Eq. (3):  

1 1
1

12

spy b
u

K


  (3) 

But for output 2y , it is determined by combining Eqs. (2) and (3), and cannot be 

specified arbitrarily leading to offset. 
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Chapter 17 
 

 

 

 

 17.1 

 
 

 Using Eq. 17-9, the filtered values of xD are shown in Table S17.1 

 
 

time(min)  0.8 0.5 

0 0 0 0 

1 0.495 0.396 0.248 

2 0.815 0.731 0.531 

3 1.374 1.245 0.953 

4 0.681 0.794 0.817 

5 1.889 1.670 1.353 

6 2.078 1.996 1.715 

7 2.668 2.534 2.192 

8 2.533 2.533 2.362 

9 2.908 2.833 2.635 

10 3.351 3.247 2.993 

11 3.336 3.318 3.165 

12 3.564 3.515 3.364 

13 3.419 3.438 3.392 

14 3.917 3.821 3.654 

15 3.884 3.871 3.769 

16 3.871 3.871 3.820 

17 3.924 3.913 3.872 

18 4.300 4.223 4.086 

19 4.252 4.246 4.169 

20 4.409 4.376 4.289 

 

Table S17.1.  Unfiltered and filtered data. 

To obtain the analytical solution for xD, set 
s

sF
1

)(   in the given transfer 

function, so that 

 
5 5 1 1

( ) ( ) 5
10 1 (10 1) 1 10

DX s F s
s s s s s

 
    

   
 

Taking inverse Laplace transform 

 

 xD(t) = 5 (1  e
-t/10

) 

 

A graphical comparison is shown in Fig. S17.1 

Solution Manual for Process Dynamics and Control, 4th edition 

Copyright © 2016 by Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp, 

and Francis J. Doyle III 
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Fig S17.1.  Graphical comparison for noisy data, filtered data and analytical     

                  solution. 

 

As  decreases, the filtered data give a smoother curve compared to the 

no-filter (=1) case, but this noise reduction is traded off with an increase 

in the deviation of the curve from the analytical solution. 

 

 

 17.2 

 

 

 The exponential filter output in Eq. 17-9 is 

 

   ( ) ( ) (1 ) ( 1)F m Fy k y k y k         (1) 

 

 Replacing k by k-1 in Eq. 1 gives 

  

   ( 1) ( 1) (1 ) ( 2)F m Fy k y k y k          (2) 

 

 Substituting for ( 1)Fy k   from (2) into (1) gives  

 

   2( ) ( ) (1 ) ( 1) (1 ) ( 2)F m m Fy k y k y k y k          

 

 Successive substitution of ( 2)Fy k  , ( 3)Fy k   ,… gives the final form 
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0
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1
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time (min)

noisy data
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alpha = 0.8

analytical solution

 X D 
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1

0

( ) (1 ) ( ) (1 ) (0)
k

i k

F m F

i

y k y k i y




       

 17.3 

 

 

Table S17.3 lists the unfiltered output and, from Eq. 17-9, the filtered data for 

sampling periods of 1.0 and 0.1. Notice that for sampling period of 0.1, the 

unfiltered and filtered outputs were obtained at 0.1 time increments, but they are 

reported only at intervals of 1.0 to preserve conciseness and facilitate comparison. 

 

The results show that for each value of t, the data become smoother as  

decreases, but at the expense of lagging behind the mean output y(t)=t. Moreover, 

lower sampling period improves filtering by giving smoother data and less lagg 

for the same value of . 

 

   
        t=1     t=0.1 

t =1  =0.8 =0.5 =0.2  =0.8 =0.5 =0.2 

0 0  0 0 0  0 0 0 

1 1.421  1.137 0.710 0.284  1.381 1.261 0.877 

2 1.622  1.525 1.166 0.552  1.636 1.678 1.647 

3 3.206  2.870 2.186 1.083  3.227 3.200 2.779 

4 3.856  3.659 3.021 1.637  3.916 3.973 3.684 

5 4.934  4.679 3.977 2.297  4.836 4.716 4.503 

6 5.504  5.339 4.741 2.938  5.574 5.688 5.544 

7 6.523  6.286 5.632 3.655  6.571 6.664 6.523 

8 8.460  8.025 7.046 4.616  8.297 8.044 7.637 

9 8.685  8.553 7.866 5.430  8.688 8.717 8.533 

10 9.747  9.508 8.806 6.293  9.741 9.749 9.544 

11 11.499  11.101 10.153 7.334  11.328 11.078 10.658 

12 11.754  11.624 10.954 8.218  11.770 11.778 11.556 

13 12.699  12.484 11.826 9.115  12.747 12.773 12.555 

14 14.470  14.073 13.148 10.186  14.284 14.051 13.649 

15 14.535  14.442 13.841 11.055  14.662 14.742 14.547 

16 15.500  15.289 14.671 11.944  15.642 15.773 15.544 

17 16.987  16.647 15.829 12.953  16.980 16.910 16.605 

18 17.798  17.568 16.813 13.922  17.816 17.808 17.567 

19 19.140  18.825 17.977 14.965  19.036 18.912 18.600 

20 19.575  19.425 18.776 15.887  19.655 19.726 19.540 

 
 Table S17.3.  Unfiltered and filtered output for sampling periods of 1.0 and 0.1 
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Graphical comparison: 

 

 
                   Figure S17.3a.  Graphical comparison for t = 1.0 

 

 

 

 
                   Figure S17.3b.  Graphical comparison for t = 0.1 
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 17.4 

 

 

Using Eq. 17-9  for  = 0.2 and  = 0.5, Eq. 17-18 for N* = 4, and Eq. 17-19 for 

y=0.5, the results are tabulated and plotted  below. 

 

   
   (a) (a) (b) (c) 

t =1  =0.2 =0.5 N*=4 y=0.5 

0 0  0 0 0 0 

1 1.50  0.30 0.75 0.38 0.50 

2 0.30  0.30 0.53 0.45 0.30 

3 1.60  0.56 1.06 0.85 0.80 

4 0.40  0.53 0.73 0.95 0.40 

5 1.70  0.76 1.22 1.00 0.90 

6 1.50  0.91 1.36 1.30 1.40 

7 2.00  1.13 1.68 1.40 1.90 

8 1.50  1.20 1.59 1.68 1.50 

 

 

 Table S17.4.  Unfiltered and filtered data. 
 

 

 
   Figure S17.4.  Graphical comparison for filtered data and the raw data. 
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 17.5 

 

 

Parameter setting: 

 𝐺𝑝 =
1

2𝑠+1
; 𝑑(𝑡) = 1 + 0.2 sin(𝑡) ; 𝜏𝐹 = 0 (no filtering) or 3 

To do this problem, build the Simulink diagrams below. Note that the filter is 

represented by a first order transfer function with time constant of τF minutes. 

This can be shown by performing the Laplace transform of equation 17.4 in the 

book.  

 

Figure S17.5a. Block diagram when a filter is used on the output with time 

constant of 3 minutes. A sine wave of frequency 1 and amplitude 0.2 is the input. 

 

Figure S17.5b. Block diagram when no filter is used on the output. A sine wave of 

frequency 1 and amplitude 0.2 is the input. 

 

Simulating the diagram for 50 mins: 
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Figure S17.5c. First-order process response to a disturbance, d(t)=1+0.2sin(t), 

with and without an exponential filter. 

From Figure S17.5c, we can see that the filter will significantly dampen the 

oscillation at the cost of inducing a time lag in the first 10 minutes. 
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1 1 1
( ) ( )

1 1
Y s X s

s s s
 

 
      ,        then    y(t) = 1  e

-t
 

 

For noise level of  0.05 units, several different values of  are tried in Eq. 17-9 

as shown in Fig. S17.6a. While the filtered output for  = 0.7 is still quite noisy, 

that for  = 0.3 is too sluggish. Thus  = 0.4 seems to offer a good compromise 

between noise reduction and lag addition. Therefore, the designed first-order filter 

for noise level  0.05 units is  = 0.4, which corresponds to F = 1.5 according to 

Eq. 17-8a. 

Noise level =  0.05 
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     Figure S17.6a.   Digital filters for noise level =  0.05 

 Noise level =  0.1 

 
        Figure S17.6b.  Digital filters for noise level =  0.1 

Noise level =  0.01 
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Figure S17.6c.   Response for noise level =  0.01; no filter needed.  
  

Similarly, for noise level of  0.1 units, a good compromise is  =0.2 or 

 F = 4.0 as shown in Fig. S17.6b. However, for noise level of 0.01 units, 

no filter is necessary as shown in Fig. S17.6c. thus =1.0, F = 0 

 

 

17.7 
 

   y(k) = y(k-1)  0.21 y(k-2) + u(k-2) 

 
k u(k) u(k-1) u(k-2)   y(k) 

0 1 0 0   0 

1 0 1 0   0 

2 0 0 1   1.00 

3 0 0 0   1.00 

4 0 0 0   0.79 

5 0 0 0   0.58 

6 0 0 0   0.41 

7 0 0 0   0.29 

8 0 0 0   0.21 

9 0 0 0   0.14 

10 0 0 0   0.10 

11 0 0 0   0.07 

12 0 0 0   0.05 

13 0 0 0   0.03 

14 0 0 0   0.02 

15 0 0 0   0.02 

16 0 0 0   0.01 

17 0 0 0   0.01 

18 0 0 0   0.01 

19 0 0 0   0.00 

  Plotting this results 
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  Figure S17.7.  Graphical simulation of the difference equation 

 

  The steady state value of y is zero. 

 

 

17.8 
 

 

a) By using Simulink and STEM routine to convert the continuous signal to a 

series of pulses,  

 
 Figure S17.8.  Discrete time response for the temperature change. 

 

Hence the maximum value of the logged temperature is 80.7 C. 

This maximum point is reached at t = 12 min. 
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17.9 
 

 

 a)  

  
1 1

2 2

( ) 2.7 ( 3) 2.7 8.1

( ) 0.5 0.06 0.5 0.06

Y z z z z

U z z z z z

  
 

   
 

 

  Dividing both numerator and denominator by z
2
 

 

  
2 3

1 2

( ) 2.7 8.1

( ) 1 0.5 0.06

Y z z z

U z z z

 

 




 
 

 

  Then    1 2 2 3( )(1 0.5 0.06 ) ( )(2.7 8.1 )Y z z z U z z z        

   

or y(k) = 0.5y(k-1)  0.06y(k-2) + 2.7u(k-2) + 8.1u(k-3)  

 

 

The simulation of the difference equation yields 

 

 
k u(k) u(k-2) u(k-3)   y(k) 

0 1 0 0   0 

1 1 0 0   0 

2 1 1 0   2.70 

3 1 1 1   12.15 

4 1 1 1   16.71 

5 1 1 1   18.43 

6 1 1 1   19.01 

7 1 1 1   19.20 

8 1 1 1   19.26 

9 1 1 1   19.28 

10 1 1 1   19.28 

11 1 1 1   19.28 

12 1 1 1   19.29 

13 1 1 1   19.29 

14 1 1 1   19.29 

15 1 1 1   19.29 

16 1 1 1   19.29 

17 1 1 1   19.29 

18 1 1 1   19.29 

19 1 1 1   19.29 

20 1 1 1   19.29 
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 b) 

   
   Figure S17.9.  Simulink response to a unit step change in u 

 

c) The steady state value of y can be found be setting z =1. In doing so,  

 

y =19.29  

   

This result is in agreement with data above. 

 

 

 

17.10 
 

1
( ) 2 1

8
cG s

s

 
  

 
 

 

  Substituting s  (1-z
-1

)/t and accounting for t=1 

 

  
1

1 1

1 2.25 2
( ) 2 1

8(1 ) (1 )
c

z
G z

z z



 

  
   

  
 

 

By using Simulink-MATLAB, the simulation for a unit step change in the 

controller error signal e(t) is shown in Fig. S17.10 
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        Figure S17.10.  Open-loop response for a unit step change 

 

 

 

17.11 
 

 

a) 
2

( ) 5( 0.6)

( ) 0.41

Y z z

U z z z




 
 

 

Dividing both numerator and denominator by z
2
 

 

  
1 2

1 2

( ) 5 3

( ) 1 0.41

Y z z z

U z z z

 

 




 
 

   

Then    1 2 1 2( )(1 0.41 ) ( )(5 3 )Y z z z U z z z        

or y(k) = y(k-1)  0.41y(k-2) + 5u(k-1) + 3u(k-2)  

 

 

 

b) The simulation of the difference equation yields 
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k u(k) u(k-1) u(k-2)   y(k) 

1 1 1 0   5 

2 1 1 1   13.00 

3 1 1 1   18.95 

4 1 1 1   21.62 

5 1 1 1   21.85 

6 1 1 1   20.99 

7 1 1 1   20.03 

8 1 1 1   19.42 

9 1 1 1   19.21 

10 1 1 1   19.25 

11 1 1 1   19.37 

12 1 1 1   19.48 

13 1 1 1   19.54 

14 1 1 1   19.55 

15 1 1 1   19.54 

16 1 1 1   19.52 

17 1 1 1   19.51 

18 1 1 1   19.51 

19 1 1 1   19.51 

 

 

c) By using Simulink-MATLAB, the simulation for a unit step change in u 

yields   

   
                       Figure S17.11.  Simulink response to a unit step change in u 

 

d) The steady state value of y can be found be setting z =1. In doing so,  

 

y =19.51  

 

  This result is in agreement with data above. 
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17.12 
 

a) 
11

1
 z

 

   
 

 b) 
17.01

1
 z

 

   
 

c) 
17.01
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d) 
)3.01)(7.01(

1
11   zz

 

 

 
 

e) 
)3.01)(7.01(

5.01
11

1
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
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

zz

z
 

   

   
 

f) 
)3.01)(6.01(

2.01
11
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  Conclusions: 

 

  .- A pole at z = 1 causes instability. 

 

  .- Poles only on positive real axis give oscillation free response. 

 

  .- Poles on the negative real axis give oscillatory response. 

 

  .- Poles on the positive real axis dampen oscillatory responses. 

 

  ..- Zeroes on the positive real axis increase oscillations. 

 

  .- Zeroes closer to z = 0 contribute less to the increase in oscillations. 

 

 

 

17.13 

 

 

By using Simulink, the response to a unit set-point change is shown in Fig. 

S17.13a 

 
Figure S17.13a.  Closed-loop response to a unit set-point change (Kc = 1) 

 

 

Therefore the controlled system is stable.  

 

The ultimate controller gain for this process is found by trial and error 

 

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time

O
u
tp

u
t



17-18 

 
Figure S17.13b.  Closed-loop response to a unit set-point change (Kc =21.3) 
 

Then Kcu = 21.3 

 

 

 

17.14 

 

 

  By using Simulink-MATLAB, these ultimate gains are found: 

 

 

  t = 0.01 

 

    
Figure S17.14a.   Closed-loop response to a unit set-point change (Kc =1202) 

 

   t = 0.1 
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Figure S17.14b.   Closed-loop response to a unit set-point change (Kc =122.5) 

  

 

 t = 0.5  

   
Figure S17.14c.  Closed-loop response to a unit set-point change (Kc =26.7) 

 

  Hence 

   t = 0.01  Kcu = 1202 

      t = 0.1  Kcu = 122.5 

      t = 0.5  Kcu = 26.7 
 

As noted above, decreasing the sampling time makes the allowable 

controller gain increases. For small values of t, the ultimate gain is large 

enough to guarantee wide stability range. 
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17.15 

 

 

By using Simulink-MATLAB 

 

  Kc = 1 

    

    
Figure S17.15a.  Closed-loop response to a unit set-point change (Kc =1) 

 

 

Kc = 10 

 

 
 Figure S17.15b.  Closed-loop response to a unit set-point change (Kc =10) 
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Kc = 17 

  

   
 Figure S17.15c.  Closed-loop response to a unit set-point change (Kc =17) 

 

   

  Thus the maximum controller gain is 

 

 Kcm = 17 

 

 

 

17.16 

 

 

  Gv(s) = Kv = 0.1 ft
3 

/ (min)(ma) 

 

  Gm(s) = 
15.0

4

s
 

 

  In order to obtain Gp(s), write the mass balance for the tank as 

 

   
321 qqq

dt

dh
A   

 

  Using deviation variables and taking Laplace transform 

 

   )()()()( 321 sQsQsQsHAs   

   

Therefore,  
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3

( ) 1 1
( )

( ) 12.6
p

H s
G s

Q s As s

  
  


 

 

  By using Simulink-MATLAB, 

 

 

  Kc = -10 

 

   
Figure S17.16a.  Closed-loop response to a unit set-point change (Kc = -10) 

 

 

Kc = -50 

 

 
Figure S17.16b.  Closed-loop response to a unit set-point change (Kc = -50) 

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time

y
(t

)

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time

y
(t

)



17-23 

Kc = -92 

 

 
Figure S17.16c.   Closed-loop response to a unit set-point change (Kc = -92) 
 

Hence the closed loop system is stable for  

 

     -92 < Kc < 0 

 

  As noted above, offset occurs after a change in the setpoint. 

 

 

 

17.17 

 

 

a) The closed-loop response for set-point changes is 

 

( )( )

( ) 1 ( )

c

sp c

G G sY s

Y s G G s



 then    

( / )1
( )

1 ( / )

sp

c

sp

Y Y
G z

G Y Y



 

 

We want the closed-loop system exhibits a first order plus dead time 

response, 

 

  ( / )
1

hs

sp

e
Y Y

s




 

      or      
1

1

(1 )
( / )

1

N

sp

A z
Y Y

Az

 







             where A = e

-t/
 

 

  Moreover,  
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13

)(
2






s

e
sG

s

           or      
1

3

716.01

284.0
)(








z

z
zG  

 

  Thus, the resulting digital controller is the Dahlin's controller Eq. 17-66.  

 

  
1

1 1

(1 ) 1 0.716
( )

1 (1 ) 0.284
c N

A z
G z

Az A z



  

 


  
    (1) 

 

  If a value of =1 is considered, then A = 0.368 and Eq. 1 is 

  

  
1

1 3

0.632 1 0.716
( )

1 0.368 0.632 0.284
c

z
G z

z z



 




 
    (2) 

 

b) (1-z
-1

) is a factor of the denominator in Eq. 2, indicating the presence of 

integral action. Then no offset occurs. 

 

c) From Eq. 2, the denominator of Gc(z) contains a non-zero z
-0

 term. Hence 

the controller is physically realizable. 

 

d) First adjust the process time delay for the zero-order hold by adding t/2 

to obtain a time delay of  2 + 0.5 = 2.5 min. Then obtain the continuos PID 

controller tuning based on the ITAE (setpoint) tuning relation in Table 

12.3 with K = 1, =3,  = 2.5. Thus 

 

KKc = 0.965(2.5/3) 
 0.85

  ,  Kc = 1.13 

 

/I = 0.796 + (-0.1465)(2.5/3) , ,  I = 4.45 

 

D/ = 0.308(2.5/3)
0.929

  ,  D = 0.78 

 

Using the position form of the PID control law (Eq. 8-26 or 17-55) 

 

1

1

1
( ) 1.13 1 0.225 0.78(1 )

1
cG z z

z





  
       

 

 

          
1 2

1

2.27 2.89 0.88

1

z z

z

 



 



 

 

 

By using Simulink-MATLAB, the controller performance is examined: 
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Figure S17.17.  Closed-loop response for a unit step change in set point. 

 

 

  Hence performance shows 21% overshoot and also oscillates. 

 

 

 

17.18 

 

 

 a)  

 

Km -
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d
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C
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3
(z)
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  The transfer functions in the various blocks are as follows. 

 

  Km = 2.5 ma / (mol solute/ft
3
) 

 

  Gm(s) = 2.5e
-s
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  H(s)=
s

e s1
 

 

  Gv(s) = Kv = 0.1 ft
3
/min.ma 

 

  To obtain Gp(s) and Gd(s), write the solute balance for the tank as 

 

  3
1 1 2 2 3 3( ) ( ) ( )

dc
V q c q t c t q c t

dt
    

 

  Linearizing and using deviation variables 

 

  
332222

3 cqqccq
dt

cd
V 


 

 

  Taking Laplace transform and substituting numerical values 

 

  )(3)(1.0)(5.1)(30 3223 sCsCsQsCs   

 

  Therefore, 

 

   
110

5.0

330

5.1

)(

)(
)(

2

3












sssQ

sC
sGp  

  

   3

2

( ) 0.1 0.033
( )

( ) 30 3 10 1
d

C s
G s

C s s s


  

  
 

 

 

b)       
1

2

3

9.01

05.0

)(

)(
)(




zzQ

zC
zGp  

 

 

A proportional-integral controller gives a first order exponential response 

to a unit step change in the disturbance C2. This controller will also give a 

first order response to setpoint changes. Therefore, the desired response 

could be specified as 

 

 
1

( / )
1

spY Y
s


 

    

 

  

 

  

17.19 
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( ) ( )

1 ( ) ( )

p m c

sp p m c

HG z K G zY

Y HG G z G z



 

 

  Solving for Gc(z) 

 

  ( )

( ) ( )

sp

c

p m p m

sp

Y

Y
G z

Y
HG z K HG G z

Y





    (1) 

   

  Since the process has no time delay, N = 0. Hence 

 

  
1

1

(1 )

1sp d

Y A z

Y Az





  
    

 

   

  Moreover 

 

  
1

1

1
)(








z

z
zHG p  

 

  
1

2

1
)(








z

z
zGHG mp  

 

  Km = 1 

 

  Substituting into (1) gives 

 

  

1

1

1 2 1

1 1 1

(1 )

1( )
(1 )

1 1 1

c

A z

AzG z
z z A z

z z Az




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  







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  Rearranging, 

 

  
21

1

)1(1

)1()1(
)(










zAAz

zAA
zGc  

 

By using Simulink-MATLAB, the closed-loop response is shown for 

different values of A (actually different values of ) : 

   = 3     A = 0.716 
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   = 1     A = 0.368 

   = 0.5     A = 0.135 

 

 
  Figure S17.19.  Closed-loop response for a unit step change in disturbance. 
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  The closed-loop response for a setpoint change is  

 

  
( ) ( )

1 ( ) ( ) ( )

v c

sp v m c

HG z K G zY

Y HG z K K z G z
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  Hence  
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  The process transfer function is 
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  Minimal prototype controller implies  = 0 (i.e., A )0 . Then,  1

sp

Y
z

Y

  

 

  Therefore the controller is 
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Simplifying,  
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a) From Eq. 17-71, the Vogel-Edgar controller is  
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where A = e
-t/

  = e 
–1/5

 = 0.819 

 

Using  z-transforms, the discrete-time version of the second-order transfer 

function yields  

 

 a1 = -1.625 

a2 = 0.659 

   b1 = 0.0182 

   b2 = 0.0158 

 

  Therefore 

 

  
111

21

)0158.00182.0(181.0)819.01)(0158.00182.0(

181.0)659.0625.11(









zzz

zz
GVE  

 

         
21

21

003.0031.0034.0

119.0294.0181.0









zz

zz
 

 

By using Simulink-MATLAB, the controlled variable y(k) and the 

controller output p(k) are shown  for a unit step change in ysp. 
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Controlled variable y(k): 

 

 
Figure S17.21a.  Controlled variable y(k) for a unit step change in ysp. 

 

 

 

Controller output p(k): 

 
Figure S17.21b.  Controlled output p(k) for a unit step change in ysp. 
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17.22 

   

Dahlin's controller 

 

From Eq. 17-66 with a1 = e
-1/10

=0.9, N=1, and A=e
-1/1

 = 0.37, the Dahlin 

controller is 

 

)9.01(2

9.01

)37.01(37.01

)37.01(
)(

1

21 












z

zz
zGDC  

  
)63.01)(1(

84.215.3

63.037.01

84.215.3
11

1

21

1



















zz

z

zz

z
 

 

By using Simulink, controller output and controlled variable are shown 

below: 

   
       Figure S17.22a.   Controller output for Dahlin controller. 

 

      
        Figure S17.22b.  Closed-loop response for Dahlin controller. 
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Thus, there is no ringing (this is expected for a first-order system) and no 

adjustment for ringing is required. 

 

 

 PID (ITAE setpoint) 

 

For this controller, adjust the process time delay for the zero-order hold by adding 

t/2, and K=2, =10, =1.5 obtain the continuous PID controller tunings from 

Table 12.4 as 

 

KKc = 0.965(1.5/10) 
 0.85

  ,   Kc = 2.42 

 

/I = 0.796 + (-0.1465)(1.5/10) , ,   I = 12.92 

D/ = 0.308(1.5/10)
0.929

  ,   D = 0.529 

 

Using the position form of the PID control law (Eq. 8-25 or 17-55) 

 

1

1

1 1
( ) 2.42 1 0.529(1 )

12.92 1
cG z z

z





  
       

 

 

 
1

21

1

28.198.489.3









z

zz
 

 

 

  By using Simulink,  

 

   
  Figure S17.22c.  Controller output for PID (ITAE) controller 
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  Figure S17.22d.  Closed-loop response for PID (ITAE) controller. 

 

 

Dahlin's controller gives better closed-loop performance than PID because it 

includes time-delay compensation. 

 

 

 

 

17.23 

 

 

From Eq. 17-66  with a1 = e
-1/5

=0.819, N=5, and A=e
-1/1

 = 0.37, the Dahlin 

controller is 

 

)819.01(25.1

819.01

)37.01(37.01

)37.01(
)(

1

61 












z

zz
zGDC  

 

 
)63.037.01(

28.278.2
61

1




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


zz

z
 

 

 

By using Simulink-MATLAB, the controller output is shown in Fig. S17.23 
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Figure S17.23.   Controller output for Dahlin controller. 

 

 

As noted in Fig.S17.23, ringing does not occur. This is expected for a first-order 

system. 
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 Dahlin controller 

 

  Using Table 17.1 with K=0.5 , r =1.0, p =0.5, 

   

  
1 2

1 2

0.1548 0.0939
( )

1 0.9744 0.2231

z z
G z

z z

 

 




 
 

   

  From Eq. 17-64, with  = t = 1, Dahlin's controller is 

 

  
1

1

21

21

1

632.0

0939.01548.0

)2231.09744.01(
)(














z

z

zz

zz
zGDC  

 

    
)0939.01548.0)(1(

141.0616.0632.0
11

21










zz

zz
 

 

From Eq. 17-63, 
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1

1

( ) 0.632

( ) 1 0.368sp

Y z z

Y z z







 

 

y(k) = 0.368 y(k-1) + 0.632 ysp(k-1) 

 

  Since this is first order, no overshoot occurs. 

 

  By using Simulink-MATLAB, the controller output is shown: 

   
      Figure S17.24a.  Controller output for Dahlin controller. 

 

As noted in Fig. S17.24 a, ringing occurs for Dahlin's controller. 

 

  Vogel-Edgar controller 

 

  From Eq. 17-71, the Vogel-Edgar controller is 

 

  
21

21

239.0761.01

567.0476.2541.2
)(










zz

zz
zGVE  

 

Using Eq. 17-70 and simplifying, 

 
1 2

1

( ) (0.393 0.239 )

( ) 1 0.368sp

Y z z z

Y z z

 







   

 

  y(k)  = 0.368 y(k-1)  + 0.393 ysp(k-1)   + 0.239 ysp (k-2)        

 

  Again no overshoot occurs since y(z)/ysp(z) is first order. 

 

  By using Simulink-MATLAB, the controller output is shown below: 
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   Figure S17.24b.  Controller output for Vogel-Edgar controller. 

 

 

     As noted in Fig. S17.24 b, the V-E controller does not ring. 

 

 

 

 

17.25 

 

 

 

a) Material Balance for the tanks, 

 

1
1 1 2 1 2

1
( )

dh
A q q h h

dt R
     

 2
2 1 2

1
( )

dh
A h h

dt R
   

 

 where A1 = A2 = /4(2.5)
2
=4.91 ft

2
 

 

 Using deviation variables and taking Laplace transform 

 

 
1 1 1 2 1 2

1 1
( ) ( ) ( ) ( ) ( )A sH s Q s Q s H s H s

R R
           (1) 

 
2 2 1 2

1 1
( ) ( ) ( )A sH s H s H s

R R
         (2) 
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 From (2) 

 

  2 1

2

1
( ) ( )

1
H s H s

A Rs
 


 

 

 Substituting into (1) and simplifying 

 

    2

1 2 1 2 1 2 1 2( ) ( ) ( ) 1 ( ) ( )A A R s A A s H s A Rs Q s Q s          

 

 1 2

2

2 1 2 1 2

( ) ( 1) 0.204( 0.102)
( )

( ) ( ) ( ) ( 0.204)
p

H s A Rs s
G s

Q s A A R s A A s s s

    
  

   
 

 

 1 2

2

1 1 2 1 2

( ) 1 0.204( 0.102)
( )

( ) ( ) ( ) ( 0.204)
d

H s A Rs s
G s

Q s A A R s A A s s s

  
  

   
 

  

Using Eq. 17-64, with N =0,  A=e
-t/

  and HG(z) = KtKvHGp(z), Dahlin's 

controller is 

 
1

1

1 (1 )
( )

(1 )
DC

A z
G z

HG z









 

 

Using z-transforms, 

 

HG(z)=KtKvHGp(z)=
1 2

1 1

0.202 0.192

(1 )(1 0.9 )

z z

z z

 

 

 

 
 

 

Then, 

 
1 1

1 2

(1 )(1 0.9 )
( )

( 0.202 0.192 )
DC

z z
G z

z z

 

 

 
 

 

1

1

(1 )

(1 )

A z

z








 

 

  
1

1

(1 )(1 0.9 )

0.202 0.192

A z

z





 

 

 

 

 

b) 
1

1

(1 )(1 0.9 )

0.202 0.192
DC

A z
G

z





 

 

 

 

 

By using Simulink-MATLAB, 
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      Figure S17.25.  Controller output for Dahlin's controller. 

 

  As noted in Fig. S17.25, the controller output doesn't oscillate. 

 

c) This controller is physically realizable since the z
-0

 coefficient in the 

denominator is non-zero. Thus, controller is physically realizable for all 

values of . 

 

d)  is the time constant of the desired closed-loop transfer function. From 

the expression for Gp(s) the open-loop dominant time constant is 1/0.204 = 

4.9 min. 

 

A conservative initial guess for  would be equal to the open-loop time 

constant, i.e.,  = 4.9 min. If the model accuracy is reliable, a more bold 

guess would involve a smaller , say 1/3 
rd

 of the open-loop time constant. 

In that case, the initial guess would be  = (1/3) 4.9 =1.5 min. 

 

 

 

17.26 
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2

( 1) ( )
( )

1 ( )
f

K s P s
G s

s E s
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  Substituting s )1( 1 z  / t    into equation above: 
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  Then, 

     
1

1 2

1

1

( )
( )

1 ( )
f

b b z P z
G z

a z E z






 


 

 

  where     1
1

2

( )K t
b

t

  


  
    ,   1

2

2

K
b

t

 

  

       and         2
1

2

a
t



  

 

 

  Therefore, 

 

  1 1

1 1 2(1 ) ( ) ( ) ( )a z P z b b z E z     

 

 

  Converting the controller transfer function into a difference equation form: 

 

   1 1 2( ) ( 1) ( ) ( 1)p k a p k b e k b e k       

 

 

Using Simulink-MATLAB, discrete and continuous responses are 

compared : ( Note that  b1=0.5 , b2 = 0.333 and  a1= 0.833) 

 

 
Figure S17.26.  Comparison between discrete and continuous controllers. 
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Chapter 18 
 

 

 

18.1 

 

 

McAvoy has reported the PI controller settings shown in Table S18.1 and the set-

point responses of Fig. S18.1a and S18.1b. When both controllers are in automatic 

with Z-N settings, undesirable damped oscillations result due to the control loop 

interactions. The multiloop tuning method results in more conservative settings 

and more sluggish responses. 

 

 
Controller Pairing Tuning Method Kc I(min) 

T17 – R Single loop/Z-N -2.92 3.18 

T4 -  S Single loop/Z-N 4.31 1.15 

    

T17 – R Multiloop -2.59 2.58 

T4 -  S Multiloop 4.39 2.58 

  

   Table S18.1.  Controller Settings for Exercise 18.1 

 

   
           Figure S18.1a.   Set point responses for Exercise 18.1. Analysis for T17 
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   Figure S18.1b.  Set point responses for Exercise 18.1. Analysis for T4 

 

 

18.2 

 

 

The characteristic equation is found by determining any one of the four transfer 

functions Y1(s)/Ysp1(s), Y1(s)/Ysp2(s), Y2(s)/Ysp1(s) and  Y2(s)/Ysp2(s), and setting its 

denominator equal to zero. 

 

 In order to determine, say, Y1(s)/Ysp1(s), set Ysp2 = 0 in Fig 18.3b and use   

 block diagram algebra to obtain 

 

12 1 111 1 1 1( ) [ ( ) ( )] ( )P C PC s G G R s C s G M s                                   (1) 

2 21 22 11 1 1 1( ) ( [ ( ) [ ( ) ( )]])C P P CM s G G M s G G R s C s                        (2) 

 

  Simplifying (2), 

 

                       
2 22 1

2 21

1 1 1( ) [ ( ) ( )]
1

C P C

C P

G G G
M s R s C s

G G


 


                                            (3) 

 

  Substituting (3) into (1) and simplifying gives 
 

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time(min)

Single loop tuning  

(one loop in manual)

Single loop tuning       

(both loops in automatic)

Multiloop tuning

 T
4 



18-3 

                      
1 12 2 21 1 2 11 22

1 12 2 21 1 2 11 22

1

1

( )(1 )( )

( ) (1 )(1 )

C P C P C C P P

C P C P C C P P

G G G G G G G GC s

R s G G G G G G G G

 


  
 

 

 

  Therefore characteristic equations is 

 

  (1 +Gc1 Gp12) (1  + Gc2 Gp21) – Gc1 Gc2 Gp11 Gp22 = 0 

 

  If either Gp11 or Gp22 is zero, this reduces to  

 

  (1 + Gc1 Gp12) = 0         or          (1  + Gc2 Gp21) = 0 

 

So that the stability of the overall system merely depends on the stability 

of the two individual feedback control loops in Fig. 18.3b since the third 

loop containing Gp11 and Gp22 is broken. 

 

 

  

18.3 

 

 

Consider the block diagram for the 1-1/2-2 control scheme in Fig.18.3a but 

including a sensor and valve transfer function (Gv1,Gv2) ,(Gm1,Gm2) for each output 

(y1,y2). The following expressions are easily derived, 

 

 

  Y(s) = Gp(s) U(s)     

 

 or    
11 121 1

21 222 2

( ) ( )( ) ( )

( ) ( )( ) ( )

p p

p p

G s G sY s U s

G s G sY s U s

    
     

    
    (1) 

 

 U(s) = Gc(s) Gv(s) E(s)      

 

 or    
 

 
1 11 1

2 22 2

( ) 0( ) ( )

0 ( )( ) ( )

c v

c v

G s G sU s E s

G s G sU s E s

    
     

    
  (2) 

 

  E(s)= Ysp(s)-Gm(s)Y(s)   

 

or     
1 11 1

2 22 2

( ) ( ) 0( ) ( )

( ) 0 ( )( ) ( )

sp m

sp m

Y s G sE s Y s

Y s G sE s Y s

      
       

     
  (3) 

 

If Eqs. 1 through  3 are solved for the response of the output to variations of set 

points, the result is 
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  Y(s) = Gp(s)Gc(s) Gv(s)  [I + Gp(s)Gc(s)Gm(s)]
-1

 Ysp (s) =  

 

 where I is the identity matrix. 

 

 In terms of the component transfer function the matrix  

V = I + Gp(s)Gc(s Gv(s))Gm(s) = 












)(1)(

)()(1

2221

1211

shsh

shsh
 

 where 

 

   h11(s)= Gp11(s) Gc1(s) Gv1(s) Gm1(s) 

   h12(s)= Gp12(s) Gc2(s) Gv2(s) Gm2(s) 

   h21(s)= Gp21(s) Gc1(s) Gv1(s) Gm1(s) 

   h22(s)= Gp22(s) Gc2(s) Gv2(s) Gm2(s) 

   

The inverse of V, if it exists, is    V
-1

















)(1)(

)()(11

1121

1222

shsh

shsh
 

 

where  = (1+h11(s))(1+h22(s))-h12(s)h21(s) 

 

 

By accounting for Y(s) = [Gp(s)Gc(s) Gv(s) V
-1

(s)]  Ysp (s), the closed-loop transfer 

functions are (see book notation): 

 

 T11(s) =  )()())(1)((
)(

1
21122211

1

shshshsh
sGm




 

 

 T12(s) = 
)(

)(

2

12

sG

sh

m

 

 

   T21(s) = 
)(

)(

1

21

sG

sh

m

 

 

 T22(s) =  )()())(1)((
)(

1
12211122

2

shshshsh
sGm




 

 

 

 

18.4 

 

 

From Eqs. 6-91 and 6-92 and from physical reasoning, it is evident that although 

h is affected by both the manipulated variables, T is affected only by wh and is 
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independent of w. Hence, T can be paired only with wh. Thus, the pairing based on 

this reasoning for the control scheme is T-wh, h-w. 

 

 

 

 

 

18.5 
 

System transfer function matrix: 

  

2 1.5

10 1 1

1.5 2

1 10 1

p

s s
G s

s s

 
  

  
 
   

  (1) 

 𝐾𝑐1 = 1; 𝐾𝑐2 = −1: the pairing is unstable 

 

Figure S18.5a. Step response of 𝑌1 
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Figure S18.5b Step response of 𝑌2 

 

 𝐾𝑐1 = 1; 𝐾𝑐2 = 0: the paring is stable 

 

Figure S18.5c. Step response of 𝑌1 

 

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

Time

Step response of Y
2

 

 

1-1/2-2 pairing

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time

Step response of Y
1

 

 

1-1/2-2 pairing



18-7 

 
Figure S18.5d. Step response of 𝑌2 

 

 

 𝐾𝑐1 = 1; 𝐾𝑐2 = 2: the pairing is unstable 

 
Figure S18.5e. Step response of 𝑌1 
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Figure S18.5f. Step response of 𝑌2 

 
      

18.6 

 

 

i) Calculate the steady-state gains as 

 

4

11

0.97 0.93
8 10 min/lb

(125 175) lb/min

D

S

X
K

R

  
     

  
  

 

 

  
3

12

0.96 0.94
5 10 min/lb

(24 20) lb/min

D

R

X
K

S

  
     

  
 

  

  
4

21

0.06 0.04
4 10 min/lb

(175 125)lb/min

B

S

X
K

R

  
     

  
 

 

 

  lb
lbS

X
K

R

B min/105
min/)2024(

06.004.0 3

22


















  

 

 

  Substituting into Eq. 18-34,  

 

0 50 100 150 200 250 300
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5
x 10

46

Time

Step response of Y
2
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3 4

4 3

1
2

(5*10 )(4*10 )
1

( 8*10 )( 5*10 )

 

 

  


 

 

 

Thus the RGA is 

 

            R     S 

                           
D

B

x

x

2 1

1 2

 
 
 

 

     

  Pairing for positive relative gains requires XD-R, XB-S. 

 

ii) This pairing seems appropriate from dynamic considerations as well; 

because of the lag in the column, R affects XD sooner than XB, and S 

affects XB sooner that XD. 

 

 

 

 

 

 

18.7 

 

 

a) The corresponding steady-state gain matrix is 

 

K
12.8 18.9

6.6 19.4

 
  

 
 

 

  Using the formula in Eq. 18-34 , we obtain    11 = 2.0 

 

  Thus the RGA is  

   

   Λ
2 1

1 2

 
  

 
 

 

  Pairing for positive relative gains requires XD-R and XB-S. 

 

b) The same pairing is recommended based on dynamic considerations. The 

transfer functions between XD and R contains a smaller dead time and a 

smaller time constant, so XD will respond very fast to changes in R. For the 

pair XB-S, the time constant is not favorable but the dead time is 

significantly smaller and the response will be fast as well. 
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18.8 

 

 

a) From Eq. 6-105 

 

                       
11

( ) /
( )

1

h
p

T T w
G s

s




 
 ,   

12

( ) /
( )

1

c
p

T T w
G s

s




 
 

                       
21

1/
( )p

AP
G s

s
        ,   

22

1/
( )p

AP
G s

s
  

Thus 
11 ,hT T

K
w


       

12
cT T

K
w


  

and since Gp21, Gp22 contain integrating elements,  

 

21

22

21
0

22
0

1
lim ( )

1
lim ( )

P
s

P
s

K sG s
AP

K sG s
AP





 

 

 

 

Substituting into Eq. 18-34, 

1

1

h

c h c

h

T T

T T T T

T T


  

 




 

 

Hence 0     1, and the choice of pairing depends on whether  > 0.5 or 

not. The RGA is 

 

                    wh                  wc  

T

h

h c

h c h c

c h

h c h c

T T T T

T T T T

T T T T

T T T T

  
 

  
  
 

   

 

 

b) Assume that   0.5 so that the pairing is T-wh, h-wc. Assume valve gains 

to be unity. Then the ideal decoupling control system will be as in Fig.18.9 

where Y1T ,  Y2h , U1wh , U2wc, and using Eqs. 18-78 and 18-80, 
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21

12

(1/ )
( ) 1

(1/ )

[( ) / ] /( 1)
( )

[( ) / ] /( 1)

cc

h h

AP s
T s

AP s

T T w s T T
T s

T T w s T T

   

   
  

   

 

 

c) The above decouplers are physically realizable. 
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OPTION A:  Controlled variable: T17, T24 

           Manipulated variables: u1, u2 

 

The corresponding steady-state gain matrix is 

 

K
1.5 0.5

2 1.7

 
  
 

 

 

  Using the formula in Eq.18-34, we obtain    11 = 1.65 

  Thus the RGA is  

   

   Λ
1.65 0.65

0.65 1.65

 
  

 
 

 

OPTION B:  Controlled variable: T17, T30 

           Manipulated variables: u1, u2 

 

The corresponding steady-state gain matrix is 

 

K
1.5 0.5

3.4 2.9

 
  
 

 

 

  Using the formula in Eq.18-34, we obtain    11 = 1.64 

 

  Thus the RGA is  

   

   Λ
1.64 0.64

0.64 1.64

 
  

 
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OPTION C:  Controlled variable: T24, T30 

           Manipulated variables: u1, u2 

 

The corresponding steady-state gain matrix is 

 

K
2 1.7

3.4 2.9

 
  
 

 

 

  Using the formula in Eq.18-34, we obtain    11 = 290 

 

Thus the RGA is  

   

   Λ
290 289

289 290

 
  

 
 

 

Hence options A and B yield approximately the same results. Option C is 

the least desirable to multi-loop control configuration because it will be 

difficult to change the outputs without very large changes in the two inputs. 
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a)  Material balance for each of the two tanks is 

 

11
1 1 6 1 2

1

( )
hdh

A q q K h h
dt R

                                                           (1) 

22
2 2 1 2

2

( )
hdh

A q K h h
dt R

                                                           (2) 

 

where A1, A2 are cross-sectional areas of tanks 1, 2, respectively. 

Linearizing, putting in deviation variable form, and taking Laplace 

transform, 

 

1 1 1 6 1 1 2

1 1

1
( ) ( ) ( ) ( ) ( ) [ ( ) ( )]

2
A sH s Q s Q s H s K H s H s

R h

           

2 2 2 2 1 2

2 2

1
( ) ( ) ( ) ( ) [ ( ) ( )]

2
A sH s Q s H s K H s H s

R h

         

Let 1

1 1

1

2
K

R h
  and 2

2 2

1

2
K

R h
 , and 
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Solve the above equations simultaneously to get,  

 
2

1 1 2 2 1

2 2 1 6 2

[( )( ) ] ( )

( )[ ( ) ( )] ( )

A s K K A s K K K H s

A s K K Q s Q s KQ s

    

      
                        (3) 

 
2

1 1 2 2 2

1 6 1 1 2

[( )( ) ] ( )

[ ( ) ( )] ( ) ( )

A s K K A s K K K H s

K Q s Q s A s K K Q s

    

      
                          (4) 

 

The four steady-state process gains are determined using Eqs. 3 and 4 as 

 

)()('

)('
lim

2121

2

1

1

0
11

KKKKK

KK

sQ

sH
K

s 














 

 

)()('

)('
lim

21212

1

0
12

KKKKK

K

sQ

sH
K

s 












 

)()('

)('
lim

21211

2

0
21

KKKKK

K

sQ

sH
K

s 












 

)()('

)('
lim

2121

1

2

2

0
22

KKKKK

KK

sQ

sH
K

s 














 

 

Substituting into Eq. 18-34 

 

2 1

2

1 2 1 2

2 1

( )( )1

( )
1

( )( )

K K K K

K K K K K K

K K K K

 
  

 


 

 

 

Thus RGA is 

                                                  q1                                                   q2 

2

1 2

2

1 2 1 2 1 2

( )( )1

( ) ( )( )

K K K K K

K K K K K K K K K K

   
 

     

1

2

h

h
 

 

 

b)  Substituting the given numerical values, the RGA is  

  

                                            q1                   q2 

 
1

2

h

h

2.50 1.50

1.50 2.50

 
 
 
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For the relative gains to be positive, the preferred pairing is h1-q1, h2-q2. 
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a) Let  

 

 
1 1

6

2 2

( ) ( )
( ) , ( ) , ( ) ( )

( ) ( )

H s Q s
Y s U s D s Q s

H s Q s

    
     

    
   

 

 

Then by inspection of Eqs. (3) and (4) in the solution to Exercise 18-10, 

 

          
2 2

2

1 11 1 2 2

1
( )

( )( )
P

A s K K K
G s

K A s K KA s K K A s K K K

  
  

       
 

 

  and 

 

  
2 2

2

1 1 2 2

1
( )

( )( )
d

A s K K
G s

KA s K K A s K K K

  
  

      
 

 

 where A1, A2, K1, K2 are as defined in the solution to Exercise 18.10. 

 

 

b) The block diagram for h1-q1 / h2-q2 pairing is identical to Fig.18.3a with 

the addition of the load. Thus the signal D(s) passes through a block Gd1 

whose output is added to the summer with output Y1. Similarly, the 

summer leading to Y2 is influenced by the signal D(s) that passes through  

block Gd2. 
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  F = 20 u1 (P0 – P1)      (1) 

  F = 30 u2 (P1 – P2)      (2) 

 

  Taking P0 and P2 to be constant, Eq. 1 gives 
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22
1

1
110

1

20)(20

uu
u

P
uPP

u

F



























   (3) 

 

  and 

  

  )(20 10

1
2

PP
u

F

P















     (4) 

 

  and Eq. 2 gives 

 

  

22
1

1
2

1

30

uu
u

P
M

u

F



























     (5) 

 

  Substituting for 

2
1

1

M
M

P












from (5) into (3) and simplifying 

 

  

2

1

10

1

30

20
1

)(20

2

u

u

PP

u

F

u 

















     (6)  

  

  Using Eq. 18-24,     

 

2

11

1

11

30

20
1

1

)/(

)/(

2

2

u

uuF

uF

P

u







     (7) 

  At nominal conditions 

 

  2/1
)(20 10

1 



PP

F
u       ,      3/2

)(30 21

2 



PP

F
u  

 

Substituting into (7),  11 = 2/3 > 0.5. Hence, the best controller pairing is 

F-u1, P1-u2. 
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a)  Material balances for the tank, 
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1 2 3

dh
A q q q

dt
                                                                           (1) 

3
1 1 2 2 3 3

( )d Ahc
c q c q c q

dt
                                                           (2) 

 

Substituting for dh/dt from (1) into (2) and simplifying 

 

232131
3 )()( qccqcc

dt

dC
Ah         (3) 

 

Linearizing, using deviation variables, and taking the Laplace transform 

               

3 1 3 1 1 3 2 3 2 2 3( ) ( ) ( ) ( ) ( ) ( ) ( )AhsC s c c Q s q C s c c Q s q C s           

 

Since 
1 2 3q q q  , this becomes 

 

  1 3 2 3
3 1 2

3 3 3

1 ( ) ( ) ( )
c c c cAh

s C s Q s Q s
q q q

                 
       

                  (4) 

 

Similarly from (1),  

 

1 2 3( ) ( ) ( ) ( )AsH s Q s Q s Q s                                                    (5) 

Therefore, 

 

1 3

1 3 3

3 3

1 3
3

1 1( ) ( )

( ) ( )
( ) /( )

0( ) ( )

1
( ) ( )

H s H s
As As

Q s Q s
c c qG s

C s C s
Ah

s
Q s Q s q

          
         

    
     

 

 

Substituting numerical values 

 

0.1415 0.1415

( )
0.0075

0
1.06 1

s s
G s

s

 
 

  
 
  

 

 

For the control valves 
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0.15 0.15
( )

10 0.167 1
1

60

vG s
s

s

 
 

 
 

                                               (6)                                    

Thus, 

0.0212 0.0212

(0.167 1) (0.167 1)
( ) ( ) ( )

0.0011
0

(1.06 1)(0.167 1)

P v

s s s s
G s G s G s

s s

 
  
  
 
   

 

 

 b) Since  3( )C s / 3( )Q s  = 0,  c3 is not affected by q3 and must be paired with   

  q1. Thus, the pairing that should be used is h-q3, c3-q1. 

 

c) For the pairing determined above, Fig.18.9 can be used with Y1H  , Y2

3C , U1 3Q , U2 1Q . Notice that this pairing requires Gp(s) above the 

switch columns. Then using Eqs.  18-78 and 18-80, 

 

  

 
 

21

22

12

11

21

12

( ) 0
( ) 0

( ) 0.0011

(1.06 1)(0.167 1)

( ) 0.0212 / (0.167 1)
( ) 1

( ) 0.0212 / (0.167 1)

P

P

P

P

G s
T s

G s

s s

G s s s
T s

G s s s

    
 
   


    

 

    

  

 

18.14 

 

 

In this case, an RGA analysis is not needed. The manipulated and controlled 

variables are: 

   

    Controlled variables:     F1, P1 and I 

    Manipulated variables:  m1, m2, m3 

 

Basically, the pairing could be done based on dynamic considerations, so that the 

time constants and dead times in the response must be as low as possible. 

 

The level of the interface “I” may be easily controlled with m3 so that any change 

in the set-point is controlled by opening or closing the valve in the bottom of the 

decanter. 

 

The manipulated variable m1 could be used to control the inflow rate F1. If F1 is 

moved away from its set-point, the valve will respond quickly to control this 

change. 
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The decanter overhead pressure P1 is controlled by manipulating m2. That way, 

pressure changes will be quickly treated. This control configuration is also used in 

distillation columns. 

 

 

 

18.15 

 

 

 

OPTION A:  Controlled variable: Y1, Y2 

           Manipulated variables: U1, U2 

 

The corresponding steady-state gain matrix is 

 

K
3 0.5

10 2

 
  

 
 

  Using the formula in Eq.18-34, we obtain    11 = 6 

 

  Thus the RGA is  

   

   Λ
6 5

5 6

 
  

 
 

 

OPTION B:  Controlled variable: Y1, Y2 

           Manipulated variables: U1, U3 

 

The corresponding steady-state gain matrix is 

 

K
3 1/ 2

10 4

 
  

 
 

 

   

Using the formula in Eq.18-34, we obtain    11 = 0.71 

 

   

Thus the RGA is  

   

   Λ
0.71 0.29

0.29 0.71

 
  
 

 

 

 

OPTION C:  Controlled variable: Y1, Y2 
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           Manipulated variables: U2, U3 

 

The corresponding steady-state gain matrix is 

 

K
0.5 1/ 2

2 4

 
  
 

 

 

   

Using the formula in Eq.18-34, we obtain    11 = 0.67 

 

Thus the RGA is  

   

   Λ
0.67 0.33

0.33 0.67

 
  
 

 

 

 

By accounting for Bristol’s original recommendation, the controlled and 

manipulated variables are paired so that the corresponding relative gains are 

positive and as close to one as possible. Thus, OPTION B leads to the best control 

configuration. 

 

 

18.16 

 

 

The process scheme is shown below  

 

   
Figure S18.16.   Process scheme 

 

a) Steady state material balance:      

 

 q1 + q2 = q3        (1) 

MIX

q1q2

T1 = 70 FT2 = 140 F

q3 T3 = 110 F
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Steady state energy balance:        

 

q1C(T1-Tref)+q2C(T2-Tref) = q3C(T3-Tref)      (2) 

 

By substituting (1) in (2)  and solving: 

 

  q1 = 9/7 gpm 

  q2 = 12/7 gpm 

 

b) The steady-state gain matrix K must be calculated : 

 



































2

1

2221

1211

3

3

q

q

KK

KK

q

T
     (3) 

 

From (1), it follows that K21=K22=1. From (2), 

 

221133 TqTqTq        (4) 

  

Substitute (1) and rearrange, 

  

 )( 21

21

1
3 TT

qq

q
T 


       (5) 

 

2

21

221

2

21

121
21

1

3

11
)(

)(

)(

)(
)(

2

qq

qTT

qq

qqq
TT

q

T
K

q





























  

  


























2

21

1
21

2

3

12
)(

)(

1

qq

q
TT

q

T
K

q

 

 

RGA analysis: 

 

2 1
11 12 11

12 21 2 1 2 11

11 22 2

1 1
1

1 1

q q

K K q q q qq

K K q

        
  

   
 

 

 

 

Thus the RGA is, 
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      1q                 2q  

   

          3T          
12

2

qq

q


        

12

1

qq

q


   

Λ   
   

             3q           
12

1

qq

q


        

12

2

qq

q


  

   

 

  Substitute numerical values for numerical conditions, 

 

       1q                 2q  

   

          3T               
4

7
                

3

7
   

Λ   
   

             3q                
3

7
     

4

7
 

 

 

Pairing:      3T - 2q  / 3q - 1q  

18.17 

 

 

a)  Dynamic Model: 

 

Mass Balance: 

 

 
1 2 3(1 )

dh
A f w w w

dt
            (1) 

 

Energy Balance: (Tref = 0) 

 

3
1 1 2 2 3 3 3

( )
(1 ) ( )p p p p c c

d hT
C A C f wT C w T C w T UA T T

dt
           (2) 

 

Mixing Point: 

 

134 fwww          (3) 

 

Energy Balance on Mixing Point: 
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4 4 3 3 1 1p p pC w T C w T C fwT        (4) 

 

Control valves: 

 

cXCU 3         (5) 

 

)( 12133 fwChCxw        (6) 

 

b)  Degrees of freedom: 

 

Variables: 14 

 

   h, w1, w2, w3, w4 ,T1, T2, T3, T4, Tc, xc, x3, f, U 

 

Equations: 6 

 

  Degrees of freedom = NVNE = 8 

 

 Specified by the environment: 4 (Tc, w1, T1, T2) 

 

 Manipulated variables: 4 (f, w2, xc, x3) 

 

c)  Controlled variables: 

 

h   Guidelines #2 and 5  (i.e., G2 and G5) 

 

T4   G3 and G5 

 

w4  G3 and G5 

 

w2 (or T3)   G4  and G5 (or G2 and G5) 

 

 

d)  RGA 

 

At steady state, (1) and (2) become: 

 

321)1(0 wwwf        (7) 

 

)()1(0 33332211 ccpp TTUATwCTwCTwfC    (8) 

 

Rearrange (8) and substitute (5), 
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cc

cccpp

AxCwC

TAxCTwCwfC
T

333

3221

3

)1(




     (9) 

 

Rearrange (7) 

 

  213 )1( wwfw         (10) 

 

  Substitute (10) into (9), 

 

  
cc

cccpp

AxCwCwfC

TAxCTwCwfC
T

32313

3221

3
)1(

)1(




     (11) 

 

  Substitute (10), (3) and (11) into (4), 

 

   1133413 )( TfwTwTfww       (12) 

  or 

 

      114121)1( TfwTfwwwf  

    

   +   21)1( wwf  












cc

cccpp

AxCwCwfC

TAxCTwCwfC

32313

3221

)1(

)1(
      (13) 

  Rearrange, 

 

  
















21

21

21

11
4

)1(

ww

wwf

ww

Tfw
T 













cc

cccpp

AxCwCwfC

TAxCTwCwfC

32313

3221

)1(

)1(
  

 

(14) 

  Rearrange (6), 

 

  
13

1233

Cx

fwCxw
h


        (15) 

 

  Substitute (10) into (15), 

 

  
13

12321)1(

Cx

fwCxwwf
h


      (16) 

 

  Rewrite (14) as, 

 

  
















21

281

21

11
4

ww

wfEE

ww

Tfw
T 













7265

4232

EwEfE

EwEfE
  (17) 
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  where: 

 

  11 wE    12 wCE p          23 TCE p  

  134 wCATXCE pcc            135 wCE   (18) 

  36 CE              1337 wCAXCE c          18 wE   

 

  Can write (17) as, 

 

  



21

11
4

ww

Tfw
T  

 

  

  

  

2

1

1725512761

2

26

41482124312283

2

28

)(

)()()(

F

F

wEfwEfEwwEEwwE

EEfEEEEwEEEfwEEEfEE




  

 

           (19) 

 

  Thus 

 

  
][

)(2

2

482122832

21

11
11

4

F

EEEEwEEEfEE

ww

Tw
K

f

T B 








 

   
 

2

2

25511)(

F

wEEwF 
       (20) 

  Similarly 

 

  12
4 K

f

T





 

   

From (16) 

 

13

1123

21
Cx

wwCx
K

f

h 





 

 

  
13

22

2

1

Cx
K

w

h





 

 

  Then 
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1

1

  
   

  
 

 

  where 

 

   
12 21

11 22

1

1
K K

K K

 



 

 

e)  It will be difficult to control T4 because neither x3 nor f has a large steady-

 state effect on T4. 

 

 

 

18.18 

 

 

(a) Mass balance: 

 
222

21

4.0 FwFFw

FFF




 

 CV: w, F, MV: F1 and F2. 

 Linearize the process at operation point as described in Section 18.2.2. 

 

2 1

2 1

11 12

1 2

2 2
21 222 2

1 2

1 1

0.4 0.4 0.4
0.025 0.025

F F

F F

F F
K K

F F

F F Fw w
K K

F F F F

    
      

    

     
         

    

 

 

(b) RGA: 

 

1 2
11 2

12 21 2 1 2

2
11 22 2

1 1

0.4 /
1 1

0.4 0.4 /

F F F

K K F F F F F

K K F F F




   
 

 


 

Thus the RGA array is 
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2 2

2 2

F F F

F F

F F F

F F

 
 
 

 
  

 

(c)  

11
12 21

11 22

1 1
0.5

1 0.025 / 0.025
1

K K

K K

   




 

Thus，the RGA array becomes: 
0.5 0.5

0.5 0.5

 
 
 

, in this case, either pairing is 

recommended.  

 

18.19 

 

 

 a)  

 

i) Static considerations: 

 

Pairing according to RGA elements closest to +1: 

 

H1 – Q3,   pH1-Q1,   H2-Q4,   pH2 – Q6 

 

ii) Dynamic considerations: 

 

The some pairing results in the smallest time constants for tank 1. 

It is also dynamically best for tank 2 because it avoids the large / 

ratio of 0.8. 

 

iii) Physical considerations 

 

The proposed pairing makes sense because the controlled variables 

for each tank are paired with the inlet flows for that some tank. 

 

Because pH is more important than level, we might use the pairing, 

H1 – Q1 / pH1-Q3  , for the first tank to provide better pH control 

due to the smaller time delay (0.5 vs. 1.0 min). 

 

 b)  The new gain matrix for the 2 2  problem is 
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   K
0.42 0.41

0.32 0.32

 
  

 
 

 

   From Eq. 18-34, 

 

   11

1
0.506

(0.41)( 0.32)
1

(0.42)(0.32)

  




 

 

   Thus 

 

   
0.506 0.494

0.494 0.506

 
  
 

Λ  

 

RGA pairing:  H2 – Q4 / pH2-Q6. The pairing also avoids the large 

delay of 0.8 min. 

 

 

18.20 

 

 

  

Since level is tightly controlled, there is a no accumulation, and a material balance 

yields: 

 

   Overall:  wF – E wS – wP  0     (1) 

   Solute:    wFxF - wPxP     0     (2) 

 

 

  Controlled variable: FP wx  ,  

              Manipulated variables: sP ww  ,  

 

  From (1): 

    

   wF  =   wS E + wP         

 

  From (2): 

 

   )( Ps

P

F
F

P

F
P wEw

w

x
w

w

x
x      (3) 

 

 

  Using deviation variables: 
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   PsF wEww   

 

  Linearizing (3): 

 

  )()(

,,

s

wws

P
P

wwP

P
PP w

w

x
w

w

x
xx

sPsP










  

 

  s

P

F
P

P

sF

P w
w

Ex
w

w

wEx
x 






















 


2
     (5) 

 

  Then the steady-state gain matrix is 

       

    Pw                     sw  

   

Px        












 
2

P

sF

w

wEx
        









P

F

w

Ex
   

 

   

  Fw       1                          E  

   
 

  

 By using the formula in Eq.18-34, we obtain   

 

 11 = 


s

P

wE

w
1

1
22

s

s p

Ew

Ew w
 


 

12 21 111
p

s p

w

Ew w
     


 

 

  So the RGA is 

 

    

s P

s p s p

sP

s p s p

Ew w

Ew w Ew w

Eww

Ew w Ew w

 
  
 
 
 
 
   

Λ  

 

  So, if Ps wwE   , the pairing should be Px - Pw  /   Fw - sw  

  So, if Ps wwE   , the pairing should be Px - sw    /  Fw  - Pw  
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18.21 

 

 

a) The corresponding steady-state gain matrix is 

 

K
0.04 0.0005

0.22 0.02

  
  

 
 

 

  Using the formula in Eq. 18-34, we obtain    11 = 1.16 

  Thus the RGA is  

   

    
1.16 0.16

0.16 1.16

 
  

 
Λ  

 

 b) Pairing for positive relative gains requires y1-u1 and y2-u2. 

 

 

 

 

18.22 

 

 

For higher-dimension process (n>2) the RGA can be calculated from the 

expression 

   

    ij = Kij Hij 

 

  where Hij is the (i,j) element of H = (K
-1

)
T 

 

  By using MATLAB, 

 

 

   K
-1

62.23 122.17 58.02

84.47 170.83 83.43

1.95 14.85 13.09

 
 

  
 
  

 

 

   H

62.23 84.47 1.95

122.17 170.83 14.85

58.02 83.43 13.09

 
 

  
 
  

 

 

Thus the RGA is 
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210.34 211.18 1.89

390.95 406.58 14.642

181.60 194.39 13.80

 
 

  
 
  

Λ  

 

 

This RGA analysis shows the control difficulties for this process because of the 

control loop interactions. For instance, if the pairings are 1-3, 2-2, 3-1, the third 

loop will experience difficulties in closed-loop operation. But other options not be 

better. 

 

SVA analysis: 

 

 Determinant of  K = K  = 0.0034 

 The condition number = CN = 1845 

 

Since the determinant is small, the required adjustments in U will be very large, 

resulting in excessive control actions. In addition, this example shows the K 

matrix is poorly conditioned and very sensitive to small variations in its elements. 
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Applying SVA analysis: 

 

Determinant of  K = K  = -6.76 

The condition number = CN = 542.93 

 

The large condition number indicates poor conditioning. Therefore this process 

will require large changes in the manipulated variables in order to influence the 

controlled variables. Some outputs or inputs should be eliminated to achieve 

better control, and singular value decomposition (SVD) can be used to select the 

variables to be eliminated.  

 

By using the MATLAB command SVD, singular values of matrix K are: 

 

 

           = 



















0394.0

1576.1

9480.6

3682.21
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Note that 3/4 > 10, then the last singular value can be neglected. If we eliminate 

one input and one output variable, there are sixteen possible pairing shown in 

Table S18.23, along with the condition number CN. 

 

 
Pairing number      Controlled variables       Manipulated variables     CN 

 

 1  y1,y2,y3                    u1,u2,u3                      114.29 

2  y1,y2,y3                  u1,u2,u4                      51.31 

3  y1,y2,y3                  u1,u3,u4                      398.79 

4  y1,y2,y3                       u2,u3,u4                      315.29 

5  y1,y2,y4                       u1,u2,u3                      42.46 

6  y1,y2,y4                       u1,u2,u4                      30.27 

7  y1,y2,y4                       u1,u3,u4                      393.20 

8  y1,y2,y4                       u2,u3,u4                      317.15 

9  y1,y3,y4                       u1,u2,u3                      21.21 

10  y1,y3,y4                       u1,u2,u4                      16.14 

11  y1,y3,y4                       u1,u3,u4                      3897.2 

12  y1,y3,y4                       u2,u3,u4                      693.25 

13  y2,y3,y4                       u1,u2,u3                      24.28 

14  y2,y3,y4                       u1,u2,u4                      20.62 

15  y2,y3,y4                       u1,u3,u4                      1332.7 

16  y2,y3,y4                       u2,u3,u4                      868.34 
 

Table S18.23.  CN for different 3x3 pairings. 

 

 

Based on having minimal condition number, pairing 10 (y1-u1,y3-u2,y4-u4) 

is recommended.  The RGA for the reduced variable set is 

 

 

1.654 0.880 0.226

0.785 3.742 1.957

0.1312 1.8615 2.7304

Λ

 
 

  
 
    
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18.24 

 

 

 

 

 

 

 

1-2/2-1 controller pairing has a larger stability region compared with 1-1/2-2.  

 

RGA: 



























28.228.1

28.128.2

28.2

22

5.15.1
1

1

1

1

2211

2112

11

KK

KK


 

Based on RGA, controller pairing should be 1-1/2-2 to avoid negative values. 

 

Stability analysis is based on dynamic effects and employs the numerical region 

of controller gain to get a stable closed-loop response. RGA is based on static 

process gain (Kij) analysis, which only show the open loop steady state behavior. 

 

For this problem, 1-2/2-1 pairing has a larger stability region, which means choice 

of Kc1 and Kc2 has a larger margin with guaranteed stability. However, around the 

steady state, the negative RGA indicates control loop “fighting”, which may be 

vulnerable to process noise. Thus, 1-2/2-1 pairing should be avoided in this case. 
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Chapter 19 
 

 

 

 

 19.1 

 

 

 From definition of xc, 0  xc  1 

 

   f(x) = 5.3 x e
 (-3.6x +2.7) 

  

Let three initial points in [0,1] be 0.25,  0.5 and 0.75.  Calculate x4 using Eq. 19-

8,. 

  
x1 f1 x2 f2 x3 f3 x4 

0.25 8.02 0.5 6.52 0.75 3.98 0.0167 

 

For next iteration, select x4, and x1 and x2 since f1 and f2 are the largest among f1, 

f2, f3. Thus successive iterations are 

 
x1 f1 x2 f2 x3 f3 x4 

0.25 8.02 0.5 6.52 0.017 1.24 0.334 

0.25 8.02 0.5 6.52 0.334 7.92 0.271 

0.25 8.02 0.334 7.92 0.271 8.06 0.280 

0.25 8.02 0.271 8.06 0.280 8.06 not needed 

 

    x
opt

 = 0.2799                      7 function evaluations 

 

 

 19.2 

 

 

As shown in the drawing, there is both a minimum and maximum value of the 

air/fuel ratio such that the thermal efficiency is non- zero. If the ratio is too low, 

there will not be sufficient air to sustain combustion. On the other hand, problems 

in combustion will appear when too much air is used. 

 

The maximum thermal efficiency is obtained when the air/fuel ratio is 

stoichiometric. If the amount of air is in excess, relatively more heat will be 

“absorbed” by the air (mostly nitrogen). However, if the air is not sufficient to 

sustain the total combustion, the thermal efficiency will decrease as well. 

 

Solution Manual for Process Dynamics and Control, 4th edition 

Copyright © 2016 by Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp, 
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19.3 

 

 

By using Excel-Solver, this optimization problem is quickly solved. The selected 

starting point is (1,1): 

 

 
 X1 X2 

Initial values 1 1 

Final values 0.776344 0.669679 

   

max Y= 0.55419  

   

Constraints   

0  X1  2   

0  X2  2   

 
     Table S19.3.  Excel solution 

 

 Hence the optimum point is  ( X1*, X2* ) =(0.776, 0.700) 

 

 and the maximum value of Y is  Ymax = 0.554 

 

 

 19.4 

 

 

Let N be the number of batches/year. Then  NP  300,000 

Since the objective is to minimize the cost of annual production, only the required 

amount should be produced annually and no more. That is, 

 

   NP = 300,000       (1) 

 

a) Minimize the total annual cost, 

 

 

min TC = 400,000 
$

batch

 
 
 

 + 2 P
0.4 hr

batch

 
 
 

 50
$

hr

 
 
 

  N
batch

yr

 
 
 

  

     + 800 P
0.7










yr

$
 

 

  

  Substituting for N from (1) gives 

 

  min TC = 400,000 + 3x10
7
 P

–0.6
 + 800 P

0.7
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b) There are three constraints on P 

 

i) P  0 

ii) N is integer. That is, 

 

(300,000/P) = 0, 1, 2,… 

 

iii) Total production time is 320 x 24 hr/yr 

 

 (2 P
0.4

 + 14)
hr

batch

 
 
 

     N
batch

yr

 
 
 

 7680 

 

Substituting for N from (1) and simplifying 

 

 610
5
P

-0.6
  +  4.210

6
P

-1  
 7680 

 

 

 c) 
7 1.6 0.3( )

0 3 10 ( 0.6) 800(0.7)
d TC

P P
dP

       

  

1/1.3
73 10 ( 0.6) lb

2931
800(0.7) batch

optP
  

  
 

 

 

  
2

7 2.6 1.3

2

( )
3 10 ( 0.6)( 1.6) 800(0.7)( 0.3)

d TC
P P

dP

        

  
2

2

2

( )
2.26 10 0

optP P

d TC

dP





     hence minimum 

 

  N
opt 

= 300,000/P
opt

  = 102.35 not an integer. 

 

Hence check for N
opt

 = 102 and N
opt

 = 103 

 

For N
opt 

= 102, P
opt

 = 2941.2, and TC = 863207 
 

For N
opt

 = 103, P
opt

 = 2912.6, and TC = 863209 
 

Hence optimum is 102 batches of 2941.2 lb/batch. 
 

Time constraint is  
 

5 0.6 6 16 10 4.2 10 6405.8 7680P P      , satisfied 
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 19.5 

 

 

Let x1 be the daily feed rate of Crude No.1 in bbl/day 

 x2 be the daily feed rate of Crude No.2 in bbl/day 

 

 Objective is to maximize profit 

 

max P = 3.00 x1 + 2.0 x2 

 

 Subject to constraints 

 

  gasoline :      0.70 x1 + 0.41 x2      6000 

  kerosene:      0.06 x1 + 0.09 x2       2400 

fuel oil:         0.24 x1 + 0.50 x2     12,000 
 

  By using Excel-Solver, 

 

 
 x1 x2 

Initial values 1 1 

Final values 0 14634.15 

   

max P = 29268.3  

   

Constraints   

0.70 x1 + 0.31 x2 6000  

0.06 x1 + 0.09 x2 1317  

0.24 x1 + 0.60 x2 7317  

   
 Table S19.5.  Excel solution 

 

 Hence the optimum point is (0, 14634.15) 

 

  Crude No.1 = 0 bbl/day  Crude No.2 = 14634.15 bbl/day 
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 19.6 

 

 

 Objective function is to maximize the revenue, 

 

   max R = -40x1 +50x3 +70x4 +40x5 –2x1-2x2   (1) 

 

*Balance on column  2 

 

 x2 = x4 + x5       (2) 

 

* From column 1, 

 x1 = )(667.1
60.0

0.1
542 xxx       (3) 

 x3 = )(667.0
60.0

4.0
542 xxx      (4)  

 

Inequality constraints are 

 

x4    200       (5) 

x4    400       (6) 

x1    2000       (7) 

x4  0    x5  0       (8) 

 

The restricted operating range for column 2 imposes additional inequality 

constraints. Medium solvent is 50 to 70% of the bottoms; that is 

 

   0.5  4

2

x

x
 0.7   or    0.5  4

4 5

x

x x
 0.7 

 

Rewriting in linear form, 

 

   0.5 x2 ≤ x4 ≤ 0.7   or   0.5 (x4 + x5) ≤  x4 ≤ 0.7 (x4 + x5) 

 

 

  Simplifying, 

 

   x4 –x5  0       (9)  

   0.3 x4 –0.7x5   0      (10) 

 

No additional constraint is needed for the heavy solvent. That the heavy solvent 

will be 30 to 50% of the bottoms is ensured by the restriction on the medium 

solvent and the overall balance on column 2.    
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  By using Excel-Solver,   
 

 

 
 x1 x2 x3 x4 x5 

Initial values 1 1 1 1 1 

Final values 1333.6 800 533.6 400 400 

      

max R = 13068.8     

      

Constraints      

x2 - x4 - x5 0     

x1 - 1.667x2 7.467E-10     

x3 - 0.667x2 -1.402E-10     

x4 400     

x4 400     

x1 - 1.667x2 1333.6     

x4 - x5 0     

0.3x4 - 0.7x5 -160     

 

   Table S19.6.  Excel solution 

 

  Thus the optimum point is  x1 =1333.6,  x2 =800;  x3=533.6,   x4 = 400  and  

  x5 = 400. 

 

Substituting into (5), the maximum revenue is 13,068 $/day, and the 

percentage of output streams in column 2 is 50 % for each stream. 

 

 

 19.7 

 

 

The objective is to minimize the sum of the squares of the errors for the  material 

balance, that is, 
 

  min E = (wA + 11.3 – 92.1)
2 

+ (wA +10.9 –94.2)
2
 + (wA + 11.6 –93.6)

2
 

 

  Subject to wA  0 
 

  Solve analytically, 

 

   0
Adw

dE
2 (wA + 11.3 – 92.1) + 2(wA +10.9 –94.2)  

        +2(wA + 11.6 –93.6) 

 

  Solving for wA…                wA 
opt 

= 82.0 Kg/hr 
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  Check for minimum, 

  06222
2

2


Adw

Ed
,   hence minimum 

 19.8 

 

The reactor equations are: 

1
1 1

dx
k x

dt
    (1) 

2
1 1 2 2

dx
k x k x

dt
   (2) 

Where    75000/ 8.31* 125000/ 8.31*10 17

1 21.335*10 ; 1.149*10
T T

k e k e
 

    

By using MATLAB , this differential equation system can be solved using the 

command “ode45”. Furthermore, we need to apply the command “fminsearch” 

ino order to optimize the temperature. In doing so, the results are: 

2,max360.92 ; 0.343opT K x    

MATLAB code: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

%% Exercise 19.8 
function y = Exercise_19_8(T) 
   k10 = 1.335*10^10; % min^(-1) 
   k20 = 1.149*10^17; % min^(-1) 
   E1 = 75000; % J/(g.mol) 
   E2 = 125000; % J/(g.mol) 
   R = 8.31; % J/(g.mol.K) 
   x10 = 0.7; % mol/L 
   x20 = 0; % mol/L 
   k1 =k10*exp(-E1/(R*T)); 
   k2 = k20*exp(-E2/(R*T)); 
   time = [0,6];    % Time period; 
   initial_val = [x10, x20]; 
   options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4]); 
   [~,X] = ode45(@reactor, time,initial_val, options); 
   y = -X(end,2);   % Because of fminsearch, has to be opposite 

  
    function dx = reactor(t,x) 
        dx = zeros(2,1); % A column vector 
        dx(1) = -k1*x(1); 
        dx(2) = k1*x(1)-k2*x(2); 
    end 
end 

 
%% Exercise 22.10 main 
clear all;clc; close all; 
T_range = [200, 500]; 
T = fminsearch(@Exercise_19_8, 200); 
x2_max =-Exercise_19_8(T); 

 



19-8 

 19.9 

 

 
By using Excel-Solver: 

 
  

 

 

  

Initial values 1 0  

Final values 2.907801325 1.992609  

    

Time Equation Data Square Error 

0 0 0 0 

1 0.065457105 0.0583 5.12241E-05 

2 0.200864506 0.2167 0.000250763 

3 0.350748358 0.36 8.55929E-05 

4 0.489635202 0.488 2.67388E-06 

5 0.607853765 0.6 6.16816E-05 

6 0.703626108 0.692 0.000135166 

7 0.778766524 0.772 4.57858E-05 

8 0.836422873 0.833 1.17161E-05 

9 0.879953971 0.888 6.47386E-05 

10 0.912423493 0.925 0.000158169 

11 0.936416639 0.942 3.11739E-05 

  SUM= 0.000898685 

 

Hence the optimal values are 1 22.9; 1.99   ..  

 

 

19.10 

 

 

Let  x1 be gallons of suds blended 

x2 be gallons of premium blended 

x3 be gallons of water blended 

 

Objective is to minimize cost 

 

min C = 0.3x1 + 0.40x2     (1) 

 

        Subject to 

 

x1 + x2 + x3 = 10,000      (2) 

 

        0.03 x1 + 0.060 x2 = 0.05010,000                                   (3) 
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x1    2000       (4) 

 

x1    9000                                    (5) 

 

x2  0                       (6) 

 

x3  0        (7) 

 

The problem given by Eqs. 1, 2, 3, 4, 5, 6, and 7 is optimized using Excel-Solver, 

 
 x1 x2 x3 

Initial values 1 0 0 

Final values 2000 7333.333 666.6666667 

Objective function 3533.333333   

    

    

Constraints    

x1+x2+x3 10000 = 10000 

0.03x1+0.06x2 500 = 500 

x1 2000 >= 2000 

x1 2000 <= 9000 

x2 7333.333333 >= 0 

x3 666.6666667 >= 0 

 

We obtain: suds = 2000 gallons; premium = 7333.3 gallons; water= 666.7 gallons, 

with the minimum cost of $3533.3. 

 

 

19.11 

 

 

  Let  xA be bbl/day of A produced 

   xB be bbl/day of B produced 

 

  Objective is to maximize profit 

 

   max P = 10xA + 14xB      (1) 

   

  Subject to 

 

  Raw material constraint:        120xA+ 100xB  9,000   (2) 

 

  Warehouse space constraint:  0.5 xA + 0.5 xB  40   (3) 

 

Production time constraint:  (1/20)xA + (1/10)xB    7  (4) 

 



19-10 

 

 
 xA xB 

Initial values 1 1 

Final values 20 60 

   

max P = 1040  

   

Constraints   

120xA+ 100xB 8400  

0.5 xA + 0.5 xB 40  

(1/20)xA + (1/10)xB  7  

 
    Table S19.11.  Excel solution 

 

Thus the optimum point is  xA = 20  and xB = 60 

The maximum profit = $1040/day 

 

 

19.12 

 

 

PID controller parameters are usually obtained by using either process model, 

process data or computer simulation. These parameters are kept constant in many 

cases, but when operating conditions vary, supervisory control could involve the 

optimization of these tuning parameters. For instance, using process data, Kc ,I 

and D can be automatically calculated so that they maximize profits. Overall 

analysis of the process is needed in order to achieve this type of optimum control. 

 

Supervisory and regulatory control are complementary. Of course, supervisory 

control may be used to adjust the parameters of either an analog or digital 

controller, but feedback control is needed to keep the controlled variable at or 

near the set-point. 

 

 

 

19.13 

 

 

 Assuming steady state behavior, the optimization problem is, 

 

   max  f = D e 

 

  Subject to 

 

   0.063 c –D e = 0      (1) 

   0.9 s e – 0.9 s c – 0.7 c – D c = 0    (2) 
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   -0.9 s e + 0.9 s c + 10D – D s = 0    (3) 

        D, e, s, c  0 

 

where  f = f(D, e, c, s) 

 

  Excel-Solver is used to solve this problem, 

 
 c D e s 

Initial values 1 1 1 1 

Final values 0.479031 0.045063 0.669707 2.079784 

     

     

max f = 0.030179    

Constraints     

0.063 c –D e 2.08E-09    

0.9 s e – 0.9 s c – 0.7 c – Dc -3.1E-07    

-0.9 s e + 0.9 s c + 10D – Ds 2.88E-07    

     

  Table S19.13.  Excel solution 
 

Thus the optimum value of D is equal to 0.045 h
-1 

 

 

19.14 

 

 

 Material balance: 

 

   Overall :               FA + FB = F 

 

   Component B:      FB CBF + VK1CA – VK2CB = F CB 

 

   Component A:      FA CAF + VK2CB – VK1CA = FCA 

 

 Thus the optimization problem is: 

 

   max  (150 + FB) CB 

 

 Subject to: 

 

   0.3 FB  + 400CA  300CB = (150 + FB)CB 

 

   45 + 300 CB – 400 CA = (150 + FB) CA 

       

     FB  200 

 

    CA, CB, FB  0 
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 By using Excel- Solver, the optimum values are 

 

   FB = 200 l/hr 

 

   CA = 0.129 mol A/l 

 

   CB = 0.171 mol B/l 

 

 

 

19.15 

 

 

 Material balance: 

 

   Overall :               FA + FB = F 

 

   Component B:      FB CBF + VK1CA – VK2CB = F CB 

 

   Component A:      FA CAF + VK2CB – VK1CA = FCA 

 

 Thus the optimization problem is: 

 

   max (150 + FB) CB 

 

 Subject to: 

 

   0.3 FB  +  310
6
e

(-5000/T)
CA V  610

6
e

(-5500/T)
CB V = (150 + FB)CB 

 

   45 +  610
6
e

(-5500/T)
CB V  – 310

6
e

(-5000/T)
 CA V = (150 + FB) CA 

 

    FB  200 

    300   T   500 

    CA, CB, FB  0 

 

 By using Excel- Solver, the optimum values are 

 

   FB = 200 l/hr 

 

   CA = 0.104 molA/l 

 

   CB = 0.177 mol B/l 

 

    T = 311.3 K 
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Chapter 20 
 
 
 20.1 
 
 

a) The unit step response is 
 

2
23 1 1 45 20( ) ( ) ( ) 3

(15 1)(10 1) 15 1 10 1

s
s

p
eY s G s U s e

s s s s s s

−
−    = = = − +    + + + +    

 

Therefore, 
 

( 2)/10 ( 2)/15( ) 3 ( 2) 1 2 3t ty t S t e e− − − − = − + −   
 

For ∆t = 1, 
 

{ }( ) ( ) 0, 0, 0.0095, 0.036, 0.076, 0.13...iS y i t y i= ∆ = =  

 
b) Evaluate the expression for y(t) in part (a) 

 
y(t) = 0.99 (3) ≈ 2.97 at    t = 87. 

  
Thus, N = 87, for 99% complete response. 

 
 
 
20.2 
 
 
 a) Note that )()()()( sGsGsGsG mpv= .  From Figure 12.2, 
 

   ( ) 4(1 3 )( )
( ) (15 1)(5 1)

mY s sG s
P s s s

−
= =

+ +
    (1) 

 
  For a unit step change, ssP /1)( =  , and (1) becomes: 
 

   1 4(1 3 )( )
(15 1)(5 1)m

sY s
s s s

−
=

+ +
 

 
 
 

© Solution Manual for Process Dynamics and Control, 4th edition 
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Partial Fraction Expansion: 
 

   ( )
(15 1) (5 1)m

A B CY s
s s s

= + + =
+ +

1 4(1 3 )
(15 1)(5 1)

s
s s s

−
+ +

  (2) 

  where: 
 

   
0

4(1 3 ) 4
(15 1)(5 1) s

sA
s s =

−
= =

+ +
 

   
1

15

4(1 3 ) 108
(5 1) s

sB
s s =−

−
= = −

+
 

   
1
5

4(1 3 ) 16
(15 1) s

sC
s s =−

−
= =

+
 

 

  Substitute into (2) and take the inverse Laplace transform: 
 

   /15 /536 16( ) 4
5 5

t t
my t e e− −= − +      (3) 

 
b) The new steady-state value is obtained from (3) to be ym(∞)=4. 

 

For t = t99,   ym(t)=0.99ym(∞) = 3.96.  Substitute into (3)  
 

 99 99/15 /536 163.96 4
5 5

t te e− −= − +     (4)  

 
Solving (4) for t99 gives t99 ≈ 77.9 min  
 
Thus, we specify that ∆t =77.9/30 ≈  3 min   
 

  

Table S20.2.  Step response coefficients 

 
k t (min) Si k t (min) Si k t (min) Si 
1 3 -0.139 11 33 3.207 21 63 3.892 
2 6 0.138 12 36 3.349 22 66 3.912 
3 9 0.578 13 39 3.467 23 69 3.928 
4 12 1.055 14 42 3.563 24 72 3.941 
5 15 1.511 15 45 3.642 25 75 3.951 
6 18 1.919 16 48 3.707 26 78 3.960 
7 21 2.272 17 51 3.760 27 81 3.967 
8 24 2.573 18 54 3.803 28 84 3.973 
9 27 2.824 19 57 3.839 29 87 3.978 

10 30 3.034 20 60 3.868 30 90 3.982 
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20.3 
 
 

From the definition of matrix S, given in Eq. 20-28, for P=5, M=1, with Si 
obtained from Exercise 20.1, 
 

 S























=























=

2174.0
1344.0

06572.0
01811.0

0

5

4

3

2

1

S
S
S
S
S

  

 
From Eq. 20-65:  
 
 Kc = (STS)-1ST 
 

Kc = [ ]1076.39206.19395.02589.00  = Kc1
T 

 
Because Kc1

T  is defined as the first row of Kc, Using the given analytical 
result, 

Kc1
T   =   [ ]543215

1

2 )(

1 SSSSS
S

i
i∑

=

 

Kc1
T  =  [ ]2174.01344.006572.001811.00

06995.0
1  

 
Kc1

T  =   [ ]1076.39206.19395.02589.00  
 
  which is the same as the answer that was obtained above using (20-65). 
 
 
20.4 
 
 

The step response is obtained from the analytical unit step response as in 
Example 20.1. The feedback matrix Kc is obtained using Eq. 20-65 as in 
Example 20.5. These results are not reported here for sake of brevity. The 
closed-loop response for set-point and disturbance changes are shown 
below for each case. The MATLAB MPC Toolbox was used for the 
simulations. 
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i) For this model horizon, the step response is over 99% complete as in 
Example 20.5; hence the model is good. The set-point and disturbance 
responses shown below are non-oscillatory and have long settling times 

 
    Figure S20.4a.  Controller i); set-point change. 
 
 

   
    Figure S20.4b.  Controller i); disturbance change. 
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ii) The set-point response shown below exhibits same overshoot, smaller 
settling time and undesirable "ringing" in u compared to part i). The 
disturbance response shows a smaller peak value, a lack of oscillations, 
and faster settling of the manipulated input. 

 
  Figure S20.4c.  Controller ii); set-point change. 
 

 
  Figure S20.4d.  Controller ii); disturbance change. 
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iii) The set-point and disturbance responses shown below show the same 
trends as in part i). 

 
    Figure S20.4e.  Controller iii); set-point change. 
 
 

 
  Figure S20.4f.  Controller iii); disturbance change. 
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iv) The set-point and load responses shown below exhibit the same trends as 
in parts (i) and (ii). In comparison to part (iii), this controller has a larger 
penalty on the manipulated input and, as a result, leads to smaller and less 
oscillatory input effort at the expense of larger overshoot and settling time 
for the controlled variable. 

 
  Figure S20.4g.  Controller iv); set-point change. 

 
 

 
  Figure S20.4h.  Controller iv); disturbance change. 
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20.5 
 
 

There are many sets of values of M, P and R that satisfy the given 
constraint for a unit load change. One such set is M=3, P=10, R=0.01 as 
shown in Exercise 20.4(iii). Another set is M=3, P=10, R=0.1 as shown in 
Exercise 20.4(iv). A third set of values is M=1, P=5, R=0 as shown in 
Exercise 20.4(i). 

 
 
 
 
 
20.6 
 
   

(Use MATLAB Model Predictive Control Toolbox) 
 

As shown below, controller a) gives a better disturbance response with a 
smaller peak deviation in the output and less control effort. However, 
controller (a) is poorer for a set-point change because it leads to 
undesirable "ringing" in the manipulated input. 
 

 

   
  Figure S20.6a.  Controller a); set-point change. 
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  Figure S20.6b.  Controller a); disturbance change. 

 
 

 
  Figure S20.6c.  Controller b); set-point change. 
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  Figure S20.6d. Controller b); disturbance change. 

 
 
20.7 
 
  The unconstrained MPC control law has the controller gain matrix: 
 
   Kc = (STQS+R)-1STQ 
 
  For this exercise, the parameter values are: 
  m = r = 1 (SISO), Q=I, R=1 and M=1 
   

Thus (20-65) becomes 
 
   Kc = (STQS+R)-1STQ 
 

  Which reduces to a row vector:  Kc = 
[ ]

∑
=

+
P

i
i

P

S

SSSS

1

2
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20.8 
 
   (Use MATLAB Model Predictive Control Toolbox) 
 
 a)   M=5  vs.  M=2

  
       Figure S20.8a1.  Simulations for P=10, M=5 and R=0.1I. 

 

  
        Figure S20.8a2.  Simulations for P=10, M=2 and R=0.1I. 
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b)   R=0.1I   .vs    R=I 

 
              Figure S20.8b1.  Simulations for P=10, M=5 and R=0.1I. 
 

   
                      Figure S20.8b2.  Simulations for P=10, M=5 and R=I. 
 

  Notice that the larger control horizon M and the smaller input weighting  
  R, the more control effort is needed.  
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20.9 
 
  The open-loop unit step response of Gp(s) is 
   

  =)(ty  L-1 =







+

−

ss
e s 1

110

6

 L-1 =















+
−−

110
1016

ss
e s [ ]10/)6(1)6( −−−− tetS  

 
  By trial and error, y(34) < 0.95,  y(36) > 0.95. 
 
  Therefore N∆t =36 or N = 18. 
 

The coefficients { }iS  are obtained from the expression for y(t) and the 
predictive controller is obtained following the procedure of Example 20.5. 
The closed-loop responses for a unit set-point change are shown below for 
the three sets of controller design parameters. 

 
 
 

20.10 
 
  
 Note: These results were generated using the PCM Furnace Module, MPC option 
 

c) CO2 Set-point change  
 
The set-point responses in Figs. S20.10a and . S20.10b demonstrate that 
increasing the elements of the R matrix makes the controller more 
conservative and results in more sluggish responses. 
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Figure S20.10a. CO2 Set-point change from 0.922 to 1.0143 for P=20, M=1, and 
Q = diag [0.1, 1]. The two series represent R = diag [0.1,  0.1] and R = diag 
[0.5,  0.5]. 
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d) Step disturbance in hydrocarbon flow rate 
 

The disturbance responses in Fig. S20.10b are sluggish after an initial 
oscillatory period, and the two MVs change very slowly. When the diagonal 
elements of the R matrix are increased to 0.5, the disturbance responses are 
even more sluggish. 
 

 
 
 
 
Figure S20.10b. The two series represent R = diag [0.1,  0.1] and R = diag [0.5,  
0.5]. 
 

 
 

 
 

20.11 
 
 
We repeat 20.10 for R [0.1 0.1], Q = [0.1 1] and (a) M=1 and (b) M=4 
 
First we evaluate the controller response to a step change in the oxygen concentration setpoint 
from 0.922 to 1.0143. 
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Figure S20.11a. Step change in oxygen concentration setpoint for P=20, Q = 
diag [0.1, 1], R = diag [0.1,  0.1], and M=1 or M=4.  

 
 
Next we test a step change in the hydrocarbon flow rate from 0.035m3/min to 0.038m3/min.  
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Figure S20.11b. Step change in fuel gas flow rate for P=20, Q = diag [0.1, 1], R 
= diag [0.1,  0.1], and M=1 or M=4.  

 
 
 

20.12 
 
 

Note: These results were generated using the PCM Distillation Column Module, 
MPC option 
 
For parts (a) and (b), the step response for the models were generated in the 
workspace. Then the PCM distillation column module was opened. The controller 
parameters were entered into the MPC controller as specified in parts (a) and (b). 
Then, the tests described in parts (c)-(e) were carried out for each controller. The 
results are shown below.  
 
(c) Step change in xD setpoint from 0.85 to 0.8 
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Figure S20.12a. Step change in xD setpoint from 0.85 to 0.8 for Q=diag [0.1 
0.1] and Q=diag [0.5 0.5]. 
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(d) Step change in xB setpoint from 0.15 to 0.20 
 

 
Figure S20.12b. Step change in xB setpoint from 0.15 to 0.2 for Q=diag [0.1 
0.1] and Q=diag [0.5 0.5]. 
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(e) Step change in column feed flow rate from 0.025 to 0.03 
 

 
Figure S20.12a. Step change in column feed flow rate from 0.025 to 0.03 for 
Q=diag [0.1 0.1] and Q=diag [0.5 0.5]. 

 
 

 
 

20.13 
 
 
We repeat problem 20.12, but this time we look at the case where R = [0.1 1], Q = [0.1 0.1], and 
M=1 or M=5. The same three tests are repeated from 20.12.  
 
(c) Step change in xD from 0.85 to 0.8 
 



20 - 21 
 

 
Figure S20.13a. Step change in xD setpoint from 0.85 to 0.8 for M=1 and M=5. 
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(d) Step change in xB setpoint from 0.15 to 0.20 
 

 
Figure S20.13b. Step change in xB setpoint from 0.15 to 0.2 for M=1 and M=5. 
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(e) Step change in column feed flow rate from 0.025 to 0.03 
 

 
Figure S20.13c. Step change in column feed flow rate from 0.025 to 0.03 for 
M=1 and M=5. 
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21.1 

 

No.  It is desirable that the minimum value of the output signal be greater 

than zero, in order to readily detect instrument failures.  Thus, for a 

conventional electronic instrument, an output signal of 0 mA indicates that 

a malfunction has occurred such as a power failure.  If the instrument range 

were 0-20 mA, instead of 4-20 mA, the output signal could be zero during 

normal operation.  Thus, instrument failures would be more difficult to 

detect. 

 

21.2 

 

The difference between a measurement of 6.0 and the sample mean, 5.75, 

is 0.25 pH units.  Because the standard deviation is s = 0.05 pH units, this 

measurement is five standard deviations from the mean.  If the pH 

measurement is normally distributed (an assumption), then Fig. 21.7 

indicates that the probability that the measurement is less than or equal to 

five standard deviations from the mean is 0.99999943.  Thus, the probability 

p of a measurement being greater than five standard deviations from the 

mean is only p =1 - 0.99999943 = 5.7x10-7.  Consequently, the probability 

that a measurement will be larger than five standard deviations from the 

mean is half of this value, p/2, or 2.85x10-7. A very small value! 

 

 

21.3 

 

 

Make the usual SPC assumption that the temperature measurement is 

normally distributed.  According to Eq. 21-6, the probability that the 

measurement is within three standard deviations from the mean is 0.9973 

Thus, the probability that a measurement is beyond these limits, during 

routine operation is p = 1- 0.9973 = 0.0027.  From Eq. 21-19, the average 

run length ARL between false positives is, 

1
366 samplesARL

p
   

 



 

21-2 

Thus for a sampling period of one minute, on average we would expect a 

false positive every 366 min.  Consequently, for an eight hour period, the 

expected number of false alarms N is given by: 

(8 h)(60samples / h)
 1.31 1 falsealarm

366 samples/falsealarm
N     

 

 

21.4 

 

Let p denote the desired probability. 

 

(a) p = (0.95)3 = 0.857 
 

(b) p = (0.05)3 = 1.25 x 10-4 
 

(c) A much better approach is available. The median of the three 

measurements is much less sensitive to a sensor failure. Thus, it 

should be used instead of the average. 

 

 

21.5 

 

A plot of the data in Figure S21.5 does not indicate any abnormal 

behavior. 

 

 

 

Figure S21.5. Impurity data for Exercise 21.5. 

 

The following statistics and chart limits can be calculated from the data: 

 UCL = T + 3 = 0.8 + 3(0.021) = 0.863 % 

 LCL  = T - 3  = 0.8 - 3(0.021) = 0.737 % 
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Figure S21.5 indicates that all eight data points are within the Shewhart 

chart limits.   

 

A standard CUSUM chart (k=0.5, h=5) also does not exhibit any chart 

violations since the CUSUM chart limit is h = 5and neither C+ or 

C- calculated from Eq. 21-21 and 21-22 exceed this limit. The CUSUM 

calculations are shown in Table S21.5. 

 

Table S21.5. CUSUM calculations for Exercise 21.5 

        Deviation    
 Day  Impurity (%)   from Target     CUSUM    + CUSUM - 

1 0.812 0.012 0.0015   0 

2 0.791        -0.009 0.0015   0 

3 0.841 0.041      0.0320   0 

4 0.814 0.014 0.0355   0 

5 0.799        -0.001 0.0355   0 

6 0.833 0.033     0.0580   0 

7 0.815 0.015 0.0625   0 

8 0.807 0.007 0.0625   0 
 

 

 

21.6 

 

 

(a) The Shewhart chart for the rainfall data is shown in Fig. S21.6a. The 

following items were calculated from the data for 1870-1919: 

 s =  7.74 in.  UCL  =  41.9 in. 

x  =18.6 in.  LCL  =  - 4.71 in. (actually zero) 

The rainfall exceeded a chart limit for only one year, 1941. 
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Figure S21.6a. Shewhart chart for rainfall data. 

(b) The control chart for the standard deviation of the subgroup data (for each 

decade) is shown in Fig. S21.6b. The following items were calculated for 

the sub-group data prior to 1940: 

s  = 6.87 in.  

UCL = B4 s = (1.716)(6.87 in) = 11.8 in. 

LCL =  B3 s = (0.284)(6.87 in) = 1.95 in. 

The sub-group data does not violate the chart limits for 1940-1990. 

 

Figure S21.6b. Standard deviations for sub-groups. 
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21.7 

 

 

The CUSUM and EWMA control charts for the period 1900-1960 are 

shown in Figure S21.7.  The Shewhart chart and the data are also shown in 

the top portion, for the sake of comparison.  The following statistics and 

chart limits were calculated from the data for 1900 through 1929: 

s = 7.02 in.  x  =19.2 in.   

Control Chart UCL (in.) LCL (in.) 

Shewhart 40.2  - 1.9 (actually zero) 

CUSUM 35.1       0 

EWMA 27.1  11.2 

The rainfall exceeded a Shewhart chart limit for only one year, 1941 the 

wettest year in the dataset.  The CUSUM chart has both high (C+) and low 

(C-) chart violations during the initial period, 1900-1929.  Two subsequent 

low limit violations occurred after 1930.  After each CUSUM violation, the 

corresponding sum was reset to zero.  No chart violations occur for the 

EWMA chart and the entire dataset.  
 

The CUSUM chart indicate that the period from 1930 to 1950 had two dry 

spells while the Shewhart chart identifies one wet spell.  The rainfall during 

the 1950s was quite normal. 
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Fig. S21.7. Control charts for Rainfall Data. 

 

 

21.8 

 

 

In general, it is preferable to plot unfiltered measurements because they 

contain the most information.  However, it is important to be consistent. 

Thus, if the control chart limits were calculated based on unfiltered data, 

unfiltered measurements should be plotted for subsequent monitoring.  

Conversely, if the chart limit calculations were based on filtered data, 

filtered measurements should be plotted.   

 

 

21.9 

 

The control charts in Fig. S21.9 do not exhibit any control chart violations. 

Thus, the process performance is considered to be normal.  The CUSUM 

chart was designed using the default values of ˆ= 0.5σ = 0.5K s  and 

ˆ= 5σ = 5H s where s is the sample standard deviation.  The EWMA chart 

was designed using =0.25. 
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Figure S21.9. Control charts for the BOD data of Example 21.5. 

 

 

 

21.10 

 

 

By definition, 

(21 25)
6

p

USL LSL
C




  

Because the population standard deviation  is not known, it must be 

replaced by an estimate, ̂ . Let ̂ = s where s is the sample standard 

deviation.  The standard deviation of the BOD data is s = 5.41 mg/L.  

Substitution gives, 

35 5
0.924

6(5.41)
pC


   
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Capability index Cpk is defined as: 

min [ , ]
(21 26)

3
pk

x LSL USL x
C



 
  

The sample mean for the BOD data is x = 20.6 mg/L. Substituting 

numerical values into (21-26) gives: 

min [20.6 5, 35 20.6]
0.887

3(5.41)
pkC

 
   

Because both capability indices are less than one, the product specifications 

are not being met and process is considered to be performing poorly. 

 

 

21.11 

 

By definition, 

(21 25)
6

p

USL LSL
C




  

Because the population standard deviation  is not known, it must be 

replaced by an estimate, ̂ . Let ̂ = s where s is the sample standard 

deviation.  The standard deviation of the solids data is s = 56.3 mg/L.  

Substitution gives, 

1600 1200
1.18

6(56.3)


 pC  

Capability index Cpk is defined as: 

min [ , ]
(21 26)

3
pk

x LSL USL x
C



 
  

The sample mean for the solids data is x = 1413 mg/L. Substituting 

numerical values into (21-26) gives: 

min [1413 1200,1600 1413]
1.26

3(56.3)

 
 pkC  

Because both capability indices are well below the acceptable value of 1.5, 

the process is considered to be performing poorly. 
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21.12 

 

The new data are plotted on a T2 chart in Fig. S21.12. A chart violation 

occurs for the second data point.  Because one of the six measurements 

is beyond the chart limit, it appears that the process behavior could be 

abnormal. However, this measurement may be an “outlier” and thus 

further investigation is advisable.  Also, additional data should be 

collected before concluding that the process operation is abnormal.   

Note that the previous control chart limit of 11.63 from Example 21.6 

is also used in this exercise. 

 

 

Figure S21.12. T2 Control chart and new wastewater data. 
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Chapter 22 
 

 

 

 

 22.1 

 

   

Microwave Operating States 

Condition Fan Light Timer 
Rotating 

Base 

Microwave 

Generator 

Door 

Switch 

Open the door 

Place the food inside 
OFF ON OFF OFF OFF ON 

Close the door OFF OFF OFF OFF OFF OFF 

Set the time OFF OFF OFF OFF OFF OFF 

Heat up food ON ON ON ON ON OFF 

Cooking complete OFF OFF OFF OFF OFF OFF 

 

Safety Issues: 

o Door switch is always OFF before the microwave generator is turned ON. 

o Fan always ON when microwave generator is ON. 

 

22.2 

 

Input Variables: 

ON 

STOP 

EMERGENCY 

 

Output Variables: 

START  (1) 

STOP   (0) 
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Truth Table 

 

The truth state table is used to find the logic law that relates inputs with 

outputs: 

 

EMERGENCYSTOPON   

 

Applying Boolean Algebra we can obtain an equivalent expression: 

 

)()( EMERGENCYSTOPONEMERGENCYSTOPON   

 

Finally the binary logic and ladder logic diagrams are given in Figure 

S22.2: 

 

Binary Logic Diagram: 

 

 

ON

STOP
EMERGENCY

 
 

 

Ladder Logic Diagram 

 

 

 

ON STOP EMERGENCY START/STOP 

1 1 1 0 

0 1 1 0 

1 0 1 0 

0 0 1 0 

1 1 0 0 

0 1 0 0 

1 0 0 1 

0 0 0 0 
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Figure S22.2. 

22.3 

 

 

 

A B Y 

0 0 1 

1 0 1 

0 1 0 

1 1 1 

 

From the truth table it is possible to find the logic operation that gives the     

desired result, 

 

BA   
  

Since a NAND gate is equivalent to an OR gate with two negated inputs, 

our expression reduces to:  BABA   

 

Finally the binary logic diagram is given in Figure S22.3. 

 

B

A
Y

 
Figure S22.3. 
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Information Flow Diagram 
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Ladder Logic Diagram 
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Sequential Function Chart 
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Figure S22.4. 
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22.5 

 

Information Flow Diagram 

 

START

Open V
1

P
1
 ON

L=L
1

Close V
1

P
1
 OFF

L=L
0

Heat ON

Temperature>T
H

Heat OFF

Open V
2

P
2
 ON

L=L
0

Close V
2

P
2
 OFF

No

No

No

No

 



22-8 

Ladder Logic Diagram: 

 

R1= Pump 1 R2= Valve 2 R3= Heater R4= Pump 2  
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Sequential Function Chart: 
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Figure S22.5. 
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22.6 

 

Information Flow Diagram: 
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Sequential Function Chart: 
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Ladder Logic Diagram: 

 

 

Figure S22.6. 
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22.7 

Information Diagram: 

START
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Ladder Logic Diagram: 

 

R1= V1 R2= M   R3= V4 R4= V2 R5= V3 
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Sequential Function Chart: 

 

 

Figure S22.7. 
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22.8 

 

 

In batch processing, a sequence of one or more steps is performed in a defined 

order, yielding a finished product of a specific quantity. Equipment must be 

properly configured in unit operations in order to be operated and maintained in a 

reasonable manner. 

 

The discrete steps necessary to carry out this operation could be: 

 

 .- Open exit valve in tank car. 

 

 .-  Turn on pump 1 

 

.- Empty the tank car by using the pump and transfer the chemical 

to the storage tank (assume the storage tank has larger capacity 

than the tank car) 

 

 .- Turn off pump 1 

 

     .- Close tank car valve (to prevent backup from storage tank) 

 

.- Open exit valve in storage tank. 

 

.- Transfer the chemical to the reactor by using the second  pump  

  

 .- Close the storage tank exit valve and turn off pump 2. 

 

.- Wait for the reaction to reach completion. 

 

 .- Open the exit valve in the reactor. 

 

.- Discharge the resulting product 

 

 

Safety concerns: 

 

Because a hazardous chemical is to be handled, several safety issues must 

be considered: 

 

.- Careful and appropriate transportation of the chemical, based 

on safety regulation for that type of product. 

 

.-  Appropriate instrumentation must also be used. Liquid level 

indicators could be installed so that pumps are turned off based on 

level. 
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.- Chemical leak testing, detection, and emergency shut-down 

 

.- Emergency escape plan. 

 

Therefore, care should be exercised when transporting and operating hazardous 

chemicals. First of all, tanks and units should be vented prior to charging. 

Generally, materials should be stored in a cool dry, well-ventilated location with 

low fire risk. In addition, outside storage tanks must be located at minimum 

distances from property lines. 

 

Pressure, level, flow and temperature control could be utilized in all units. Hence, 

they must be equipped with instrumentation to monitor these variables. For 

instance, tank levels can be measured accurately with a float-type device, and 

storage temperatures could be maintained with external heating pads operated by 

steam or electricity. It is possible for a leak to develop between the tank car and 

storage tank, which could cause high flow rates, so a flow rate upper limit may be 

desirable. 

 

Valves and piping should have standard connections.  Enough valves are required 

to control flow under normal and emergency conditions. Centrifugal pumps are 

often preferred for most hazardous chemicals. In any case, the material of 

construction must take into account product chemical properties. 

 

Don't forget that batch process control often requires a considerable amount of 

logic and sequencing for their operation. Besides, interlocks and overrides are 

usually considered to analyze and treat possible failure modes. 
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1.- Because there is no steady state for a batch reactor, a new linearization 

point is selected at t = 0. Then, 

 

 Linearization point for batch reactor:  t = 0  *
t  

   

2.- Available information:  

 

  

   )(min104.2
1/2000015 


T

ek     where T is in 
o
R  
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o

BTU
0.843

lb F
C     3

1336 ftV     

 
3

lb
52

ft
            

3
ft

26
min

q    

 
kJ

( ) 500
mol

H     
3

mol
0.8

ft
Ai

C    

 

  o
150 F

i
T      o

25 C
s

T   

 

   
o

kJ
142.03

min F
UA                 

 

 For continuous reactor,  o
150 FT    

    

   Physical properties are assumed constant. 

 

 

  Problem solution: 

 

A stirred batch reactor has the following material and energy balance 

equations: 

 

  
dt

dC
kC A

A          (1)  

 

  ( ) ( )
A s

dT
H kVC UA T T V C

dt
         (2) 

   where RTE
ekk

/

0


  

 

From Eqs. 1 and 2, linearization gives:  

*
* * * * /

0 *2

E RT A

A A A

dCE
k C k C C k e T

RT dt

  
     

 
   (3) 

 

 

( )H V
*

* * * * /

0 *2

E RT

A A A

E
k C k C C k e T

RT

 
   

 
    

 

( )
s

dT
UA T T V C

dt


           (4) 

 

Rearranging, the following equations are obtained: 
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11 12

A

A

dC
b C b T

dt


          (5) 

 

21 22 23A s

dT
b C b T b T

dt


          (6) 

 

 

 where 

 

  615.13
*

/

011 
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ekb  
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2*

*/

012

*












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E
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RTE
 

 

  

*
/

0

21

( )
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E RT
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b
C




 


 

  
*

/ *

22 0 *2

1
( ) 6.66

E RT

A

E UA
b H k e C

C RT VC

  
    
  

 

 

  
3

23
2.43 10

UA
b

VC


  


 

 

 

From Example 4.8, substituting values for continuous reactor 

 

  636.1311 a  

 

  4

12 1035.8


a  

 

27.15521 a  

 

  0159.022 a  

 

  3

2 1043.2


b  

 

 

 (Note that , from material balance, 0.00114
A

C  ) 

 

Hence the transfer functions relating the steam jacket temperature )(sTs
  

and the tank outlet concentration )(sC A
  are: 

 



22-17 

 

Continuous reactor:    

 

 
6 6

2 2

( ) 2.03 10 5.86 10

( ) 13.651 0.3464 2.887 39.4 1

A

s

C s

T s s s s s

     
 

    
   

 

 

   then dom min35  

 

 

Batch reactor:      

 
3 3

2 2

( ) 1.424 10 5.47 10

( ) 6.931 0.26 3.84 26.65 1

A

s

C s

T s s s s s

     
 

    
 

 

 then dom min25  

 

As noted in transfer functions above, the time constant for the batch is 

smaller than the time constant for the continuous reactor, but the gain is 

much larger. 
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The reactor equations are: 

 

  11

1 xk
dt

dx
        (1) 

  2211

2 xkxk
dt

dx
       (2) 

 

  where k1= 1.335 10
10

e
-75,000/(8.31 T)    

and    k2= 1.149 10
17

e
-125,000/(8.31 T)

 

 

By using MATLAB, this differential equation system can be solved using 

the command "ode45". Furthermore we need to apply the command 

"fminsearch" in order to optimize the temperature. In doing so, the results 

are: 

a) Isothermal operation to maximize conversion (x2(8)): 

  

Top = 357.8 K       and       x2max = 0.3627 
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b) Cubic temperature profile: the values of the parameters in T=a0 + 

a1t + a2t
2 
+ a3t

3   
that maximize x2(8) are: 

 

      a0 = 372.78 

      a1 = -10.44     and        x2max = 0.3699 

      a2 = 2.0217 

      a3 = -0.1316 

 

The optimum temperature profile and the optimum isothermal operation 

are shown in Fig. S22.10.   

 
 Figure S22.10.  Optimum temperature for the batch reactor. 

MATLAB simulation:    

 

a) Constant temperature  (First declare Temp as global variable) 

 

1.- Define the differential equation system in a file called batchreactor. 

   
function dx_dt=batchreactor(time_row,x) 

global Temp 

dx_dt(1,1)=-1.335e10*x(1)*exp(-75000/8.31/Temp); 

dx_dt(2,1)=1.335e10*x(1)*exp(-75000/8.31/Temp) - 

1.149e17*x(2)*exp(-125000/8.31/Temp); 

 

2.- Define a function called conversion that gives the final value of x2 (given a 

value of the temperature) 
 
  function x2=conversion(T) 

global Temp 

Temp=T; 

x_0=[0.7,0]; 

[time_row, x] = ode45('batchreactor', [0 8], x_0 ); 

  x2=-(x(length(x),2)); 
 

3.- Find the optimum temperature by using the command fminsearch 
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  [T,negative_x2max]=fminsearch('conversion', To) 

 

    where To is our initial value  to find the optimum temperature. 

 
b) Temperature profile  (First declare a0 a1 a2 a3  as global variables) 

 

1.- Define the differential equation system in a file called batchreactor2. 

  
  function dx_dt=batchreactor2(time_row,x) 

global a0 a1 a2 a3 

Temp=a0+a1*time_row+a2*time_row^2+a3*time_row^3; 

dx_dt(1,1)=-1.335e10*x(1)*exp(-75000/8.31/Temp); 

dx_dt(2,1)=1.335e10*x(1)*exp(-75000/8.31/Temp) - 

1.149e17*x(2)*exp(-125000/8.31/Temp); 

 

2.- Define a function called conversion2 that gives the final value of x2    (given  

the values of the temperature coefficients) 
 

   function x2b=conversion(a) 

global a0 a1 a2 a3 

a0=a(1);a1=a(2);a2=a(3);a3=a(4);x_0=[0.7,0]; 

[time_row, x] = ode45('batchreactor2', [0 8], x_0 ); 

x2b=-x(length(x),2); 

 

3.- Find the optimum temperature profile by using the command fminserach 
  [T,negative_x2max]=fminsearch('conversion2', ao) 

    where ao is the vector of initial values  to find the optimum temperature profile. 
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The intention is to run the reactor at the maximum feed rate of the gas to 

minimize the time cycle, but the reactor is also cooling-limited. Therefore, 

if the pressure controller calls for a gas flow that exceeds the cooling 

capability of the reactor, the temperature will start to rise. The reaction 

temperature is not critical, but it must not exceed some maximum 

temperature. The temperature controller will then take over control of the 

feed valve and reduce the feed rate. The output of the selector sets the 

setpoint of a flow controller. The flow controller minimizes the effects of 

supply pressure changes on the gas flow rate. So this is a cascade type 

control system, with the primary controller being an override control 

system. 
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In an override control system, one of the controllers is always in a standby 

condition, which will cause that controller to saturate. Reset windup can 

be prevented by feeding back the selector relay output to the setpoint of 

each controller. Because the reset actions of both controllers have the 

same feedback signal, control will transfer when both controllers have no 

error. Then the outputs of both controllers will be equal to the signal in the 

reset sections. Because neither controller has any error, the outputs of both 

controllers will be the same. Particular attention must be paid to make sure 

that at least one controller in an override control system will always be in 

control. If not, then one of the controllers can wind up, and reset windup 

protection is necessary.  

22.12 

 

 

  Material balance: 
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  then  

 

   
dt

dC

Cdt

dX A

A0

1
  

 

  Therefore 

                                                     

)2)(1(0 XXkC
dt

dX
BA       (1) 

   

 

  Energy balance: 

   

     
p

rg

NC

QQ

dt

dT 
     (2) 

 

 

  where    2
(1 )( 2 ) ( )

g AO B RX
Q kC X X V H      

     )298(  TUAQr
 

   

Eqs. 1 and 2 constitute a differential equation system. By using MATLAB, 

this system can be solved as long as the initial conditions are specified. 

Command "ode45" is suggested. 

 

 

A.- ISOTHERMAL OPERATION UP TO 45 MINUTES 

 

We will first carry out the reaction isothermally at 175 C up to the time 

the cooling was turned off at 45 min.  

 

   Initial conditions : X(0) = 0   and T(0)= 448 K 

 

Figure S22.12a shows the isothermal behavior for these first 45 minutes.  
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 Figure S22.12a.  Isothermal behavior for the first 45 minutes 

 

B.- ADIABATIC OPERATION FOR 10 MINUTES 

 

The cooling is turned off for 45 to 55 min. We will now use the conditions 

at the end of the period of isothermal operation as our initial conditions for 

adiabatic operation period between 45 and 55 minutes. 

 

      t = 45 min    X = 0.033     T = 448 

 
   Figure S22.12b.  Adiabatic operation when the cooling is turned off. 
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C.- BATCH OPERATION WITH HEAT EXCHANGE  

 

Return of the cooling occurs at 55 min. The values at the end of the period 

of adiabatic operation are: 

 

 t = 55     T = 468 K    X = 0.0423 

 

 
  Figure S22.12c.  Batch operation with Heat Exchange; temperature   

           runaway. 

 

As shown in Fig. S22.12c, the temperature runaway is finally unavoidable 

under new conditions: 

 

. Feed composition = 9.044 kmol of ONCB, 33.0 kmol of NH3, and 103.7 

kmol of H20 

 

. Shut off cooling to the reactor at 45 minutes and resume cooling reactor 

at 55 minutes. 

 
MATLAB simulation: 

 

1.- Let's define the differential equation system in a file called reactor. 

 
function dx_dt=reactor(t,x)   

                              

dx_dt(1,1)=((17e-5*exp(11273/1.987*(1/461-

1/x(2))))*1.767*(1-x(1))*(3.64-2*x(1))); 

 

dx_dt(2,1)=((-(17e-5*exp(11273/1.987*(1/461-

1/x(2))))* 122*(1-x(1))*(3.64-2*x(1))*5.119*(-5.9e5)  

-  35.85*(x(2)-298))/2504 ); 
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 where dx_dt(2,1)the must be equal to 0 for the isothermal operation 

 

  2.- By using the command "ode45", system above can be solved 

 
[times_row,x]=ode45('reactor',[to, tf],[X0,T0]);    

plot(times_row,x(:,1),times_row,x(:,2)); 

 

   where to, tf, X0 and T0 must be specified for each interval.  
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  Tr = Reactor temperature profile 

  Tjsp = Jacket set-point temperature profile (manipulated variable) 

 

 

a) PID controller: 

 

   Kc = 26.5381 

   I =  2.8658 

   D = 0.4284 

 

 

   
        Figure S22.13a.  Numerical simulation for PID controller. 
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b) Batch unit   

 

Kc = 10.7574 

   I =  53.4882 

 
          Figure S22.13b.  Numerical simulation for batch unit. 

 

c) Batch unit with preload 

 

Kc = 10.7574 

   I =  53.4882 

  
   Figure S22.13c.  Numerical simulation for batch unit with preload. 
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d) Dual mode controller 

 

1.- Full heating is applied until the reactor temperature is within 5% of its 

set point temperature. 

2.- Full cooling is then applied for 2.8 min 

3.- The jacket temperature set point Tjsp of controller is then set to the 

preload temperature (46 C) for 2.4 min. 

 

 
  Figure S22.13d.  Numerical simulation for dual-mode controller. 

 

 
MATLAB simulation: 

 

1.- Define a file called brxn: 

 
function dy=brxn(t,y) 

% 

% Batch reactor example 

%  Cott & Machietto (1989); "Temperature control 

%  of exothermic batch reactors using generic model 

%  control", I&EC Research, 28, 1177 

% 

 

% Parameters 

 cpa=18.0; cpb=40.0; cpc=52.0; cpd=80.0; 

   cp=0.45; cpj=0.45; 

   dh1=-10000.0; dh2=6000.0; 

 uxa=9.76*6.24; 

 rhoj=1000.0; 

 k11=20.9057; k12=10000; 

 k21=38.9057; k22=17000; 

 vj=0.6921; 
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 tauj=3.0; 

 wr=1560.0; 

  dy=zeros(7,1); 

 ma=y(1); mb=y(2); mc=y(3); md=y(4); tr=y(5);    

 tj=y(6); 

 tjsp=y(7); 

 

 k1=exp(k11-k12/(tr+273.15)); 

 k2=exp(k21-k22/(tr+273.15)); 

 r1=k1*ma*mb; 

   r2=k2*ma*mc; 

 qr=-dh1*r1-dh2*r2; 

 mr=ma+mb+mc+md; 

   cpr=(cpa*ma+cpb*mb+cpc*mc+cpd*md)/mr; 

 qj=uxa*(tj-tr); 

 

 dy(1)=-r1-r2; 

   dy(2)=-r1; 

   dy(3)=r1-r2; 

   dy(4)=r2; 

   dy(5)=(qr+qj)/(mr*cpr); 

   dy(6)=(tjsp-tj)/tauj-qj/(vj*rhoj*cpj); 

   dy(7)=0; 

 
Note: The error between the reactor temperature and its set-point (e=cvsp-cv) is 

computed at each sampling time. That is, control actions are computed in the 

discrete-time. For the integral action, error is simply summed (se = se+e). 
Controller output is estimated by mv=Kc*e+Kc/taui*se*st, where Kc = 

proportional gain, taui=integral time, e=error, se=summation of error and 

st=sampling time 

 

 

2.- PID controller simulation 

 
clear 

clf 

% 

%  batch reactor control system 

%  PID controller (velocity form) 

% 

 

% process initial values 

ma=12.0; mb=12.0; mc=0; md=0; tr=20.0; tj=20.0; 

tjsp=20.0; 

 

y0=[ma,mb,mc,md,tr,tj,tjsp]; 

 

% controller initial values 

kc=26.5381; taui=2.8658; taud=0.4284;   

en=0; enn=0; 

cvsp=92.83; mv=20; 

 

% simulation 

st=0.2; 

t0=0; tfinal=120; 
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ntf=round(tfinal/st)+1; 

cvt=zeros(1,ntf); mvt=zeros(1,ntf); 

  
for it=1:ntf 

[tt,y]=ode45('brxn',[(it-1)*st it*st],y0); 

 y0=y(length(y(:,1)),:); 

 

 cv=y0(5);  

 

 % PID control calculation 

  

 e=cvsp-cv; 

   mv=mv+kc*(e*st/taui+(e-en)+taud*(e-2*en+enn)/st); 

    if mv>120, mv=120; elseif mv<20, mv=20; end 

 enn=en; en=e; 

 

 y0(7)=mv; 

 

   cvt(it)=cv; mvt(it)=mv; 

 end 

 

 t=(1:it)*st; 

 plot(t,cvt,'-r',t,mvt,'--g') 

 

 

 

  3.- Batch unit simulation 

 
    % controller 

 kc=10.7574; taui=53.4882; 

 mh=120; ml=20; mq=46; 

  

 mv=20; 

 cvsp=92.83; 

 

 % simulation 

 st=0.2; 

 z=ml; al=exp(-st/taui); 

 t0=0; tfinal=120; 

     ntf=round(tfinal/st)+1; 

 

 for it=1:ntf 

 [tt,y]=ode45('brxn',[(it-1)*st,it*st],y0); 

     y0=y(length(y(:,1)),:); 

 

 cv=y0(5); 

  

     e=cvsp-cv; 

     m=kc*e+z; 

 

     if m>mh, m=mh;  

     end 

     f=m 

     z=al*z+(1-al)*f; [f z m] 

 

    y0(7)=m; 
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 cvt(it)=cv; 

    mvt(it)=m; 

end 

 

t=(1:it)*st; 

plot(t,cvt,'-r',t,mvt,'-g'); 

 

 

 

 

  4.- Batch unit with preload simulation 

 
   % controller 

kc=10.7574; taui=53.4882; 

    mh=120; ml=20; mq=46; 

       mv=20; 

cvsp=92.83; 

 

 % simulation 

     st=0.2; 

     z=ml; al=exp(-st/taui); 

     t0=0; tfinal=120; 

 ntf=round(tfinal/st)+1; 

  

 for it=1:ntf 

 [tt,y]=ode45('brxn',[(it-1)*st,it*st],y0); 

     y0=y(length(y(:,1)),:); 

 cv=y0(5); 

 e=cvsp-cv; 

 m=kc*e+z; 

 

     if m>mh, m=mh; else if m<ml, m=ml 

 end 

     end 

     f=m 

     z=al*z+(1-al)*f; [f z m] 

 

     y0(7)=m; 

 

     cvt(it)=cv; 

     mvt(it)=m; 

 end 

 

 t=(1:it)*st; 

 plot(t,cvt,'-r',t,mvt,'-g'); 

 

 

5.- Dual-mode simulation 

 
   clear 

 clf 

 % 

 %  batch reactor control system 

 %  dual-mode controller 

 % 
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 % initial values 

  ma=12.0; mb=12.0; mc=0; md=0; tr=20.0; tj=20.0; 

  tjsp=20.0; 

 

  y0=[ma,mb,mc,md,tr,tj,tjsp]; 

 

 % controller initial values 

  kc=26.5381; taui=2.8658; taud=0.4284;   

  en=0; enn=0; 

  cvsp=92.83; 

  td1=2.8; td2=2.4; pl=46; Em=0.95; 

  mv=20; 

  is=0; 

 

 % simulation 

  st=0.2; 

  t0=0; tfinal=120; 

  ntf=round(tfinal/st)+1; 

  cvt=zeros(1,ntf); mvt=zeros(1,ntf); 

 

 for it=1:ntf 

  [tt,y]=ode45('brxn',[(it-1)*st it*st],y0); 

 y0=y(length(y(:,1)),:); 

  

  cv=y0(5);  

 

  if is==0    %   heat up stage 

   if cv<Em*cvsp 

    mv=120; 

   else 

    is=1; 

    tcool=it*st; 

  end 

  end 

 

  if is==1    %   cooling stage 

   if it*st<tcool+td1 

    mv=20; 

   else 

    is=2; 

    tpre=it*st; 

   end 

  end 

 

  if is==2   %   preload stage 

   if it*st<tpre+td2 

    e=cvsp-cv; 

    mv=pl; 

   else 

    is=3; 

   end 

    enn=en; en=e; 

  end 

 

  if is==3   %   control stage 

    e=cvsp-cv; 
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    mv=mv+kc*(e*st/taui+(e-en)+taud*(e-

 2*en+enn)/st); 

     if mv>120, mv=120; elseif mv<20, mv=20; end 

    enn=en; en=e; 

  end 

 

  y0(7)=mv; 

  

  cvt(it)=cv; 

  mvt(it)=mv; 

 end 

 t=(1:it)*st; 

 plot(t,cvt,'-r',t,mvt,'-g') 
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Chapter 23 
 
 
 
 
 23.1 
 
 
(a) Use IMC-tuning-based PI: identify open loop model as τ=4.5h, K=44 (average of high and 

low open-loop step changes), pick τc as 1/3 of τ. PI tuning: Kc=-.07 L/g-h, τI=4.5h. Closed-loop 

responses are given in the following figure: 

 

Figure S23.1a. Biomass closed-loop response for setpoint change 
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(b) Closed-loop simulation for a -12.5% step change in the maximum growth rate (µm): 

 

 

Figure S23.1b. Biomass closed-loop response for disturbance change 

 

(c) From setpoint response, get slightly underdamped response on negative setpoint 

changes – corresponding to strong open-loop nonlinearity observed in Figure 23.2. 

 

(d) Major difference is new gain (with opposite sign), and different time constant. Gain is 

smaller, time constant is larger, suggesting larger τI, and larger controller gain. 
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 23.2 
 
 
 

 (a) Sample code for MPC design provided below 

 

P=40;                                 %Prediction Horizon 
M=2;                                  %Control Horizon 
Weights=[0,0,0];                      %Manipulated Variables Weights 
(Default = 0,0,0) 
Penalize=[5,1,1];                     %[Bulk Weight, d5 Weight, d90 
Weight] 
Nominals=[180,180,180,40,400,1600];   %[Flow Rates 1-3, Bulk density, d5, 
d90] 
Constrains=[105,345];                 %Lower and Upper Flow Rates 
NominalModelFlag=1;                   % 1=Nominal Model, Otherwise -> 
Actual plant model 
SimTime=[0,50];                       %Simulation time [Start,End] 
StepTarget=[90,400,1600];             %Simulated step change in physical 
units: [Bulk, d5, d90] 
StepTime=1;                           %Time of Simulated step change; 
 
[tsim,ysim_rescaled]=MPCSim(P,M,Weights,Penalize,Nominals,Constrains,Nomin
alModelFlag,SimTime,StepTarget,StepTime); 
plotsimresults(tsim,ysim_rescaled,Constrains,'Nominal Controller'); 
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Figure S23.2a. Setpoint response for closed-loop granulation system under MPC control 
(nominal case)  
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(b) Sample code for MPC design provided below 

P=40;                                 % Prediction Horizon 
M=2;                                  % Control Horizon 
Weights=[0.1,0,0];                      % Manipulated Variables Weights 
(Default = 0,0,0)  
Penalize=[2,1,1];                     % [Bulk Weight, d5 Weight, d90 
Weight] 
Nominals=[180,180,180,40,400,1600];   % [Flow Rates 1-3, Bulk density, d5, 
d90] 
Constrains=[105,345];                 % Lower and Upper Flow Rates 
NominalModelFlag=0;                   % 1=Nominal Model, Otherwise -> 
Actual plant model 
SimTime=[0,100];                      % Simulation time [Start,End] 
StepTarget=[90,400,1600];             % Simulated step change in physical 
units: [Bulk, d5, d90] 
StepTime=1;                           % Time of Simulated step change; 
 
[tsim,ysim_rescaled]=MPCSim(P,M,Weights,Penalize,Nominals,Constrains,Nomin
alModelFlag,SimTime,StepTarget,StepTime); 
plotsimresults(tsim,ysim_rescaled,Constrains,'Actual Plant Simulation'); 
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Figure S23.2b. Setpoint response for closed-loop granulation system under MPC control 

(uncertain case) 
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(c) Sample code provided for each scenario below: 

i) step change in bulk density from 40 to 90 

P=40;                                 % Prediction Horizon 
M=2;                                  % Control Horizon 
Weights=[0.1,0,0];                      % Manipulated Variables Weights 
(Default = 0,0,0)  
Penalize=[1,1,1.5];                     % [Bulk Weight, d5 Weight, d90 
Weight] 
Nominals=[175,175,245,40,400,1620];   % [Flow Rates 1-3, Bulk density, d5, 
d90] 
Constrains=[100,340];                 % Lower and Upper Flow Rates 
NominalModelFlag=0;                   % 1=Nominal Model, Otherwise -> 
Actual plant model 
SimTime=[0,100];                      % Simulation time [Start,End] 
StepTarget=[90,400,1620];             % Simulated step change in physical 
units: [Bulk, d5, d90] 
StepTime=1;                           % Time of Simulated step change; 
 
[tsim,ysim_rescaled]=MPCSim(P,M,Weights,Penalize,Nominals,Constrains,Nomin
alModelFlag,SimTime,StepTarget,StepTime); 
plotsimresults(tsim,ysim_rescaled,Constrains,'Scenario c - 1'); 
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Figure S23.2c.i Closed-loop response for bulk density change 
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ii) simultaneous change in 5th percentile from 400 to 375, and 90th percentile from 1620 

to 1630 

 

P=40;                                 % Prediction Horizon 
M=2;                                  % Control Horizon 
Weights=[0.2,0.1,0.1];                % Manipulated Variables Weights 
(Default = 0,0,0)  
Penalize=[3,2,2];                     % [Bulk Weight, d5 Weight, d90 
Weight] 
Nominals=[175,175,245,40,400,1620];   % [Flow Rates 1-3, Bulk density, d5, 
d90] 
Constrains=[100,340];                 % Lower and Upper Flow Rates 
NominalModelFlag=0;                   % 1=Nominal Model, Otherwise -> 
Actual plant model 
SimTime=[0,100];                      % Simulation time [Start,End] 
StepTarget=[40,375,1630];             % Simulated step change in physical 
units: [Bulk, d5, d90] 
StepTime=1;                           % Time of Simulated step change; 
 
[tsim,ysim_rescaled]=MPCSim(P,M,Weights,Penalize,Nominals,Constrains,Nomin
alModelFlag,SimTime,StepTarget,StepTime); 
plotsimresults(tsim,ysim_rescaled,Constrains,'Scenario c - 2'); 
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Figure S23.2c.ii Closed-loop response for d5 and d90 changes 
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 23.3 
 
 
 (a) τc =1 corresponds to an aggressively tuned controller (fast response). Pick τc as 1/3 of 

tau: Kc=1.43, τI =10.1 

 

 (b)  

 

Figure S23.3.b Closed-loop response for ICP setpoint change 

 

Undershoot=2/10=.2 

Minimum = 8 mm Hg 

Settling time = 4.85 h 

 

(c) Overshoot is modest, the settling time is a bit long, but possibly acceptable for a delay 

system. Smith predictor and/or MPC would make good sense. 
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 23.4 
 
 

 

Figure E23.4 

(a) Assume the change was made at t=3.5 min  

Delay =0.5 min 

Tau=(1/3)*.5=.167min 

Gain=(84-72)/2.5=4.8 
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(b)  

 

Figure S23.4.b Closed-loop response for Heart Rate setpoint change 

 

Rise time = ~1.02 min 

Overshoot = 11.22-10/10=.112 (11.2%) 

Settling time =~2.4 min 

 

 (c) Improved response might be possible with multiple step changes, larger step changes, 

second-order model 
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 23.5 
 
 

 

(a) RGA calculated below: 

 

RGA = 
 
    1.4209    0.0467   -0.4676 
   -0.1508    0.9643    0.1864 
   -0.2701   -0.0111    1.2812 
 

This suggests a diagonal pairing of MVs and CVs 
 

(b) All first order processes: 

IMC tuning rules for PI controllers: 
 

ττ
τ
τ

=

=

I

cK
Kc

 

 
 1-1 Loop 2-2 Loop 3-3 Loop 
Kc 

cτ5107.2
7.3

⋅
 

cτ13.1
5.7

−  
cτ4103.6

7.3
⋅

 

Iτ  3.7 7.5 3.7 
 
Naïve choice for cτ would be 3/ττ =c  
 

(c) Following are step test for setpoint change of 10% of steady-state values for each of 

the controlled variables (using 3/ττ =c ) . The fourth step test is a combined change 

in both variables 2 & 3. 
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Figure S23.5.c.i Closed-loop response for y1 setpoint change
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Figure S23.5.c.ii Closed-loop response for y2 setpoint change 
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Figure S23.5.c.iii Closed-loop response for y3 setpoint change
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Figure S23.5.c.iv Closed-loop response for y2 and y3 setpoint changes 
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 23.6 
 
 
 

(a) To calculate an approximate second-order insulin-glucose model for the patient we shall 
set the disturbance, D, to zero.  A step of one mU/min shall be introduced to the system. 
One simulates the response for 400 min with constant insulin injection of 15 mU/min to 
reach a steady state. Then introduce a step change. Using Smith’s method one can 
identify from the figurer below a second- order model of the form: 

𝐺𝐺(𝑠𝑠) =
𝐾𝐾

𝜏𝜏2𝑠𝑠2 + 2ξτs + 1
 

 
K=-5.16 
t20/t60≅0.5 ξ≅0.48 and τ≅59min 

 

𝐺𝐺(𝑠𝑠) =
−5.16

592𝑠𝑠2 + 2 ∙ 0.48 ∙ 59s + 1
 

 

Figure S23.6.a.i Open-loop step response for change in insulin 
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Figure S23.6.a.ii Comparison of model and process 

 

(b) Using IMC- Based PID controller settings for Gc  for a second-order model: 

Kc=2* ξ * τ /K/τc=-10.29/τc 
τ i=2* ξ * τ=53.1 
τ d= τ /2/ ξ=65.56 
 

(c) Simulation results of the closed-loop system response to a step setpoint change in 

blood glucose of -20 mg/dl. As can be seen from figure below, one can tune τc to 

improve the transient response. 
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Figure S23.6.c Influence of controller tuning on closed-loop response 

 

 

(d) With τc=0.5 as can be seen in figure below, one can maintain the hypoglycemic 
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Figure S23.6.d Closed-loop response to meal disturbance 

 

(e) With 10 min sensor delay the response is sluggish and one violates the upper 

constraint.  The response will become unstable if one tries to tune τc to a lower value 

 
 
 
 23.7 
 
 

(a) On the basis of the transfer function characteristics, the glucagon pump has more 
favorable qualities for use as a manipulated variable.  
• The time delay is smaller, meaning the MV will have an effect on the CV more 

quickly 
• The glucagon pump has simpler (first order versus second order) dynamics and a 

smaller time constant. Overall the dynamics of the glucagon pump are faster.  
• The glucagon pump has a larger gain, meaning it will take less glucagon to have 

the same magnitude of effect on the blood glucose.  
• There are fewer safety concerns with a glucagon pump (the insulin pump has a 

risk of overdosing insulin and causing death, whereas the glucagon pump does not 
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have the same type of risk). Also, the glucagon pump has the ability to correct 
hypoglycemia, while the insulin pump does not.  

 
Note that if the glucagon pump is used as the MV, insulin would still need to be delivered 
either by the patient manually or by a set pattern on an insulin pump. Insulin is necessary 
for survival. Also, glucagon alone cannot be used to lower the BG following the meal 
disturbance. 
 
(b) For the insulin pump, the process transfer function parameters are given as follow: 

 
K = -1.5 
τ1 = 20 min 
τ2 = 25 min 
θ = 30 min 

 
Using IMC tuning rules, the PID controller parameters are given by the following 
expressions from Table 12.1, row I (with τC=20min and τ3=0): 
 

1 2

1 2

1 2

1 2

20 25 0.6
( ) 1.5(20 30)

20 25 45min
20(25) 11.1min
20 25

C
C

I

D

K
K

τ τ
τ θ

τ τ τ
τ ττ

τ τ

+ +
= = = −

+ − +
= + = + =

= = =
+ +

 

  
 

(c) 20(20 1)(25 1) 5
(30 1) 1.5

sd

p

G s sGf e
G s

+ +
= − =

+
 

This controller is not realizable due to the positive 20 min delay (requiring knowledge 
from the future) and the fact that the numerator order is greater than the denominator 
order.  
 
To make the controller realizable, you could set the delay to zero (remove the delay 
term from the controller) and introduce a filter to increase the order of the 
denominator. 

 
(d) See the diagram below 
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 23.8 

 
 
(a) and (b) Reading from the graph, we can generate the following readings: 

 
Sensor %<70 %<180 %<80 %<140 

BG 0.6 67.3 2.2 42.9 
CGM1 1.9 69.1 4.1 48.4 
CGM2 2.6 68.1 4.8 46.1 

  
Using these readings, we can calculate the percentage time from 70-180 mg/dL and from 
80-140 mg/dL as determined by each sensor.   
 

 BG CGM1 CGM2 
70-180 66.7 67.2 65.5 
80-140 40.7 44.3 41.3 

 
According to the BG measurement, the algorithm kept the BG between 70 and 180mg/dL 
for 66.7% of the time. The BG spent 0.6% of time below 70mg/dL and 32.7% of time 
above 180mg/dL. This means that the BG was in the desired range for about 2/3 of the 
total time. Most of the time that was not spent within 70-180mg/dL was spent above 
180mg/dL. Very little time was spent below 70mg/dL, which is good for safety. The time 
spent below 70mg/dL should be minimized, although in reality it is very difficult to 
completely eliminate hypoglycemia. According to the graph, very little time was spent 
with BG above 300mg/dL, which is also good for safety.  
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(c) The two CGMs overestimated the time that was spent below 70 mg/dL. In fact, from 
the graph we see that the CGMs overestimated the time spent below glucose levels up to 
about 200mg/dL. This difference indicates a bias of the sensor to read below the actual 
BG. The differences could also be due to lags and delays in the CGMs. Generally the two 
CGMs had similar readings, meaning they are fairly precise. The resolution is to the ones 
place in mg/dL.  
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Chapter 24 
 
 
 
 24.1 
 
 
 

[problem adapted from Alon, Introduction to Systems Biology, Chapman & Hall] 

a) 

0
mRNA
d

dM G k M
dt

= −   where G0 is the input. Solve steady-state balance: 

0
ssmRNA

d

G M
k

=  

b) 

P
T d

dP k M k M
dt

= −  

 

c) step change in G0 from basal value to G1, mRNA has first order response with time 

constant and gain both equal: 

1 1
1

mRNA
d

K
k

τ = =  

Protein has first order response to mRNA with gain and time constant: 

2

2

1
P
d

T
P
d

k
kK
k

τ =

=
 

Solution Manual for Process Dynamics and Control, 4th edition 
Copyright © 2016 by Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp, 

and Francis J. Doyle III 
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Analytical expression for deviation protein concentration (P’) is given by the expression 

for two first-order systems in series: 

1 2/ /1 2

1 2

1 1 t tT
P mRNA
d d

k A AP e e
k k

τ τ

τ τ
− − 

′ = • + + 
 

 

 
 

Where (using partial fraction expansion): 

( )
( ) ( )( )1

1
1 1/

1 2 1

1 ( ) 1lim
1/ / 1s

s g s
A

Ksτ

τ
τ τ τ→−

+ 
= =  − − + 

 

( )
( ) ( )( )1

2
1 1/

2 1 2

1 ( ) 1lim
1/ / 1s

s g s
A

Ksτ

τ
τ τ τ→−

+ 
= =  − − + 

 

 
 
 24.2 
 
 
 (i-a) 

 
1 2 3y PP Pu=  

 
(i-b) 
 
Algebra here follows: 

3 3 2 2 1 1

3 3 3 2 2 3 2 1 3 2 1 1

( ( ( )))y P C y P C y P u C y
PC y P P C y P P Pu P P PC y
= + + +

= + + +
 

1 2 3

3 3 2 2 3 1 1 2 31
PP Py u

C P C P P C PP P
=

− − −
 

 
(i-c) 
 

1 2 3

1 1 2 31
PP Py u
C PP P

=
−
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(ii)  

1 2 3

3 3 2 2 3 1 1 2 31 c c c

PP Py u
K P K P P K PP P

=
− − −

 

(iii)  

1 2 3

1 1 2 31 c

PP Py u
K PP P

=
−

 

 

(iv) More attenuation possibilities in case (b) since there are more control loops that can 

regulate the process  
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 24.3 
 
 
 (a)  

 

 
 
Figure S24.3a. Block diagram for tryptophan process 

In this figure, four states (synthesis of free operator, mRNA transcription, translation and 
tryptophan synthesis) are represented as each block. Also, controllers (regulation, Attenuation 
and inhibition) are connected to the specific states. This block diagram is exactly the same as in 
Exercise 24.2, excluding one less state. 
 

(b)  

Figure S24.3b.i Tryptophan response for g=0 
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Figure S24.3b.ii Tryptophan response for g=25 

 

(c) Rise time=4 mins, overshoot=0.4, decay ratio=0.16, settling time=30 mins 

 
(d) Response of tryptophan after deleting the two feedback loops (red curve; blue curve is 

with all the feedback loops). Here, system is sluggish taking almost 50 mins to reach 

steady state without any overshoot. 
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Figure S24.3d Tryptophan response for two feedback loop case 

 

 
 
 24.4 
 
 
 (a) Algebra for derivation follows (recall that numerator of the first term involves an 

additional differentiation wrt s compared to the example derived in the chapter): 

 

 

( )

2

20

0

4 2 4 4 1 5 2
0

4

4

( )

( )

( ) ( ) 4 ( ) ( ) 1 4

t
dur sig

t

d
ds s

t y t dt
T T

y t dt

s s s sλα λ β λα λ β

α λ β
β

∞

=
∞

=

− − − −

=

= −

− + + + + +  
= − + 

 

∫

∫

 

0 20 40 60 80
0

2

4

6

8 x 10-6

Time (min)

Tr
yp

to
ph

an
 (M

ol
es

)



             24 - 7 

4
22 5 4 3 6

4

4

2 2

8 2 20
1 4

1 4

λα
λ β β λ λβ

α λ β
β

λ β

 
+ +     − + 

 

= +  

 

(b) Algebra, combining results from part (a) with results in chapter: 

 

4 4

4 4
0

2

2 2 2

( )
2

2 1 4 42 1

t

dur

y t dt
A

T

α λα
β β

λ
λ β β

∞

== = =
+ +

∫
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 24.5 
 
 
 (a) Equation defining variables in the loop 

yy k u
s

 = − 
 

 

Transfer function has a pole located at s=-k, therefore if k is positive, loop is stable. With 

integrator in loop, require zero activity at steady state  

(b)  

Solving transfer function: 

y ks
u s k
=

+
 

(c)  

Receptor activity always resets to zero, always capable of full range of action 

 

 
 
 24.6 
 
 
[Adapted from problem described in Goldbeter & Koshland, PNAS, 78, 6840-6844, 

1981] 

 

(a) Laying out the relevant mass balances: 

*
1 1 1 1 2 2

1
1 1 1 1 1

*
* *

2 2 2 2 1 1

*
* *2

2 2 2 2 2

[ ] [ ][ ] [ ] [ ]

[ ] [ ][ ] ( )[ ]

[ ] [ ][ ] [ ] [ ]

[ ] [ ][ ] ( )[ ]

d P a P E d PE k P E
dt

d P a P E d k PE
dt

d P a P E d P E k PE
dt

d P E a P E d k P E
dt

= − + +

= − +

= − + +

= − +
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Invoking assumption about fixed total amounts, and dropping concentration notation ([.]): 

* *
1 2

1 1 1
*

2 2 2

T

T

T

P P PE P E P
E E PE
E E P E

+ + + =
= + +

= +

 

 

Algebra leads to  

1/22

1 1 1 1 1 1 1 1
2 2 2

* 2 2 2 2 2 2 2 2

1

2

1 1 4 1

2 1T

V V K V V K V VK K K
V V K V V K V VP

P V
V

           − − + + − − + + −                    =
 

− 
 

 

 

Where the following variables are used: 

1 1 1

1 2 2

1 1
1

1

2 2
2

2

T

T

T

T

V k E
V k E

d kK
a P

d kK
a P

=
=

+
=

+
=

 

 

Invoking the conservation balance on P at steady-state, and assuming that V1 and V2 are 

not equal, one can derive the following simplified expression: 
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* *

1
1

* *
2

2

1

1

T T

T T

P P K
P PV

V P P K
P P

 
− + 

 =
  
− +  

  

 

 

 

 

 

(b) and (c) [combined plot, also included K1=K2=.01 for illustration] 

  

 

 

 

(d) For small values of K1 and K2, the response approaches a switch-like shape. Larger 

values lead to more sigmoidal response profiles. Hence, this biochemical network 
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consisting of two antagonistic enzymes can be tuned (or regulated) to give switch like 

behavior under appropriate conditions. In some texts this is referred to as “zero order 

ultra-sensitivity”. 

 
 

 24.6 
 
 

(a) Ga = transcription (DNA to RNA) 
Gb = translation (RNA to protein) 
Gc = protein activation 
Y = activated protein  

 
(b) Inner Loop: 

1
b

b

G
G+

 

 
Inner two loops: 

1

1
1

b
c

b

b
c

b

GG
G
GG

G

+

+
+

 

 
All three loops: 

1

1
1

( )
( ) 1

1

1
1
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1

1

b
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b

b
c

b

a

a

b
c

b
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b
c

b

b
c

b
a

b
c

b

GG
G
GG

G
GY s

X s G
GG

GG GG
G

GG
GG GG

G

+
Ω =

+
+

Ω
=
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+
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+

=

+
+

+
+
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Simplifying this expression gives: 
 

( )
( ) 1

a b c

b b c a b c

G G GY s
X s G G G G G G

=
+ + +

 

 
(c) Now we can substitute the given values for the biological processes: 

2

2 2

2

5
1
2
3

1 35( ) 2
1 1 3 1 3( ) 1 5
2 2 2

15
2

1 3 151
2 2 2
15

2 18

a

b

c

G

G
s

G
s

Y s s s
X s

s s s s s

s

s s s

s s

=

=

=

=
+ + +

=
+ + +

=
+ +

 

 
The roots of the characteristic equation are  

1

2

1 1143
4 4

1 1143
4 4

s i

s i

= − −

= −
 

 
Since the real part of both roots is negative, the system is stable.  

 
 
 
 24.7 
 

1

deg 2

5
1transcription

s
translation

G G
s

G G Ke θ−
−

= =
+

= =
  

 
(a) We calculate the frequency response measures as follows: 
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1 2

1
1

2

2

5( )
1

( ) tan ( )
( )

( )

AR G

G
AR G K

G

ω
φ ω

φ θω

−

=
+

= −
=

= −

 

 
(b) During circadian rhythms, we require: 

1 cycle 2  rad
24 hr 24 hrcirc

πω = =  

 
For stable oscillations,  

1

1

tan ( )

tan ( )

11.0 hr

circ circ

circ

circ

π θω ω

π ωθ
ω

θ

−

−

− = − −

−
=

=

 

 
(c) Now we want to find the gain, K, of the translation/degradation process.  

 
2

1

( )  at all frequencies, so need to calculate 
G  amplitude at circ

AR G K
ω

=
 

 

1 2

5( ( )) 4.84
1

circ

circ

AR G ω ω
ω

= = =
+

 

Need overall gain equal to 1, so therefore: 
 

1

1 0.207
( ( ))circ

K
AR G ω

= =  
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