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Chapter 2
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b)

Overall mass balance:

d(pV)

at =W, +W, —W,

Energy balance:

APV -To)]

dt = W1C (r1 _Tref ) + ch (Tz _Tref )

_W3C (T3 _Tref )

Because p = constant and V =V = constant, Eq. 1 becomes:
W, =W, + W,
From Eqg. 2, substituting Eq. 3

—d(T,-T,) _—dT
pCV # =pCV d_t3 =WC(T, =T,y ) +W,C(T, ~ T, )

—(w,+w,)C (Ts — Tt )

Constants C and T, can be cancelled:
—dT,
pV F =wW,T, + W, T, — (W, +W,)T,

The simplified model now consists only of Eq. 5.
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Degrees of freedom for the simplified model:

Parameters : p, V

Variables : wq, wy, T1, To, T3
NE =1
NV =5

Thus, Ne=5-1=4

Because w1, Wy, T1 and T, are determined by upstream units, we assume
they are known functions of time:

w1 = wi(t)
Wo =Ws (t)
Ty =Ty(t)
Tz = Tz(t)

Thus, Ng is reduced to 0.

Energy balance:

b)

. dpV (T -T,)]

=WC, (T, - T, )-WC,(T T, )-UA(T-T,)+Q

P dt
Simplifying
pVCpZ—I:WCpTi —WCpT -UAT-T,)+Q
PVC, S =WC, (T, ~T)-UA T -T,)+Q

T increases if T; increases and vice versa.

T decreases if w increases and vice versa if (Ti — T) <0. In other words, if
Q > UA((T-Ty), the contents are heated, and T >T;.
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b)

Mass Balances:

dh
PA dtl =W, —W, =W, (1)
dh
" @

Flow relations:
Let P, be the pressure at the bottom of tank 1.
Let P, be the pressure at the bottom of tank 2.

Let P, be the ambient pressure.

Then w, = PlF; P _ gpi (h.—h,) 3)
2 c' ‘2
W3= Pl_Pa — pg h]_ (4)
R3 gcRS

Seven parameters: p, A1, Az, 0, Je, R2, R3
Five variables : hy, hy, wi, wy, ws

Four equations

ThusNe=5-4=1

1 input = w; (specified function of time)
4 outputs = hy, hy, Wy, ws
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Assume constant liquid density, p . The mass balance for the tank is

d(pAh+m,)

at =p(0; —q)

Because p, A, and mgare constant, this equation becomes

The square-root relationship for flow through the control valve is

1/2
q=c{g+ﬂﬂ—aJ )

From the ideal gas law,

_(my /M)RT

"7 A(H-h) ®)

where T is the absolute temperature of the gas.

Equation 1 gives the unsteady-state model upon substitution of q from Eqg. 2 and
of Py from Eq. 3:

1/2

Pa (4)

dh (mg /M)RT  pgh
A—=0; =C, + -
dt A(H —h) dc

Because the model contains P,, operation of the system is not independent of Ps.
For an open system Py = P, and Eq. 2 shows that the system is independent of P,.
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a)

b)

For linear valve flow characteristics,

W, = ,W, = , W, = @)

dm
—w, —W,, dt2 =W, —W, )

where m; and m, are the masses of gas in surge tanks 1 and 2,
respectively.

If the ideal gas law holds, then

m m
PV, = RT,, PV, = ZRT, ©

where M is the molecular weight of the gas
T, and T, are the temperatures in the surge tanks.

Substituting for m; and m, from Eqg. 3 into Eq. 2, and noticing that Vy, Ty,
V5, and T, are constant,

ME=Wa—wb and VoM di=wb—w (4)
RT, dt RT, dt

The dynamic model consists of Egs. 1 and 4.

For adiabatic operation, Eq. 3 is replaced by

v Y
p{ﬁ} _ pZ(V_ZJ = C, aconstant 5)
m, m,
Py, ) VAR
or ml :[ 1C1 ] and m2 :( ZCZ J (6)

Substituting Eqg. 6 into Eq. 2 gives,

1/y
l (EJ Pl(liy)/y ﬂ = Wa - Wb
dt
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b)

v 1/y
1 [VLJ P2(1—Y)/Y di — Wb _ WC
y | C dt

as the new dynamic model. If the ideal gas law were not valid, one would

use an appropriate equation of state instead of Eq. 3.

Assumptions:

1. Each compartment is perfectly mixed.
2. p and C are constant.
3. No heat losses to ambient.

Compartment 1:
Overall balance (No accumulation of mass):

O=pg-pgr thus g1=q

Energy balance (No change in volume):
dmy
VipC e pqC(T; —=Tp) —UA(T; —Ty)

Compartment 2:

Overall balance:

0=pai—-po2 thus G2=0:=q
Energy balance:

dT.
2 = pC(T;—T,) +UAT, —T,) U A (T, = T¢)

V,pC —=
2P at

Eight parameters: p, Vi, V2, C, U, A, U, Ac
Five variables: T, Ty, T2, q, T¢
Two equations: (2) and (4)
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c)

ThusNg=5-2=3

2 outputs =Ty, T»
3 inputs = T;, T, q (specify as functions of t)

Three new variables: c;, ¢1, ¢, (concentration of species A).
Two new equations: Component material balances on each compartment.
c1 and ¢, are new outputs. ¢; must be a known function of time.

As in Section 2.4.2, there are two equations for this system:

Results:

dv. 1

—=—(W—-w
” p(. )
dl:ﬂ(Ti_T)Jr&
dt Vp pVC

(@) Since w is determined by hydrostatic forces, we can substitute for this
variable in terms of the tank volume as in Section 2.4.5 case 3.

d_Vzl[Wi ¢, \ﬁj
dad  p A

d_T :ﬂ(Ti —T)+&
dt  pV pVC

This leaves us with the following:

5variables: V,T,w,,T,,Q

4 parameters: C, p,C,, A
2 equations

The degrees of freedom are 5—2 =3. To make sure the system is specified, we

have:

2 output variables: T,V
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2 manipulated variables: Q,w,
1 disturbance variable: T,

(b) In this part, two controllers have been added to the system. Each controller
provides an additional equation. Also, the flow out of the tank is now a
manipulated variable being adjusted by the controller. So, we have

4 parameters: C, p, T,V

sp? Vsp
6 variables: V,T,w,,T,,Q,w
4 equations

The degrees of freedom are 6—4=2. To specify the two degrees of freedom, we
set the variables as follows:

2 output variables: T,V
2 manipulated variables (determined by controller equations): Q,w
2 disturbance variables: T,,w,

Additional assumptions:

(i) Density of the liquid, p, and density of the coolant, p;, are constant.
(ii) Specific heat of the liquid, C, and of the coolant, C;, are constant.

Because V is constant, the mass balance for the tank is:

p%—\:qu —-q=0; thusq=0qr
Energy balance for tank:

PVCS = 4:pC (T, ~T) - Ko, AT -T,) @)
Energy balance for the jacket:

dT
pJVJCJd_tJ =0,p,C, (T, _TJ)+KqJO.8A(T -T,) (2)

where A is the heat transfer area (in ft?) between the process liquid and the
coolant.
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Egs.1 and 2 comprise the dynamic model for the system.

Assume that the feed contains only A and B, and no C. Component balances for
A, B, C over the reactor give.

dc _
v d_tA = gicai —qca —Vke =RTcy 1)
dc _ _
Vd_tB:quBi —qcg +V (ke 5/ RTe, —kpe %/ RTeg) 2)
dcc ~E,/RT
Vv o =—qcc +Vk,e ' " cg (3)

An overall mass balance over the jacket indicates that g. = ¢ because the volume
of coolant in jacket and the density of coolant are constant.

Energy balance for the reactor:

d| (VcaM 2Sp +VCrMeSgr +VC-M~S- )T
[( AZATA BdtB ° SR C) ]=(QiCAiMASA+QiCBiMBSB)(Ti -T)

—UA(T —T,) + (~AH Vke 5/ RTc, + (~AH, ke &/ RTcg 4)

where Ma, Mg, Mc are molecular weights of A, B, and C, respectively
Sa, Sg, Sc are specific heats of A, B, and C.
U is the overall heat transfer coefficient
A is the surface area of heat transfer

Energy balance for the jacket:
dT,
ijjVjF:ijjqci(Tci_Tc)+UA(T i) (5)
where:

pj, Sj are density and specific heat of the coolant.
Vi is the volume of coolant in the jacket.

Egs. 1 - 5 represent the dynamic model for the system.
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2.10

The plots should look as shown below:

0.82 T T

constant %'
0518 changing ' [

0.516
0.514
0512
= 051
0.505
0.506
0.504

0502} §

o5t

Tirne {min)

08f B

06f 1

04t .

0.2 : L
0

Time {min)

Notice that the functions are only good for t = 0 to t = 18, at which point the tank
is completely drained. The concentration function blows up because the volume
function is negative.
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] <} > W

Note that the only conservation equation required to find h is an overall
mass balance:

d—m:d(pAh):pAﬁ:Wﬁwz—w (1)

dt dt dt
Valve equation: w= C/ /Z—gh = Cv\/ﬁ 2
where C, =C! Z—g 3

Substituting the valve equation into the mass balance,

dn 1
E:p?(w1+wz_cv\/ﬁ) (4)

Steady-state model:

0=w, +w,-C,qh (5)
c_Wtw, 20412 32 . kgs
Yoodh W22 15 m'/2

Feedforward control
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Rearrange Eq. 5 to get the feedforward (FF) controller relation,

w, = CV\/E— w,  where E =2.25m

w, =(2.13)(1.5) -w, =3.2—-w, (6)
Note that Eq. 6, for a value of w; = 2.0, gives

wp=3.2-1.2 =2.0kg/s which is the desired value.

If the actual FF controller follows the relation, w, =3.2-1.1w; (flow
transmitter 10% higher), w, will change as soon as the FF controller is
turned on,

w,=3.2-1.1(2.0)=32-22=1.0kg/s

(instead of the correct value, 1.2 kg/s)

Then C,+h=213Vh=2.0+10

or vh = % =1.408 and h=1.983 m (instead of 2.25 m)

Error in desired level = %xl%% =11.9%
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2.12

b)

The sensitivity does not look too bad in the sense that a 10% error in flow
measurement gives ~12% error in desired level. Before making this
conclusion, however, one should check how well the operating FF
controller works for a change in w; (e.g., Aw; = 0.4 Kg/s).

Model of tank (normal operation):

pA% =W +W, —Ws (Below the leak point)
_7(2* _

A — 7=3.14m?

(800)(3.14) % ~120+100 - 200 = 20

dh 20

% -0.007962 m/min
dt  (800)(3.14)

Time to reach leak point (h =1 m) = 125.6 min.

Model of tank with leak and w,, w,, w, constant:

pA%=20_5q4:2O—p(0.025)\/h— =20-20+h-1 , hz1

To check for overflow, one can simply find the level hy, at which dh/dt =
0. That is the maximum value of level when no overflow occurs.

0=20-20 \h, -1 or hp=2m

Thus, overflow does not occur for a leak occurring because hy, < 2.25 m.
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Model of process

Overall material balance:

dh
pATE:Wl+W2—W3=W1+W2—CV\/F 1)
Component:

d(hx
PA; (%) = W, X; + Wy X, —WsXg

dt
dx dh

pAThd_t3+ pATXSE =Wy X; + W, X; = WX,

Substituting for dh/dt (Eq. 1)

dx
3 _
pAh dt + X (W + W, —W,) = Wy X; + Wy X, —Ws X,

pATh%zwl(Xl_XS)—I_WZ(XZ_XB) (2)
%:Wﬂq[wl(xl—xmwz(xz—xg)] ®3)

a) At initial steady state ,

W, =W, +w, =120+100 = 220 Kg/min

C/= 220 =166.3
1.75
b) If x; is suddenly changed from 0.5 to 0.6 without changing flowrates, then

level remains constant and Eq.3 can be solved analytically or numerically
to find the time to achieve 99% of the x3 response. From the material
balance, the final value of x3 = 0.555. Then,

dx, 1

- _W[m(o.e—xg +100(0.5-%,)]
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1

=m[(72+50)—220x3)]

=0.027738-0.050020x,

Integrating,

X3f

I dX3 _ ; dt
J 0.027738-0.050020%,

where X3,=0.5 and x3:=0.555 - (0.555)(0.01) = 0.549
Solving,
t =47.42 min
C) If wy is changed to 100 kg/min without changing any other input variables,
then x3 will not change and Eqg. 1 can be solved to find the time to achieve

99% of the h response. From the material balance, the final value of the
tank level is h =1.446 m.

80071% =100+100—C,vh

dh 1
—= 200-166.3vh
dt 800n[ vh }

—0.079577 —0.066169+/h

where h,=1.75 and h¢=1.446 + (1.446)(0.01) =1.460
By using the MATLAB command ode45 ,
t=122.79 min

Numerical solution of the ode is shown in Fig. S2.13
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2.14

d)

b)

18 T T T T T

1.7}

h(m)

1.6}

1.5}

50 100 150 200 250
time (min)

1.4
0

Figure S2.13. Numerical solution of the ode for part c)

In this case, both h and x3 will be changing functions of time. Therefore,
both Egs. 1 and 3 will have to be solved simultaneously. Since
concentration does not appear in Eq. 1, we would anticipate no effect on

the h response.

The dynamic model for the chemostat is given by:

Cells: VZ—):zw —FX or dx =r —(E]X

‘ da ° v

Product: Vd—P=Vr - FP or d_P:r —(E)P
dt P P

dt \Y
Substrate: Vd—s= F(S;-9S) - 1 Vg
dt Yx /s

or

dS F 1 1

—=(—J(Sf -S) - ry — Mo

dt \ YX/S YP/S
At steady state,

2-16
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d)

"o,
dt

then,
uX =DX .. D=pn

A simple feedback strategy can be implemented where the growth rate
is controlled by manipulating the mass flow rate, F, so that F/V stays
constant.

Washout occurs if dX/dt is negative for an extended period of time;
that is,

r, —DX <0 or D>u
Thus, if D > u the cells will be washed out.

At steady state, the dynamic model given by Egs. 1, 2 and 3 becomes:

1
0=D(S—5)— e 0
From Eq. 5,
DX =r,
From Eq. 7

ry :YX/S(Sf -S)D

Substituting Eqg. 9 into Eq. 8,
DX =Yy,s(S; =S)D

From Eq. 4
DK

Hinax — D

2-17
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Substituting these two equations into Eqg. 10,

DX :YX,S[sf —LSDJD (11)

max

For Yys = 0.5, S =10, Ks =1, X = 2.75, umax = 0.2, the following plot can be
generated based on Eq. 11.

0T

06— —

05—

=
=
I

DX (g/L.h)

=
w
I

MAXIMUM
PRODUCTION

02—

01—

WASHOUT

7 ! ! ! | ! ! ! |
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 02
D (1/h)

Figure S2.14. Steady-state cell production rate DX as a function of dilution rate D.

From Figure S2.14, washout occurs at D = 0.18 h™ while the maximum
production occurs at D = 0.14 h™. Notice that maximum and washout points
are dangerously close to each other, so special care must be taken when
increasing cell productivity by increasing the dilution rate.
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2.15

b)

We can assume that p and h are approximately constant. The dynamic

model is given by:

dM

ry = ——— = KAC,
dt
Notice that:

dM dv

M =pV = 5=

P a Pt
Vemrth o N ommdr_adr
dt dt dt

Substituting (3) into (2) and then into (1),

— pA% = KAC, - p% = ke,
Integrating,
Ir: dr = _Kes Iodt r(t) = ke,
Finally,
M =pV = prhr?
then

kc ?
M (t) = prth{ r, ——
p

(1)

)

(3)

(4)

The time required for the pill radius r to be reduced by 90% is given by

Eq. 4:

t=

0.9r,p _ (0.9)(0.4)(L.2) _

o s K

S

Therefore, t =54 min.
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For V = constant and F = 0, the simplified dynamic model is:

dX S

S or =p,, ———X
at P 1S

dP S

—=r =Y —2 X

dt p P/XHmaxK +S

S

s 1 1

dt Yars © Yeix

I

Substituting numerical values:

X g 5

dt 1+S
dpP _
dt

dS _ ., SX { 1 0.2}

dt  1+S[ 05 01

(0.2)(0.2)18+—XS

By using MATLAB, this system of differential equations can be solved. The time
to achieve a 90% conversion of Sis t = 22.15 h.

10

---------
rrrrr
""""
aaaaa

9

— X: Cells

= == P: Product
...... S: Substrate

Concentration (g/L)

0 5 10 15 20 25 30
Time (h)
Figure S2.16. Fed-batch bioreactor dynamic behavior.
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(a) Using a simple volume balance, for the system when the drain is closed
(@=0)

dh

Solving this ODE with the given initial condition gives a height that is increasing
at a rate of 0.25 ft/min.

So the height in this time range will look like:

13

12

14}

hif

ogr

[RE=

[N

05

I:l'ﬁlil s 1 15 2 25 =

t (rir

(b) the drain is opened for 15 mins; assume a time constant in a linear
transfer function of 3 mins, so a steady state is essentially reached. (3 <t < 18).
Assume that the process will return to its previous steady state in an exponential
manner, reaching 63.2% of the response in three minutes.
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(©) the inflow rate is doubled for 6 minutes (18 <t < 24)

The height should rise exponentially towards a new steady state value double that
of the steady state value in part b), but it should be apparent that the height does
not reach this new steady state value at t = 24 min.. The new steady state would
be 1 ft.

agsr .

aasr

DS 1 1 1 1 1
13 19 a0 | ) <3 24

t (rrin)

(d) the inflow rate is returned to its original value for 16 minutes (24 <t < 40)
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The graph should show an exponential decrease to the previous steady state of 0.5
ft. The initial value should coincide with the final value from part (c).

D% T T T T T T T

(HRE)

0.85

0s

075

b (ft)

o7

0.65

0.6

0.55

] 2 30 3z 2 5 = 40
t imir)

Putting all the graphs together would look like this:

4] 10 15 o 25 1] 25 40

2-23



2.18

Parameters (fixed by design process): m, C, me, Ce, he, Ae.

CVs: Tand Te.

Input variables (disturbance): w, T;. Input variables (manipulated): Q.

Degrees of freedom = (11-6) (number of variables) — 2 (number of equations) = 3

The three input variables (w, T;, Q) are assigned and the resulting system has zero
degrees of freedom.
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2.19

m°/s.

The resulting plots of xD and xB are shown below.

(@) First we simulate a step change in the vapor flow rate from 0.033 to 0.045

0.9 T T T T T
Qo8- :
OT | | | | | | | | |
0 20 40 60 80 100 120 140 160 180 200
Time (min)
0.2 T T T T T
D g1
0 | | | | | | | |
0 20 40 60 80 100 120 140 160 180 200
Time (min)
T T T T T
~ 0.05 7
Q
@
5‘2 0.04
e
> 0.03 -
| | | | | | | | |
0 20 40 60 80 100 120 140 160 180 200
Time (min)
m°/s.

Figure: Plot of XD, xB, and V versus time for a step change in V from 0.033 to 0.045

By examining the resulting data, we can find the steady-state values of xD and xB
before and after the step change in V.

Start End Change
xD 0.85 0.73 -0.12
xB 0.15 0.0050 -0.145

(b) Next we simulate a step change in the feed composition (zF) from 0.5 to 0.55.
Note that the vapor flow rate, V, is still set at 0.045 m®s.
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0.9 T T T T T

0.7 1 1 | | | | | 1 1
0 20 40 60 80 100 120 140 160 180 200
Time (min)
-3
8 =10 T T T T T
% . W
4 | | | | | | | | |
0 20 40 60 80 100 120 140 160 180 200
Time (min)
T T T T T
06~ 7
Y 055
0.5 7
045 1 1 | | | | | 1 1
0 20 40 60 80 100 120 140 160 180 200
Time (min)

Figure: Plot of XD, xB, and zF versus time for a step change in zF from 0.5 to 0.55

By examining the resulting data, we can find the steady-state values of xD and xB
before and after the step change in zF.

Start End Change
xD 0.73 0.80 +0.066
xB 0.0050 0.0068 +0.0018

(c) Increasing V causes XD and xB to decrease, while increasing zF causes both
xD and xB to increase. The magnitude of the effect is greater for changing V
than for changing zF. When changing V, xB changes more quickly than xD.
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2.20

(a) First we simulate a step change in the Fuel Gas Purity (FG_pur) from 1 to

0.95.
The resulting plots of Oxygen Exit Concentration (C_0O2) and Hydrocarbon

Outlet Temperature (T_HC) are shown below.

1.1 T

09 | | | |
0 10 20 30 40 50 60 70 80
Time (min)
620 T T T T
& 610 = 4
Q
juy
~ 600 - 7
590 | | | | | | |
0 10 20 30 40 50 60 70 80
Time (min)
1 1 T T T
= 0.98 2
[=%
Q
“ 096 .
094 | | | | | | |
0 10 20 30 40 50 60 70 80
Time (min)

Figure: Plot of C_O2, T_HC, and FG_pur versus time for a step change in FG_pur from 1

to 0.95.

By examining the resulting data, we can find the steady-state values of C_0O2 and

T_HC before and after the step change in FG_pur.

Start End Change
C_02 0.92 1.06 0.14
T_HC 609 595 -14

(b) Next we simulate a step change in the Hydrocarbon Flow Rate (F_HC_sp)
from 0.035 to 0.0385. Note that the Fuel Gas Purity, FG_pur, is still set at

0.95.
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1.07

T T T T T T
| A ‘
ol I i
106 ‘l ( \ILJ"‘ "" ‘\/\// | W | |l / “II ‘ IIL / ﬂ'f\ ‘\ 7]
08 7|‘~., Jl I "/".I n ,r-./ ""‘-.‘\ / : /‘”j WA\ “J‘ Vo ‘I ' V\/ r f/ ,/j / Irf f \,.
: (AR y W ‘
1.05 - / A i
1 04 | | | | | | |
0 10 20 30 40 50 60 70 80
Time (min)
600 T T T T
N f\/\/ A PN
< 590 - .
Q
I
— 580 N
570 | | A R T T N e A e e o
0 10 20 30 40 50 60 70 80
Time (min)
0.04 T T T T
o 0.038 - )
%)
I
L 0.036 F T
0034 | | | | | | |
0 10 20 30 40 50 60 70 80
Time (min)

Figure: Plot of C_O2, T_HC, and F_HC_sp versus time for a step change in F_HC_sp
from 0.035 to 0.0385.

By examining the resulting data, we can find the steady-state values of C_0O2 and
T_HC before and after the step change in F_HC_sp.

Start End Change
C_02 1.06 1.06 0
T_HC 595 572 -23

(c) Decreasing FG_pur causes C_0O2 to increase, while T_HC decreases.
Increasing F_HC _sp causes T_HC to decrease while C_QO2 stays the same.
The change in T_HC occurs more quickly when changing F_HC _sp versus
changing FG_pur.
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2.21

The key to this problem is solving the mass balance of the tank in each part.

—(pAh) = pg. — pq
" yo, £ — pq,

- p (density) and A (tank cross-sectional area) are constants, therefore:

LS
dt i [0}

- The problem specifies ¢, is linearly related to the tank height

1
_1
=
dh 1
M a—2th
a TR

- Next, we can obtain R (valve constant) from the steady state information in the
problem

% =0 at steady state

1_
0=0 ——=h
q; R
1
0=2-——(1
R()

2

l=2 R=0.5 ft_

R min

- In addition, we can find that
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7=AR :(4)(%j:2 min

Part a
% =q, -0, (Mass Balance)
dh
4 e 2 (Separable ODE)
[dh=[= at
2
1
h(t) :EHC h(0) =1
1
h(t)=§t+1 0<t<3
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A—=0g —=—h Mass Balance
g TR ( )
4ﬁ =2-2h
dt
d_?Jr%h :% (Solution by integrating factor = e'?)

j d(e”?h) = j % e’? dt

he'’? =1e"? +¢ h(3)=2.5
h=1+ce™?

2.5=1+ce¥?

c=1.5e%2

h(t) =1+ (1.5)e 3" 3<t<18

Part c

4%= 4—-2h (Mass balance)
dh 1 . . .
a+Eh =1 (Solution by integrating factor)

j d(e'?h) = Ile“zdt h(18) =1

- Method is same as part b.

h(t) =2—-e (872 18<t<33
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Part d

Same as part b with h (33) =2

h(t) =1+ (73972 33<t<50
3 T T T T T T
2.5+
2 L
|
S 18 /
=y
J
1 -
0.5+
O | i | l
0 5 10 15 20 25 30
time
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2.22

To solve the problem, we start by writing the mass balance for each tank 1-4.

To write the mass balance for each tank, we start with the most general form,
where the change in mass in the tank over time is equal to the mass flowing into
the tank minus the mass flowing out of the tank. The general form of the
equations are shown below, where i represents the tank number (1, 2, 3, 4). The
mass can be written as the density multiplied by the tank volume, and the mass
flow rates can be written as the density multiplied by the volumetric flow rate.

d(pV) _
dt _pqin,i pqout,i
With density assumed constant over time, it can be pulled out of the derivative.
Also, we write the volume of the tank as the height of liquid in the tank, h;,
multiplied by the cross-sectional tank area, A;.

pAd(h) _ .

at = PUini — PYout,i
Ad(h)

dt qin,i qout,i

The flow exiting each tank through the bottom can be written as:

Qexit,i = Ci\/H

Where C;i is the proportionality constant for each tank.

Results:

a) The final equations for the height of liquid in each tank are shown below.
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b)

av _ G - G o
ol Al\/H+Al\/E+AlF1 1)

dh

d—f:—&,/hz +%«/h4 +% F, )
dh3__C3 [ (1_72)

_dt = _A3 h3 +—A3 F2 (3)
dh, __Cy4 (1-n)

el Jhy + = (4)

Now we can substitute y, =y, =0.5

S DR ORe o
el C4r+—e
SRR,
—4= C“\/_+—|:1

The differential equations for the tank heights are coupled, so the heights
cannot be solved for or controlled independently. F; and F, can be used to
control hs and h, independently, but h; and h, will be affected in an
uncontrolled manner.

In the extreme case where y, =y, =0, we get:

h

These equations make sense with the process diagram because now F; and
F, only affect tanks hs and h, directly (they no longer flow into tanks 1
and 2 at all). However, F; and F; indirectly affect tanks 1 and 2 through h;
and hy.
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Chapter 3 ©

(a)
f(t)=5+e +te™
Transform each term using rules 2, 5, and 7 from Table 3.1, respectively.
S s+3 (s+4)
(b)
£ (t) = sin(4t) + (t—3)S(t —3)+e‘“‘3’8(t—3)+%
e To transform sin(4t), use rule 14 from Table 3.1
e Totransform (t-3)S(t-3) use rules 3 and 26 together. To use rule 26,
set f(t) =tand to =3.
e To transform e *®S(t-3) use rules 5 and 26 together. To use rule
26, set f(t) = e and to =3.
e Note that there is no Laplace transform for 1/t.
4 e e 1
F(s)=— +—+ +5L| -
S°+16 s s+1 t
(c)
f(t) = e cos(4t) +é
e To transform the first term, use rule 18 from Table 3.1
e To transform the second term, use rule 3 from Table 3.1
F(s) = S—tl + iz
(s+1)°+16 5s
(d)

f (t) = S(t —1) cos(4(t —1)) +t?
e To transform the first term, use rules 15 and 26 together. To use rule
26, set f(t) = cos(4t) and to = 1.
e To transform the second term, use rule 4 of Table 3.1.

S 2
F(s)=e +—
(s) s?+16 s°

[Type here] 3-1 [Type here]



Break the pulse into three step functions. First, a step up to 10 at t=0. Then, a step
down by 8 at t=1. Finally, a step down by 2 at t=3:

f(t) = 10 S(t) — 8 S(t-1) — 2 S(t- 3)

F(s)= = 1(10 - 8e*® -2e'35)

S

a) Pulse width is obtained when x(t) = 0. Since x(t) = h —at

to: h —ate=0 or te=h/a
b)
h ————————————————————
slope =-a bl slope=a
x(t) | l\p x(®) o
slope =-a
X(t) = hS(t) — atS(t) + a(t -to) S(t-te)
h a a™™ h e™-1
C) X()=—-F+—F—=—+—
S S S S S

d) Area under pulse = h t,/2

(a) Laplace transform on the ODE gives:

2
c(%) + ec(j—{) +8L(y) =3bL(e ™)

%Y (s) —sy(0) — y'(0) + 6sY (s) —6y(0) +8Y (s) =3b é
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$2 (5) + BSY () +8Y (s) = 2
S+2

Thus:

Y(s)= 3 __d s % 3
(s+2)(s“+6s+8) (s+2)°(s+4) (s+2)° (s+2) (s+4)

Regardless of the numerical values of a1, a; and as, the inverse Laplace transform
indicates that y(t) includes e, te™ and e™.

(b) When u = ct, Laplace transform gives:

%Y (s) +6sY (s) +8Y (s) = %
3c a a, a, a,
Y (s) 2+= +

s) = =242y
2 (s+2)(s+4) s s* (s+2) (s+4)

Regardless of the numerical values of a1, az, as, and as, the inverse Laplace
transform indicates y(t) includes a,, t, e, ande™ .

~ 55 55
T()=205() + ~tS() — 2 (t-30) S(t-30)

20 551 551 20 551
T(S)="m+ == - ¥ 2 C (1
(s) s 30s? 30s? s 30 52( )
2) X (s) s(s+1) o, o, O,

= = + +
(s+2)(s+3)(s+4) s+2 s+3 s+4

o = s(s+1)
L (s+3)(s+4)

§=—2

o = s(s+1) _
P(s+2(s+4)|_,
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b)

d)

o - s(s+1) _
(s +2)(s+3),_,

X (S) _ 1 . 6 n 6 and X(t) — e—2t _6e73t + 6e4t
S+2 Ss+3 s+4

S+2 % . %
XO) = e "5l 51 @

:@+3L4:

In Eq. 1, substitute any s=-1 to determine o1. Arbitrarily using s=0, Eq. 1
gives

2 o 1

1—2:T+1—2 or alzl
1 1 St pat
X(s)=—+ and X(t)=e" +te
) s+1 (s+1)° (®)
X(s) =
(8)= sZis+l [ ) 3 (s+b)* +w?
4
where b=1 and mzﬁ
2 2
t
x(t)=1e‘b‘sin c0t=ie 2sinﬁt
0 J3 2
X(S) — S +1 e70.5S
s(s+4)(s+3)

To invert, first ignore the time delay term. Using the Heaviside expansion
with the partial fraction expansion,

o StL A B C

s(s+4)(s+3) s s+4 s+3

Multiply by sand lets — 0
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A= L = i
(HE) 12

Multiply by (s+4) and let s— —4

—4+1 -3 -3

T (A)(4+9) (4D 4

Multiply by (s+3) and let s—-3

_ -3+1 _ -2
(-3)(=3+4) (3D

2
3

Then

_3/4+ 2/3
s+4 s+3

X(s):l/i2+

SR S T I
12 4 3

Using the Real Translation Theorem,

X(t) =X(t-0.5) = i _ E e 4(t-05) E g 3(t-05)
12 4 3
fort>0.5

Y(s) = =
) s’(s+1) s* s s°
azzsz_z =6 a, =0
S s=0
6
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12(s+2) o; o,S+0,

b) Y(s)=—otS) G, GaSTO
) Y6 s (s*+9) s s?+9
Multiplying both sides by s(s?+9)

12(s+2) = o, (s* +9) + (a5 + o, )(S)  or
125+ 24 = (o, +01,)S” + 0,S + 9al,
Equating coefficients of like powers of s,
s> ar+az=0

st o =12

% 9oy =24

Solving simultaneously,

8 -8
0L1=§ , 0L2=? , o, =12
g1 (—§s+12]
Y$S)=-—"+~>——2
(®) 3s s?+9
(s+2)(s+3) ooy o, O,

c) Y(s)= = + +
(s+4)(s+5)(s+6) s+4 s+5 s+6

o - (s+2)(s+3)
' (s+5)(s+6)

s=—4

o, = (s+2)(s+3) __§
(s+4)(s+6)|_
OL3:(s+2)(s+3) P
(s+4)(s+5)|_,
Y(s) = ! 6 + 6
s+4 s+5 s+6
d) Y (S) ! L

i [(S +1)? +1]2 (s+2) - (s> +25+2)*(s+2)
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o,S+a, UgS+o, O
P +2s+2 (s®+2s+2)* s+2

Multiplying both sides by (s> +2s+2)*(s+2) gives

1= ous* + 4aus® + 601S? +401S + 028° +4008? +6012S +H4ap + 03S? +20i3S +
oS + 2014 + 0asS* + 4oss® + 8ass? + 8ass + 4ot

Equating coefficients of like power of s,

s*: au+os =0

s dou+ op + 4as=0

s?: 6ou + 4oz + o3 +8as5=0

st: 4oy + 6oz + 203+ o + 8o5=0

s 4o+ 204 +40s5=1

Solving simultaneously:

o =-1/4 o2=0 o3=-1/2 owuw=0 os5=%

—1/4s -1/2s 1/4
2 + 2 2+
S°+2s+2 (s°+2s+2)° s+2

Y(s) =

a) From Eq. 3-66

Iy ﬁ f (t*)dt*} _Lr)
0 S

w |k

we know that £ ﬁe‘*dr} =< L [eft] B 5(31+1)
0

Laplace transforming yields

$2X(s) + 4X(s) + 3X(s) =

s(s+1)

3-7



or (s?+4s+3)X(s)=

s(s+1)

X(s) = ;
s(s+1)?(s+3)

Performing partial fraction expansion and taking the inverse Laplace
transform (either manually or using a symbolic software program), we get:

b) Applying the Final VValue Theorem (note that the theorem is applicable here)

. . . 2 2
limx@t)=limsX(s)=lim——7—M8M ==
t—>o0 ( ) s—0 ( ) s—0 (S +1)2(S+3) 3

. 2 2 A B C
s(s“+4s) s°(s+4) s° s s+4
y(t) will contain terms of form: constant, t, e

iy Ye=—, 2> -2 _A B C
s(s“+4s+3) s(s+1)(s+3) s s+1 s+3
y(t) will contain terms of form: constant, e, e
S(s“+4s+4) s(s+2) s (s+2)° s+2
y(t) will contain terms of form: constant, e , te

iv) Y(s) = 2

s(s® +4s +8)

$°+45+8=(s*+4s+4)+(8—4) =(s+2)° +2°

2
Y= S[(5+2)% + 27]

y(t) will contain terms of form: constant, e sin2t, e?cos2t
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b)

2(s+1) 2(s+1) A Bs C
) Tl o T2t 22

s(s“+4) s(s°+2°) s s°+2° s°+42
A= 2(23+1) 1

90 (s +4) 2

Y(s)

2(s+1) = A(s?>+4) + Bs(s) + Cs

2s+2 = As? + 4A + Bs? + Cs

Equating coefficients on like powers of s
s2: 0=A+B - B:—A:—%
st 2=C - C=2
s0: 2=4A - A= %

V2 -@1/2)s 2
Y(S)="—+ +
©) s  s24+2% s?242?

1 1 2 .
)= = —=cos2t+—sin 2t
y(t) ) 5

y(t) = %(1— c0s 2t) +sin 2t

Laplace transform of the equation gives

$X (5)+ 252X () + 25X () + X (5) =

S
3 3
X(s)= =
) s(s® +2s2 + 25 +1) 1 J3. 1 3.
S(S+l)(8+5+7j)(8+5—7j)

The denominator of [sX(s)] contains complex factors so that x(t) is
oscillatory, and the denominator vanishes at real values of s= -1 and -2
which are all <0; thus x(t) is converges. See Fig. S3.10a.
$?X(s) = X(s) _2
s-1

2

X(s) = 2 2 = 2
(s=D(s°-1) (s-D°(s+)
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The denominator contains no complex factors; thus x(t) is not oscillatory.
The denominator vanishes at s=1 >0; x(t) is divergent. See Fig. S3.10b.

c) S3X(s)+ X (s) = 21
s°+1
1 1
X(8)=—5 3 -
ST (o s s 2 s 102

The denominator contains complex factors; x(t) is oscillatory. The
denominator vanishes at real s = 0 and s=%; thus x(t) is not convergent. See
Fig. S3.10c.

d) sZX(s)+sX(s):§

4 4

X(s)= s(s® +5s) - s?(s+1)

The denominator of [sX(s)] contains no complex factors; x(t) is not
oscillatory. The denominator of [sX(s)] vanishes at s = 0; x(t) is not
convergent. See Fig. S3.10d.

35

3k

c ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
0 1 2 3 4 5 6 7 8 9 10
time

Figure S3.10a. Simulation of X(s) for case a)
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700 T T T T T T T T T

600 [~

500 [~

X(t)

300~

200~

100~

0 0.5 1 15 2 2.5 3 3.5 4 4.5 5
time

Figure S3.10b. Simulation of X(s) for case b)

80 T T T T T T T T T

40 c ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0

time

Figure S3.10c. Simulation of X(s) for case c)
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18

16

14-

12

10

x(t)

r ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
0 0.5 1 15 2 25 3 35 4 4.5 5
time

Figure S3.10d. Simulation of X(s) for case d)

Since the time function in the solution is not a function of initial conditions, take
the Laplace transform with:

dx(0) _

O="4

0

T1125°X(S) + (11+712)sX(S) + X(s) = KU(S)

K
X(s) = 5 u(s)
T,7,5° + (1, +71,)s+1

Factoring the denominator

B K
(1,5 +1)(1,5+1)

X(s) U(s)

a)  Ifu(t) =as(t) then U(s):%

B Ka
s(t,S+1)(t,5+1)

X4(8)

T, #T,

Xa(t) = fa( S(t), eV, e U%)
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b)

c)

d)

If u(t) = beV" then U(s) =

X, (8) = Kbr TET #T,
(ts+D(t,s+1)(t,5+1)

xo(t) = fo(eV™ |, eV, e V)

If u(t) =ce’* where t = 11, then U(s) = ©
1,5+1
X,(8) = —— "
(t;5+1)°(t,5+1)

xo(t) = fo(e ¥, te v, et

do

5% + ®?

If u(t) =dsin ot then U(s) =

Kd
(s* + o’ )(t,;s +1)(1,5+1)

Xq(8)=

xd(t) = fa(e Y=, e V=, sin ot, cos ot)

dx® d?x(0) _dx(0) _

—+4x=¢ with =x(0)=0

dt® dt ©

Take the Laplace transform of the equation:

3 1

SX(S)+4X(s)=——
s—1

X (s) = 1 3 1

(s-D(s*+4) (s—1)(s+1.59)(s—0.79+1.37j)(s-0.79-1.37 )
Oy % % + JB; R iBs

= +
s-1 s+159 s-0.79+137] s-0.79-1.37]
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b)

1 1

a: =
PP+, 5

1 | 1
o, = -
2 (s—1)(s—0.79+1.37j)(s—0.79-1.37j)| ., 196
o+ jB; = L _ | =-0.74-059]j
(s=D(s+1.59)(s —0.79-1.37 )| _y 01 57 j
T 1
X(s) = 5 . 196 —0.074-0.059 ] N —0.074 +0.059

s—1 s+159 s-079+1.37] $-0.79-1.37]

X(t) = Lo L gsa_ppomm (0.074 c0s1.37t +0.059 sin 1.37t)
5 19.6
dx : .
E—le:sm 3t with x(0)=0
3
sX(s) —12X(s) = —
s° +
3 3

X(8) =" = . .
(s°+9)(s —-12) (s+3j)(s—3))(s-12)

:0‘1+j31+a1_jB1+ s
s+3j s-3] s-12
- 3 3 1 4.
T(5-3))5-12)| .. -18+72j 102 102"

a, + B,

s=-3]j

3 1

(x:
P (s°+9), 51

=12

1 4 i - 1 N 4 j 1
X (s) = 102 1_02 4102 1.02 4, 51
S+3] s—3] s—12

x(t) = el (cos3t +4sin 3t) + 1 g
51 51
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b)

d— 6%+ 25x =e™" with w

o - x(0)=0

1
(s+1)(s*+6s+25)
X (s) = L PR P 7% IO e i)

(S+D(s+3+4j)(s+3-4j) s+1 s+3+4)] s+3-4]j
1 1
(1122— - —
(s°+6s+25)_, 20

s?X(s)+6sX(s)+25X(s)+ X(s):SLJrl or X(s)=

1 | 1 1.

TR,

(s+1)(s+3—4]))| 40 80

s=—3-4]

a,+jB, =

1 1 1. 1 1

— o Tead o]

J
X (s) = 20 40 80_ 40 80
s+1 S+3+4] S+3—4]j

1 ot 1
X(t)=—e™ —cos4t+—3|n 4t
® 20 ( 40 )

d®y(t) +3dy(t) d(x-2)

e yt)=4———=—x(t-2)

Take the Laplace transform assuming zero initial conditions:

S2Y(S) + 3sY(S) + Y(s) = 4 e25sX(s) —eZX(s)

Rearranging,

% =G(s)=— (]2-_45)972S
(s) s°+3s+1

1)
The standard form of the denominator is : t2s2+ 2{ts + 1
From(1),t=1,{=15

Thus the system will exhibit overdamped and non-oscillatory responses.

Steady-state gain
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K= Is"—n>0 G(s)=-1 (from (1))

C) For a step change in x
—(1-4s)e™ 15

1.5
X(s) = — and Y(s) =
©) S ) (s> +3s+1) s

Therefore, y(t)=-1.5 + 1.5e1% cosh(1.11t) + 7.38e%sinh(1.11t)
Using MATLAB-Simulink, y(t)= y(t —2) is shown in Fig. S3.13

15

1l

051

0

05k

Ak

15 ‘ c
0 5 10 15 20 25 30

Figure S3.13. Output variable for a step change in x of magnitude 1.5

First, take the Laplace transform of each term in the equation

£(%j =5%Y(s)—sy(0)—y'(0) =s?Y(s)—s
5(5 3—{) =5(sY(s) - y(0)) =5sY(s)-5
L(6y)=6Y(s)

£(7) :%

The final transformed equation is:
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3.15

Y(52+55+6)—s—5:Z

s
2
Y(32+55+6):ﬂ

_ sP455+7
s(s+2)(s+3)

Now perform partial fraction expansion.

s> +5s5+7 A B C

_— = +
s(s+2)(s+3) s s+2 s+3

a=lp=-lc-1
6 2 3

X(s)=to—Lt 1
65 2(s+2) 3(s+3)

X(t) = T lga,loa
6 2 3

f(t) = hS(t)—hS(t—1/h)

%+4x:h[8(t)—3(t—1/h)]

Take the Laplace transform,

SX (5) + 4X (5) = h(l eS/hj

s s
-s/h 1
)((S) :3h(1'—'e )'gzgi;jiiiz
1

o, =
'os+4

s=0 4

h 1 1
X(s)=—@1-eM)=-——
(s) 4( )[s s+4

x(0)=0

h(l—e‘s”‘)[ﬁ+
S

v 1
Sle 4 4

|

e

h|1 e™M 1
=—|—= - +
41 s S S+4

S

-s/h
+4}
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3.16

0 t<0
h _at
X(t) = —@-e) 0<t<1l/h
< 4
h —4(t-1/h) -4t
—le —e t>1/h
4
\
1 T
— h=1
H === h=10
0.9 < =100 H
0.8 ,‘\l‘
0.7F }“‘I\
0.6 I|II
£ 05
0.4
03fH
0.2H
0.1 Mran
00 O.rZ 0.r4 0.r6 O.rS ““‘HY\M‘---;.Z 14 1.’6 18 2

Figure S3.15. Solution for values h=1, 10 and 100

Take the Laplace transform:

[s2Y (5) — sy(0) — y'(0)]+ 6[s (5) — y(0)] + 9 (5) = st-l- :
(s®+ 65 + 9)Y(s) — s(1) — 2 —(6)(1)= zs
s°+1

(s°+65+9)Y(s)= —+s+8
s°+1
3 2
(32+65+9)Y(s)=s+s +2s+83 +8
s°+1
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3 2
Y(s) = S +832+225+8
(s+3)°(s“+1)

To find y(t) we have to expand Y(s) into its partial fractions

A N B N Cs N D
(s+3)* s+3 s°+1 s°+1

Y(s)=
y(t) = Ate®'+ Be® + C cost + D sin t

s+1
YS)=———
©) s(s® +4s+8)

.4
Since 7 <8, there are complex factors.

. complete the square in denominator
S2+4s+8=s’+4s+ 4 +8-4

2 , ©=2}

=2+ 4s + 4+ 4 = (s+2)° + (2)? {b
. Partial fraction expansion gives

A  B(s+2) C s+1
Y(S)=—+— +— =—
S S°+4s+8 s°+4s+8 s(s°+4s+8)

Multiply by s and let s—0
A=1/8
Multiply by s(s?+4s+8)
A(s?+4s+8) + B(s+2)s +Cs=s+1

As? + 4As + 8A +Bs?+2Bs+ Cs=s+ 1

s A+B=0 —» B=-A=-

0|

s 4A+2B+C=1 - C=1+ 2(1 _4(1j:§
8 8) 4

s0: 8A=1 A= (This checks with above result)
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1/8 (-1/8)(s+2 3/4
ORI LI L
s (s+2)°+2° (s+2)°+2

1 1 3 ]
=|=|-|=]e?cos2t+| = |e?sin 2t
YO @ (8] @

Laplace transform of the system of ODEs gives:

dy, ~t
£(E)+E(y2):£(e )
£(%j+3£(y2):2£(y1)
SY, +Y, = (1)
sY, +3Y, =2Y, @)

Next solve Equation 2 for Y2 in terms of Y3

Y,(s+3) =2,

Y, =24 ©)

543
Substitute equation 3 into equation 1 and solve for Y3

) (s +1)(s+i)
S+3

Expand using partial fractions:

__s+8 1 1 2
Yo(s+D)%(s+2) s+2 s+1 (s+1)°
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Now go back and substitute into equation 3 to get Y> and expand using partial
fractions:

2Y, 2 2 2 2
Y2 = = 2 = — + >
s+3 (s+1)°(s+2) s+2 s+1 (s+1)

Finally, get both time-domain solutions using the inverse Laplace transform:

y,(t)=e* —e" +2te”
y,(t)=2(e™ —e " +te™")

dc
V—+gc=qc
at gc =g

Since V and q are constant, taking Laplace transforms give
sVC(s) + qC(s) = g Ci(s)
Note that c(t=0) =0

Also, ci(t)=0 , t<0
ci(t) = C, : t>0

Taking Laplace transform of the input function, a constant, gives

Ci (S) = S
S
so that
c o
sVC(s) +qC(s) =q— or C(s)= ———
S (sV +0q)s

Dividing numerator and denominator by ¢

_ Ci
"o Yot
q

Use Transform pair #3 in Table 3.1 to invert (t =V/q)
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c(t) = C, (1—e_Vqtj

Using MATLAB, the concentration response is shown in Fig. S3.18. (Consider
V =2m?3 ¢i=50 Kg/m® and q = 0.4 m3/min)

50

45+

40

35~

30~

25~

c(t)

20

15~

10

r r r r r
0 5 10 15 20 25 30

Time

Figure S3.18. Concentration response of the reactor effluent stream.

(a) Take the Laplace transform of each term, taking into account that all initial
conditions are zero:

s’Y —sy(0) - y'(0) +5sY —5y(0) +Y =8sU —8u(0) +U
SY +5sY +Y =U (8s +1)

U(s)=1
S
Y(s*+5s+1) = g+l
8s+1

- s(s® +5s+1)
Now use symbolic mathematical software (ex. Mathematica) to solve for y(t).

InverseLaplaceTransform[(8*s+1)/(s*(s"2+5*s+1)),s,1]
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1 52, _5+21, V215, V215,
g[t =g e ~11J21e 2 -21e 2 +11J21e 2 +42

Plot[g[t].{t,0,100},AxesLabel-{time, Y} PlotRange—{{0,100},{0 ,2}}]

0 I I I | I I I | I I I | I I I | I I I J
0 2 4 6 8 10

Figure S3.19a: Tank level response to a unit step change in flow rate.

(b) Define the time when y(t) reaches its maximum as tmax. This time occurs
when y'(t)=0. Solve for this time using Mathematica and find that tmax=0.877
and y(tmax)=1.558. Therefore, the tank will not overflow.

(c) Now find the general solution for any input step size, M (the solution is
denoted in this case as Ym(S) and ym(t) for clarity). The input U(s) is M/s.

U(s):%

Y, (s2+5s+1) = M(85+1)
S

M (8s+1)

M S(s?+55+1)

Ywm is the previous Y, multiplied by the size of the step, M. Since M is a constant,
taking the inverse Laplace transform gives:

Yu () = My(t)

Now solve the equation:
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Yu (o) =2.5=My(t,..) = M (1.558)
2.5

M=——=1605
1.558

The maximum step change in the flow rate into the tank that will not overflow the
tank is 1.605.

0 I I I | I I I | I I I | I I I | I I I \t
0 2 4 6 8 10

Figure S3.19b: Tank level response to a 1.605 step change in flow rate.

a)  Given constant volumes, overall balances on the three tanks indicate that
the flow rate out of each tank is equal to g

Component balance for tracer over each tank,

dc,
V, — =q(-c
1dt q(| 1)
dc
V., =2 — C —C
2 4t q(c,—c,)
dc
V, == =q(c,—-c
3 4t q(c,—c)
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b)  Taking Laplace transform of above equations and eliminating

C,(s) and C,(s) gives
aja)a
o))

Cl)= (s+a/V,)(s+a/V,)(s+q/V,)

Ci(s)

Since ¢, (t) =o(t), C.(s)=1

L V=V, =V, =V

3
CB(S) — (q /V) - — al + az : + aS -
(s+q/V) (s+q/V) (s+q/V)" (s+q/V)

Cy(t) = e V) 4 g, te (VI g 2OV

o Vi#zV, 2Vo#V,

- - @M.
Cy(t) = a,e WV 4 g o AN g (V)

(© Yes, amount of tracer can be calculated by measuring C,(t),

amount of tracer = J qc,(t)dt, which can be evaluated numerically
0

Start with the Laplace version of the equations from Exercise 3.20:

wll)

(s+q/V,)(s+0alV,)(s+q/V;)

Cy(s) = Ci(s)

Since V1=V»=V3, this equation reduces to:

q

V

Ci(s) = Lﬁi (s) )

(s+q/V)
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where ci(t) is a pulse of magnitude A and width tw. A pulse can be described by the
sum of two step functions. The first will be a step function of magnitude A at time
0. The second will be a step function of —A at t=tw.

c.(t) = AS(t) - AS(t—t,)

Ci (S) =é_?e—tws — A{l—e_ WSJ (2)

S

Now substitute Equation (2) into Equation (1). For simplicity, define a new variable
f=q/V.

A(f) @—e™)
s(s+ f )3
Now use a symbolic mathematics software to find the inverse Laplace transform,

giving cs(t). The solution is formulated as a function of t, f, A, and tw. Then as an
example, we plot c3(t) for f=1/20, A=10, and tw=1.

C3 (3) =

In Mathematica, take the inverse Laplace transform:

InverseLaplaceTransform[A * f"3
* (1 —Exp[—tw *s])/(s * (s + f)"3), 5, t]

The solution:

ca(t) =
v A(e Tt (=2 + 2/t — 2ft — £2t?)
— ef W (22 4 2o E=W) — 2 (¢t — tw)
— f2(t — tw)?)HeavisideTheta[t — tw])

Define the function in terms of the parameters:

gltuf, A tw_ ]
1
= EA(e-ft(—z +2eft — 2ft — f2t2) — S (W (2

+ 2eSEW) _2£(t — tw) — f2(t — tw)?)HeavisideTheta[t
—tw])

Then plot the concentration over time, assuming f=1/20, A=10, and tw=1.

Plot[g[t,1/20,10,1],{t, 0,200}, AxesLabel — {time, C3}]
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C3

0.2 |
0.10 f
0.08
0.06 |
0.04 |

0.02

50 100 150 200 He
Figure S3.21: Plot of c3 over time in response to a pulse in c¢; of amplitude 10 and
width 1, with f=1/20.

Solve this problem using a symbolic software program such as Mathematica. The
following script will solve the problem (note that only 4 of the 5 possible initial
conditions on y and its derivatives are included, otherwise the problem is over-
specified).

DSolve[{y"'[x] + 16 * y"'[x] + 86 * y"[x] + 176 * y'[x] + 105 * y[x] =
= 1,y[0] == 0,y'[0] == 0,y"[0] == 0,y"[0] == 0}, y[x], x]

Running this script will give the result:

e~ 7*(—1+ e*)*(5 + 20e* + 29e%* + 16e%¥)
1680 &

{tylx] -

Use the Expand[ ] command to expand this solution into its individual terms.

1 e—7x e—Sx e—3x e~ *

W= 15%33 " 80 " a8 187

If desired, the fractions can be approximated as decimals:

y(t) =0.003e " —0.0125¢ * +0.021e * —0.021e " +0.01
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Chapter 4 ©

Y(s) d
U(s) bs+c
Gain K can be obtained by setting s =0
k-4
c
Alternatively, the transfer function can be placed in the standard gain/time

constant form by dividing the numerator and denominator by c:

Y@ _ K , Where K:g andr=9.
u(s) zs+1 c c

b) In order to determine the boundedness of the output response, consider a step
input of magnitude M. Then use U(s) = M/s and
Y=t M
s+1 s
From Table 3.1, the step response is:
y(t)=KM@1-e™"")
By inspection, this response will be bounded only if T > 0, or equivalently,
only if b/c > 0.
a) K=3
b) =10
C) We use the Final VValue Theorem to find the value of y(t) when t—co.
Y(s) = 12e
s(10s+1)
SV (s) = 12e
(10s+1)
. 12e
lim =
s=0 (10s +1)
From the Final Value Theorem, y(t) = 12 when t—
d)  y(t) =12(1-e "D | then y(10) = 12(1-e91%) =7.12
[Type here] 4-1

[Type here]



7.12/12=0.593.

e)  Again use the final value theorem.
Y(s)= 3e @-e)
(10s+1) s
SY (s) = e’(1-e7)
(10s+1)
im e*(l-e°) 3(1-1)
-0 (10s+1) 1

0

From the Final VValue Theorem, y(t) = 0 when t—o

f)
Y(s) = 3e”
(10s+1)
SY (s) = 3se”
(10s+1)
. 3se”t
lim =
-0 (10s +1)
From the Final VValue Theorem, y(t)=0 when t—o
9 Y(s)= il 210 = 30e’2 then
(10s+1) (s“+4) (10s+1)(s“+4)
10 Y 1
t)=30S(t-1)| —e ¥ +—(sin(2(t—1))—20cos(2(t -1
y(t) ( )[401 802( (2(t-1)) (2( )))j

The sinusoidal input produces a sinusoidal output and y(t) does not have a
limit when t—o0.

These solutions can be verified by using mathematical software such as
Mathematica or Simulink.
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12; [

10t

N A OO @

16 Zb 36 46
Fig. S4.2a. Output for parts c) and d).

y
0.30¢

0.25¢
0.20¢
0.15-
0.10¢
0.05¢

—

w\v\ﬁ

10 20 30 40

Fig. S4.2c. Output for part f).

y
0.25 |
020#
015}
o&ow
0.05;
- time J : : e time
50 10 20 30 40
Fig. S4.2b. Output for part e).
y
I
2"‘\‘ (A‘ /\ ﬂ (\
}‘\‘H (‘\ \ \‘ -
1 /H/” i ﬂ\ f\ | f‘ /‘ ﬂ ‘ﬁ\ [\ ﬂ ﬂ ﬂ
B W\\‘\ f‘h“H\
AN “‘ VL
1 | m‘ r— time
RGNS
Jtime” 1, 'l ‘ “ ‘/ “ ] ‘”‘

Fig. S4.2d. Output for part g).

The transfer function for the pressure transmitter is given by,

RO

P'(s) 10s+1

@)

and P’(s)=15/sfor the step change from 35 to 50 psi. Substituting (1) and

rearranging gives:

i) =

E
10s+1 s

From item #13 in Table 3.1, the step response is given by:
P/(t)=15(1-e"")

)

Let t, be the time that the alarm sounds. Then,
P! (t,) =45-35=10 psi

©)

Substituting (3) and t=ta into (2) and solving gives ta = 11s. Thus, the alarm will

sound 11 seconds after 1:30PM.



From Exercise 4.2,

Y(s) 3e’
U(s) 10s+1

Rearrange,
Y (s)[10s +1] =3e°U(s) (2)

Take Z* of (2),

103—{+y=3u(t—1) 3)

Take Z of (3) for y(0)=4,
10[sY (s)—4]+Y(s)=3e°U(s)

Substitute U (s) =2/ s and rearrange to give,

10sY-40+Y=2
S
Y(10s+1) = 2+ 40

Partial fraction expansion:

s 6 40
Y(s)=e +
s(10s+1) (10s+1)
6 a N a,

s(10s+1) T s 10s+1
Find o: Multiplybysandset s=0 = o, =6
Find a,: Multiply by 10s+1andset s=-01 = «,=60

Y(s):es(§+ 6 j+ 4
s s+0.1) (s+0.1)

Take T4,

y(t) =6S(t—1)(L+e D)+ 410
Check: Att=0, y(0)=4.



a) 2% =-2y1 —3y2 + 2U;

% =4y;—6y2 + 2u1 + 4u2

Taking Laplace transform of the above equations and rearranging,
(25+2)Y1(s) + 3Y2(s) = 2U1(s)
-4 Y1(S) + (s+6)Y2(s)=2U1(s) + 4Ux(s)

Solving Egs. (3) and (4) simultaneously for Y1(s) and Y2(s),

_ (2s+6)U,(s) —12U,(s)  2(s+3)U,(s)-12U,(s)
28 +14s+24  2(s+3)(s+4)

Y1(s)

1)
)

©)
(4)

_ (4s+12)U,(s) — (85 +8)U,(s) _ 4(s+3)U,(s) +8(s +1)U,(s)

Y2(s)

2s% +14s + 24 2(s+3)(s +4)
Therefore,
Yi(s) _ 1 Yi(s) —6
U(s) s+4 ’ U,(s) (s+3)(s+4)
Y,(s) . 2 Y,(s)  4(s+])
U,(s) s+4 ’ U,(s) (s+3)(s+4)

a)
Taking the Z* gives,

X'(t)=0.09e™® and x(t)= X+x'(t)=0.3+ 0.09¢ "
The intial values are x’(0) = 0.09 and
x(0) = x’(0) + X =0.09+0.3=0.39.

The plot of the concentration response is shown in Fig. S4.6.
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Fig. S4.6. Transient response.

The transfer function is given by:

X'(s) 06
X/(s) 10s+1
For the impulse input, x/(t) =1.55(t), and from Table 3.1, X/(s)=1.5. Thus,
0.9
X'(s) =
) 10s+1

b) Initial Value Theorem:
0.9

X'(0) =lim sX'(s) = T 0.09

Thus, x(0) =x'(0)+X =0.09+0.3=0.39
c) For the steady-state condition,

x(0)=x=0.3

d) As indicated in the plot, the impulse response is discontinuous at t=0. The
results for parts (a) and (b) give the values of x(0) for t=0* while the result for (c)
gives the value for t=0".

n

The simplified stage concentration model becomes

dx
H d_'[lz L(Xo _Xl) +V(y2 _yl) (1)
y1 = ag + arx1 + azx1? +asxs® 2)
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a) Let the right-hand side of Eq. 1 be denoted as f(L, xo, X1, V, Y1, ¥2)

dx of of of
H—L=1f(L,x,,X,V,V,, =|— | L"+| — | X, +| — | X/
gt~ XXV vye) (al_l {axol ° +(6‘Xll '
S5y
o Vi i+ — | v
N J; N1 ), %Y, ),
- . R : dx, dx
Substituting for the partial derivatives and noting that ot dt :
dX' _ _ y Ty T = = ARV \ /7'
d_'[l = (Xo =X)L+ Lxg —Lx; + (¥, = V)V +Vy; =Vy, 3)
Similarly,
r__ _ ag r_ o o 2 '
Y1 = g(xl) - (87} X = (al + 2a2X1 +3<’:13X1 )Xl (4)
1/s
b) For constant liquid and vapor flow rates, L'=V'=0
Taking Laplace transforms of Egs. 3 and 4,
HsX/(s) = LX/(s) = LX,(s) +VY,(s) -VY,(s) (5)
Y{(s) = (a, +2a,%, + 3a3)_(12)X1’(S) (6)
From Egs. 5 and 6, the desired transfer functions are:
L, V.
Xi(s) _ H Xi(s) _ H
Xo(s) ts+1 ’ Y)(s) ts+1
- a2 L
Y/(s) (a, +2a,%, + 3a3x12)ﬁr
X5 () N $+1
- PV
Y.(s) (a, +2a,X; +3a,X; )ﬁr
Y)(s) 5+1

where:
H

L +V (a, +2a,x, +3a,%,°)

T=
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The material balance is,

d(pAh) = w, —Rh 15
dt
or
d_h — iwi _ i hl.5
dt  pA pA

Use a Taylor series expansion to linearize

I 05
LSRN 5y

& iV_Vi _EHLS +i(Wi -W,) -
dt | pA pA pA

Since the bracketed term is identically zero at steady state,

d' 1 ., 15Rh%

— =W h'
d pA pA
Rearranging
pA dh" 1 ,
1.5Rh®* dt 1.5Rh %
Thus,
H'(s) K
W/'(s) 1s+1
where,
1 h_ h _ [height]
15Rh®® 15Rh*® 15w [ flowrate]
pA pAh  pV  [mass]

= — p— - :t'
"T15RA%®  15RR'® 15w  [mass/time] time]
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a)  The model for the system is given by

dT
mC--=WC(T, ~T)+h, A, (T, ~T) (2-51)

mwcw%:hsAs(Ts _Tw)_hpAp(Tw _T) (2'52)

Assume that m, mw, C, Cw, hp, hs, Ap, As, and w are constant. Rewriting the
above equations in terms of deviation variables, and noting that

dT _ dT’ d1, dT,
dt  dt dt  dt
dT' ! 1A h 1 1A
mC . =WC(T/-T")+h,A (T, -T")
dTVC h 1 h ! !
mewH: SAS(O_TW)_ pAp(TW_T)

Taking Laplace transforms and rearranging,

(MCs+wC +h A,)T'(s) =wCT/(s) +h, AT, (s) (@D)]
(m,C,s+nhA +h ANT, (s)=h AT'(s) )

Substituting in Eq. 1 for T, (S) from Eq. 2,

h A
mCs+wC+h_A )T'(s) =wCT.(s)+h_A PP T'(s
( o AT(S) i(s)+h, (M.Cus+h A <h A) (s)
Therefore,
T'(s) wC(m,C,s+hA +h A))

T/(s) (mCs+wC+h A)m,C,s+hA +h A)-(h A)

b)  Thegainis F'(S)} _ WC(h A, +h,A,)

T(s) |, WC(hA +h A)+hAh A

C) No, the gain would be expected to be one only if the tank were insulated so
that hpAp= 0. For the heated tank, the gain is not one because heat input
changes as T changes.
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Additional assumptions

1. Perfect mixing in the tank
2. Constant density p and specific heat C.

3. Tiis constant.
Energy balance for the tank,

pVC(;Ij—-[ = WC(T| _T)+Q_(U+bV2)A(T _Ta)

Let the right-hand side be denoted by f(T,v),

dT of of
VC—=fT,V)=| —|T'+| — |V
PVE G = T(TY) (aTl (avj

(ﬂj =-wC —(U +bV?)A
oT ),

(ij = —2VbA(T -T,)
ov ),

Substituting for the partial derivatives in Eq. 1 and noting that (ii_-tr:

AVC O:jlt =—[WC+(U +bV?)A]T' = 2bA(T —T, )V’

AVC %{wC +(U +bV?) AT’ = —200AT -T, V'

Taking the Laplace transform and rearranging

pvc:sT'+[wc +U +bv2)A]T' = —2WA(T -T,)V'
[,oVCs +[WC + (U+b\72)AHT’ =—2VbA(T -T, )V’
—20bA(T -T,) v/
[ E—
pVCs+[WC + (U +bv*)A]]
2WA(T -T,)
T'(s) _ wC+(U+bv?*)A
vie) pYC — s+1
wC + (U +bv)A

T'=

4-10
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a) Mass balances on the surge tanks:

dm
dt1 =W =W, )
dm
dt2 =W, =W, @)
Ideal gas law:
m
PV, = Vl RT o
m
PV, = VZ RT @
Flows (Ohm'slaw: | = E_ w
R Resistance
1
"R ©)
Rl
1
"R T ©)
RZ
1
" :R_(PZ_Ph) @)

3

Degrees of freedom:
e number of parameters : 8 (V1, Vo, M, R, T, Ry, R2, R3)
e number of variables : 9 (m1, m2, w1, Wz, W, P1, P2, P, Ph)
e number of equations : 7
number of degrees of freedom that must be eliminated =9 -7 =2

Because P and Py are known functions of time (i.e., inputs), Nr = 0.

b) Model Development
MV, dP,

Substitute (3) into (1) : =t =W, —w, )
Substitute (4) into (2) : I\g\;z dditz =W, — W, 9)
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Substitute (5) and (6) into (8):

Mv, dP, 1 1
—t==(P,-P)-—(P,—-P

rra R R TR (R

MV, dP,

—1 l:ipc(t)_(i+i)pl+ip2 (10)

RT dt R, R, R, R,

Substitute (6) and (7) into (9):

MV, dP, 1 1

RT dt RZ( 1) Rs( 2= R
Mvzdi:ipl_(i+i)P2+iPh(t) (11)
RT dt R, R, R, R,

Note that % =f,(P,P,) fromEq. 10

dditzz f,(P,P,) fromEg.11

This system has the following characteristics:
(i) 2"-order denominator (2 differential equations)
(if) Zero-order numerator (See Example 4.7 in text)
. W,
(iii) The gain of ﬁ
P/(s

c

is not equal to unity. (It cannot be because the

units for the two variables are different).

412

(a) First write the steady-state equations:

0=wC(T,-T)+hA(,-T)

0= Q_he'%(-re _-r)

Now subtract the steady-state equations from the dynamic equations
dT

mC o =we[@-D-T-D]A[C-T)-0-T)] @
meCe d;;e = (Q_é) - he'A\; I:(Te —-E.) —(T —f)] 2)

Note that dT /dt =dT '/ dt and dT, /dt =dT, / dt. Substitute
deviation variables; then multiply (1) by 1/wC and (2) by 1/(h_A,).
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mdT"' h, A,

S =TT (1T ©
mece dT'e_ Q' _ v
A AT @

Eliminate one of the output variables, T'(s) or T',(s), by solving
(4) for it, and substituting into (3). Because T',(s) is the intermediate
variable, remove it. Then rearranging gives:

mmece s? + me_Ce+m€_Ce+m s+1 T'(S)
wh A hhA° wC w

meCe ' i '
= [ESHJT (s)+ oC Q'(s)

Because both inputs influence the dynamic behavior of T, it is necessary to
develop two transfer functions for the model. The effect of Q' on T' can be
derived by assuming that T, is constant at its nominal steady-state value, T,.
Thus, T', = 0 and the previous equation can be rearranged as:

50 b GO Te=0)

Similarly, the effect of T on T' is obtained by assuming that Q=Q

(that is, Q'=0):
meCe
Ts) ha
= 2 =G,(s '(s)=0
T'(s) b,s®+bs+1 (%) Q=0
where
b, is defined to be me_g+me_(36+m
h, wC w
. . mm_C
b, is defined to be ——=
wh,A,

By the superposition principle, the effect of simultaneous changes in both
inputs is given by

T'(8) =G(s)Q'(5) + G, (s)T 'i(s)

(b)

The limiting behavior of m,C, going to zero has b, =0

and b, = m/w and simplifies the last equation to

, 1/wC _, 1 ,
T(8) = Q(8)+—=—T(s)
—S+1 —Ss+1
W w
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4.13

A mass balance yields:

dm
=50 — 1
ot Jolseele 1)

The mass accumulation term can be written, noting that dvV=Adh=w:Ldh, as
dm _ dV dh
— w, L — 2
at Pat P e @)

where wiL represents the changing surface are of the liquid. Substituting (2) into
(1) and simplifying gives:

dh
th—azqi_q (3)

The geometric construction indicates that wy/2 is the length of one side of a right
triangle whose hypotenuse is R. Thus, wy/2 is related to the level h by
A mass balance yields:

w

?t = JRZ —(R=h)?

After rearrangement,

w, =2,/(D-h)h 4

with D = 2R (diameter of the tank). Substituting (4) into (3) yields a nonlinear

dynamic model for the tank with g; and q as inputs:
dh 1

Ef_zka-hm(q_q)
To linearize this equation about the operating point (h=h), let
g -9

“2LJ(D-h)h

Then

aqjs zukD h)h
j ZLkD h)h

j [ahEZLJF )hﬂ

%IQﬂ
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The last partial derivative is zero, because T, —@ from the steady-state relation, and

the derivative term in brackets is finite for all 0<h<D. Consequently, the linearized
model of the process, after substitution of deviation variables, is

dh' 1

E=m(q i—d)

Recall that the term 2L./(D —h)h in the previous equation represents the variable

surface area of the tank. The linearized model treats this quantity as a constant that
depends on the nominal (steady-state) operating level. Consequently, operation of
the horizontal cylindrical tank for small variations in level around the stead-state
value would be much like that of any tank with equivalent but constant liquid
surface. For example, a vertical cylindrical tank with diameter D’ has a surface are

of liquid in the tank equal to z(D')*/4=2L/(D—h)h . Note that the coefficient

%L«/(D—ﬁ)ﬁ is infinite for h =0 or for h =D and is a minimum at h=D/2.
Thus, for large variations in level, this equation would not be a good approximation,
because dh/dt is independent of h in the linearized model. In these cases, the
horizontal and vertical tanks would operate very differently.

Assumptions
1. Perfectly mixed reactor
2. Constant fluid properties and heat of reaction.

a) Component balance for A,

dc
V= E=d(e, —c,)-Vk(T)e, (1)
Energy balance for the tank,
PV = pAC(T, ~T) + (- AH)VK(T)e, @

Since a transfer function with respect to cai is desired, assume the other inputs,
namely g and Ti, to be constant.

. . d dc’ '
Linearize (1) and (2) and note that Ln_ %0 , ar _dT ,

dt  dt ' dt  dt
dc, ., .. .—.20000._,
V== 0ol — (@ +VK(T))e, —Vek(T) =T @)
ve Il _(pqc + AHVE,K(T) 2‘;_090}' FEAHVKTE  (4)
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Taking the Laplace transforms and rearranging,

20000
()

Vs +q+Vk(T)C4(s) = aCl (5) - Ve,

ZOOOO}

{pVCSerqC (—~AH)VT,k(T) T'(s) = (~AH)VK(T)C,(s) (6)

Substituting for C}(s) from Eq. 5 into Eq. 6 and rearranging,

T'(s) —AHVK(T)q 7)
CL(s) [Vs+q+Vk (T)][ 20000} (CAHYEV 20000

C, is obtained from the steady-state version of Eq.1,
¢, —— 9% ___ 0001155 molicu.ft.
q+Vk(T)
Substituting the numerical values of T , p, C, (—~AH), g, V, T, into Eg. 7 and
simplifying gives,

T'(s) 11.38
CLi(s) (0.0722s +1)(50s +1)

b) The gain K of the above transfer function is equal to [ ) } :
s=0

Cai(s)
0.15766 G
K=r7 c,) 0 : C, ®)
(q—s 153x10° & )(q +13. 84)+ 4.364.107 A
1000 1000 T2

It is obtained by setting s=0 in Eq. 7 and substituting numerical values for p,
C, (—AH), V. Evaluating sensitivities gives,

) _ _
d_*fzﬁ_ K —| 2 q6 +O.01384—31535—A2 =-—6.50x10""
dg g 0.15766q| 10 T

2 — 6 — 7 —
dK K H q *13'84j(3'153XT10 ch2]_2x4.36i1x10 CA:|

dT  3.153|11000 8 T3
=-257x10"°

dk  dK y dc,

dc, dc, dc,
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k2 = 6 7 =
_ K _ _( q +13-84j 3.15§>2<10 +4'36i2<10 _ q
0.15766Q 1000 T T q +13840

=8.87x10°°

Assumptions:

1. Constant physical properties
2. Perfect mixing

Dynamic model: Balances on cell mass and substrate concentration
dX

~o = H(OX-DX = f,(S,X,D) 1)
(;_f:—y(S)X/YX,S+D(sf ~85)=1,(5,X,D.S,) o)

where:

. . 1S
S)X is defined as —— X,
1(S) i S

D is defined as E
V

Linearization of (1) about the nominal steady state gives a linearized model of the

form:
ax ~ M S’+i X'+@ D’
dt ~ oSl,  oXl, oDl
XK tS) S g [ S 5y K @3)
dt (K, +9S) K,+S

Linearization of (2) about the nominal steady state:

ds’  éf,

—_ o~ —=
~

dt 0S

oty
oX

o,
oD

D'+i
oS,

S'+ X'+ S

SS

SS SS SS

B oL AaKaS)mmd g 5lgy [ L S |y (5 _5)D+Ds;
dt Yyss (K +S) Y5 Ki+S

(4)
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Substituting the numerical values gives:

ddit =0.113S' - 2.25D"'

O:jit =-0.326S'-0.2X"'-9D"'+0.1S]

Taking Laplace transforms, assuming steady state initially:
sX'(s) =0.1135'(s) — 2.25D'(s)
sS'(s)=—0.326S'(s)—0.2 X'(s) —9D'(s) +0.1S} (s)

In order to derive the transfer function between X and D, assume that Stis
constant at its nominal steady-state value, S, (t)=S;; thus S| =0. Rearranging

gives,
X'(9)= 208 - 220 (5)
v [ 02 v (9 ,
S(S)_(S+0.326jX(S) (s+0.126jD(S) ©)

Substitute (6) into (5) and rearrange gives,

X'(s)  —(2.255+1.7)
D'(s) s°+0.326s+0.0226

()

Rearrange (7) to a standard form:

X'(s)  K(r,s+])
D'(s) r’s®+2rs+1

where:
K=-77.4 gh/L
7,=0.778h
7=6.65h
¢ =1.08

Note that the step response will be overdamped because ¢ >1.
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Chapter 5

No, the time required for the output Y(s) to reach steady state does not depend on
the magnitude of the step input in U, it only depends on the time constant z; and
delay 6 . Since the Laplace transform of a step change is M/s, we have:

KM s

Y(8) =GV )= ) (rs s ) (s 0)

The inverse Laplace transform takes the following form:

2 2
2 etn _ 2 ~tir, _

(71_72)(11_73)(71_74) (71_72)(7'2_73)(72_14)

(71_73)(73_2'2)(73_74) (71_74)(74_7'2)(74_2'3)

Y (t)=KMu(t-9)

2
~tlry T4 e’t/fa

As shown in above equation, the settling time is not related to the magnitude of
input signal M.

(a) For a step change in input of magnitude M:
y(t)=KM (1-e")+y(0)

We note that KM = y(0)—y(0)=500—100=400"C

Then K :&24OOOC/KW
(2-1)Kw
Attime t=4, y(4)=400"C ; thus, 400-100 _, e ,or 7 =2.89min
500-100
T'(s .
T )— 400 [C/KWJ

TP(s) 2.89s+1

(b) For an input ramp change with slope a = 0.5Kw/min:
Ka =400x0.5=200"C/min

This maximum rate of change will occur as soon as the transient has died out, i.e.,
after 5x2.89 min ~ 15 min have elapsed.

Solution Manual for Process Dynamics and Control, 4th edition
Copyright © 2016 by Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp,
and Francis J. Doyle Il
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1500 L L T T L L L L L

1000 -

]

500 [~ -

r L L I
0 1 2 3 4 5 6 7 8 9 10
Time(/min)

o

Figure S5.2. Temperature response for a ramp input of magnitude 0.5 Kw/min.

The contaminant concentration c increases according to this expression:
c(t)=5+0.2t
Using deviation variables and Laplace transforming,

c'(t)=0.2t or C'(s) = 0—22
s
Hence
1 0.2

10s+1 s°

C(s)=
and applying Eq. 5-21
¢ (t)=2(e""-1)+0.2t
As soon as C, (t) > 2 ppm the alarm sounds. Therefore,

At=18.4s  (starting from the beginning of the ramp input)



The time at which the actual concentration exceeds the limit (t = 10 s) is
subtracted from the previous result to obtain the requested At .

At=18.4-10.0=84s

25 T T T T T T 1 T L

1.5 '

0.5 i

0 r r r r r r r

0 2 4 6 8 10 12 14 16 18 20
time
Figure S5.3. Concentration response for a ramp input of magnitude 0.2 Kw/min.

Using deviation variables, the rectangular pulse is

0 t<0
Cr=< 2 0<t<?2
0

2<t<w

Laplace transforming this input yields
. 2 e
C.(s) :g(l—e )

The input is then given by

8 8e ™

@)= s(2s+1) - s(2s+1)

and from Table 3.1 the time domain function is

¢ (t)=8(1-e"?)-8(1-e V?) St -2)
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L c c
0 2 4 6 8 10 12 14 16 18 20

time

Figure S5.4. Exit concentration response for a rectangular input.

b) By inspection of Eg. 1, the time at which this function will reach its
maximum value is 2, so maximum value of the output is given by

c'(2)=8(1-e™*)-8(1-e"?)S(0)
and since the second term is zero, ¢'(2) =5.057
C) By inspection, the steady state value of c'(t)will be zero, since this is a

first-order system with no integrating poles and the input returns to zero.
To obtain c'(«), simplify the function derived in a) for all time greater

than 2, yielding
C’(t) — 8(e—(t—2)/2 _ e—t/Z)
which will obviously converge to zero.

Substituting c'(t) = 0.05 in the previous equation and solving for t gives

t=9.233



b)

Energy balance for the thermocouple,

mc 9T _ha, —T)
dt

where m is mass of thermocouple
C is heat capacity of thermocouple
h is heat transfer coefficient
A is surface area of thermocouple
t is time in sec

Substituting numerical values in (1) and noting that

T,=T and ar _dr ,
dt dt
159 71
dt

Te_ 1

Taking Laplace transform, =
T./(s) 15s+1

To(t) = 23 + (80 — 23) S(t)

T =T =23

S

Fromt=0tot= 20,

T/()=57s0) , T(s)=>"
S

TU(s) = —2T/(s) = —
155 +1 s(15s +1)

Applying inverse Laplace Transform,
T'(t)=571-e™"'")
Then

T =T'(t)+T =23+57(L—e ™)

Since T(t) increases monotonically with time, maximum T = T(20).
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Maximum T(t) = T(20) = 23 + 57 (1-e'®) = 64.97 °C

50 T T T T T T T T T

45~ 1
41.97°

40 i

30~ 1

25~ 1

20~ 1

15~ 1

0 5 10 15 20 25 30 35 40 45 50
time

Figure S5.5. Thermocouple output for parts b) and c)

(@)

10 M
Y(s) =G(s)U(s) = (Gs+1)@3s+1) s
Y(s) = (422 +E)M

5s+1 3s+1 s

Partial fraction expansion:
a; =125, a, = -45, dz = 10.

Y(s)=(125 B 45 +E)M
5s+1 3s+1 s

Inverse Laplace:
y(t) = (25¢7° —15e "3 +10)M

Then,
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limy(t) = !im(ZSe’“s —~15¢73 +10)M =10M

Or, final value theorem from Chapter 3 applies:
10 M

I|m y(t) = IlmsY(s) = IlmsG(s)U (s) = I|m ——— —=10M

(5s+1)((3s+1) s

(b)

Y(5)=G(9)U(s) = — 2

(5s+1)(3s+1)
a2

Y (s) =
(5) = 53+1 3s+1

Partial fraction expansion:
a; = 25, az =-15.

15
Y(s)=
53+1 3s+1

Inverse Laplace:
y(t) — Se—t/S _Se—t/3

Then,
limy(t) = !imSe’”5 —5e3 =0

Or, final value theorem from Chapter 3 applies:

10
I t_I Y _I G(s)U —I —_
|my() Ims (s) Ims (S)U(s) ims (53+1)(33+1)
(©)
10 1

Y (s) =G(s)U(s) =
(5)=GENE) (5s+1)(3s+1) s* +1
Y(s) = a, a, +a3+b_3j+a3—b_3j

5s+1 3s+1 s+ S— ]

Partial fraction expansion:
a; = 625/26, ap = -27/2, az = -2/13, b3 = 7/26.
Y(s) = 625/26 27/2 -2/13+7/26] s 2/13-7/26]

+
55+1 3s+1 S+ j S—j

Inverse Laplace:
y(t) =125/26e"° —9/2e™""* —7/13sint — 4/13cost
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Then, !im y(t) does not converge.

(d)
10

1 s
Y(S):G(S)U(S):mg(l—e )

According to part (a), we have:
y(t) = (25e™"° —15e™"* +10) — S(t —t,,) (25 7V'° —15e (792 1 10)

Then,
limy(t) = lim(25e"'® —15e7"/3 +10) — (25e (975 _15e 1973 110) =0
t t

-LI

Assume that at steady state the temperature indicated by the sensor T is equal to
the actual temperature at the measurement point T. Then,

T.5) K 1
T'(s) ts+1 15s+1

T =T=350C
T, (t) =15sin ot
where ©=27x0.1 rad/min = 0.628 rad/min
At large times when t/t >>1, Eq. 5-26 shows that the amplitude of the sensor

signal is
A

Ao = Jolt?+1

where A is the amplitude of the actual temperature at the measurement
point.

Therefore A =15\/(0.628)2(1.5)2 +1=20.6°C

Maximum T =T + A=350 + 20.6 = 370.6

MaXimum Tcenter = 3 (maX T) - 2 Twa”
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= (3% 370.6)—(2x 200) = 711.8°C

Therefore, the catalyst will not sinter instantaneously, but will sinter if operated
for several hours.

a) Assume that g is constant. Material balance over the tank,

dh
AE:q1+q2_q

Writing in deviation variables and taking Laplace transform
AsH'(s) = Q(s) + Q(s)

H'(s) 1
Q/(s) As

b)  ql(t)=5S(t) - 55(t-12)

5 5 _
2Dtz
S S

W@:iqm=

Qi(s) =

5/A 5/A
2 s ©

h(t) = %t S(t) - %(t _12)S(t-12)

)
4+%t=4+0.177t 0<t<12
h(t) =
4+ (%XIZJ —6.122 12 <t

\
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25

1.5

h(t)

0.5~

r r r r r r r r r
0 5 10 15 20 25 30 35 40 45 50

time

Figure S5.8a. Liquid level response for part b)

c) h =6.122ft at the new steady state t > 12

d) 0;(t) =10S (t)-5S (t-12)

Qi(s) =22tz
S S
10/A 5/A .
2§ ¢

4+%t=4+0.354t 0<t<12

H'(s) =

h(t)=

6.122+0.177t t>12
The liquid level will keep increasing and there will be no steady-state
value of liquid level h .
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a)

11 T T T T

h(ty/ft

4 r r r r

0 5 10 15 20
Time/min

Figure S5.8b. Liquid level response for part d)

Material balance over tank 1.

dh
A—=C(q, —8.33n
5~ Cl )

where A = zx(4)%/4 = 12.6 ft?

ft3/min

C=01337 ———
USGPM

AsH'(s) = CQ!(s) — (C x8.33)H (s)

H'(s)  0.12
Q/(s) 11.28s+1

For tank 2,

dh
A— =C(q —
m (0, —a)

5-11
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b)

d)

H'(s) 0.011

AHO=CQ) . Gol=

Q/(s)=20/s

24 24 211

Fortank1, H'(S)=———="+-——""—
s(11.28s+1) s 11.28s+1

h(t) = 6 + 2.4(1 — e112%)
Fortank 2, H'(s)=0.22/s?

h(t) = 6 + 0.22t
Fortank 1, h(w)=6+24-0=84ft
Fortank 2, h(e) =6 + (0.22x ) = oo ft

For tank 1, 8=6+2.4(1— e-t/11.23)

h=8ft att=20.1 min
For tank 2, 8=6+0.22t
h=8ft att=9.4 min

Tank 2 overflows first, at 9.4 min.

The red line (h’(t)=2 ft, or h(t)= 8 ft) shows that tank 2 overflows first at

9.4 min.

i r i i i i
0 5 10 15 20 25 30 35

time

Figure S5.9. Transient response in tanks 1 and 2 for a step input.
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b)

The dynamic behavior of the liquid level is given by

d?h’ dh’
+A +Bh'=C p'(t
TR Pt
where
A= 62“ =39 and C:i
R%p 2L 4pL

Taking the Laplace Transform and assuming initial values = 0

s?H'(s) + AsH'(s) + BH'(s) =C P'(s)

or H'(s) :%P’(s)
—sP+ s+l
B B

We want the previous equation to have the form

K

H'(s) =
®) 1°8% + 2015 +1

P'(s)

Hence K=C/B= i

2pg
1/2
2=t then 1=+1/B =(&j
B 39
1/2
ZgrzA then (= 35 2L
B R°p\ 39

The manometer response oscillates as longas0< <1 or

1/2
< 32# & <1
R°p\ 39

If pis larger , then ¢ is smaller and the response would be more oscillatory.

If 1 is larger, then  is larger and the response would be less oscillatory.
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KM K, K,

Y(5)= ——— =1
) s?(1s+1) s®  s(s+1)
Kits + K; + Kys = KM
K; = KM
K2 - —Kl’t = -KM1
Hence
KM KMt
Y(S) = 2
S s(ts+1)
or

y(t) = KMt —KMz (1-e77)
After a long enough time, we can simplify to
y(t) ~ KMt - KMt (linear)

slope = KM
intercept = — KMt

That way we can get K and t

y( 4

—-KMr

Figure S5.11. Time domain response and parameter evaluation
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5.12

a)

b)

Y+ Ky+4y=x
Assuming y(0) = y(0) =0

Y(s) 1 ~ 0.25
X(s) s*’+Ks+4 0.255°+0.25Ks+1

Characteristic equation is

s + Ks +4=0

K++VK?-16
2

The roots are s = —

-10 <K <-4 Roots : positive real, distinct

Response : A + Be'/™ + C g™

K=-4 Roots : positive real, repeated
Response : A + Be”" + C e

-4<K<0 Roots: complex with positive real part.

Response: A + e~/7 (B cos/1- (2 Ui csindio ¢2 l)
T T

K=0 Roots: imaginary, zero real part.
Response: A+ B cos t/t + C sin t/t

0<K<4 Roots: complex with negative real part.

Response: A + e*'" (B cos/1-¢? t + Csiny1-¢? l)
T T

K=4 Roots: negative real, repeated.
Response: A + Be’" + C te™"

4 <K <10 Roots: negative real, distinct

Response: A+ Be™"'™ +C eV/™
Response will converge in region 0 < K <10, and will not converge in
region -10 <K <0
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5.13

a) The solution of a critically-damped second-order process to a step change
of magnitude M is given by Eq. 5-50 in text.

y(t) = KM{l—(l+£)e‘”’}
T

Rearranging

1elletrnogm Y
T KM

When y/KM = 0.95, the response is 0.05 KM below the steady-state value.

KM

0.95KM

0 t, time

[1+t—5je”f =1-0.95=0.05
T

In[1+ t—sj _L =1n(0.05) =-3.00
T T
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T T

Let E= In[l+t—5]—t—s+3

and find value of L that makes E ~ 0 by trial-and-error.
T

tg/t E
0.6094
5 -0.2082
4.5 0.2047
4.75 -0.0008

a value of t=4.751 is ts, the settling time.

b) Y(S :%:ﬁ+a—§+ a3 + a4 7
s“(ts+1) s s 15+1 (t15+1))

We know that the a3 and a4 terms are exponentials that go to zero for large
values of time, leaving a linear response.

a = IimL2 = Ka
20 (1S +1)

. Ka
Define Q(s) = ———
QL) (ts+1)°

d_Q_ —2Kar

ds (ts+1)°

n s—0

Then a; = 1 lim —2Kar3
(ts+1)

ap = —-2Kar
.. the long-time response (after transients have died out) is

y, (t) = Kat — 2Kat = Ka(t — 21)
=a(t-21) for K=1

and we see that the output lags the input by a time equal to 2t.
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0.9
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Yi=a(t-27)

\actual response time

>

L T

r

Output
95% threshold

3
Time

Figure S5.13a Computer simulation results on part (a)
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5.14

b)

> 2F s

3~. -

25 g

1.5 Ve .

- - i

0.5~

-
-
-
-
-
-
-
-
-
-
-
-
-
-

0 == r r r r r r

0 0.5 1 15 2 2.5 3 3.5 4

Figure S5.13b Computer simulation results on part (b)

Gain = 11.2m.m —8m.m =0.20mm/ psi
31psi —15psi

Overshoot = 12.7mm—11.2mm _ 0.47

11.2mm —8mm

Overshoot = exp[ 6 J =047 |  £=0.234

N
Period = [ 2t J =2.35s€ec

N
V1-0.234’

T1=2.35sec x
27

R'(s) _ 0.2
P'(s) 0.127s®>+0.167s+1

=0.356 sec

1)

From Eq. 1, taking the inverse Laplace transform,

0.127R’ + 0.167R’ + R" = 0.2P’
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a)

T(t)=70"+18{1-¢ 3

R'=R R'=R R'= R-8 P’ = P-15
0127R + 0167R + R = 02P + 5

R + 131R + 788R = 157P + 395

P " > [‘C/kw]
T'(s) (3)°s*+2(0.7)(3)s+1

Note that the input change p'(t) =26—-20=6 kw

Since K is 3 °C/kW, the output change in going to the new steady state
will be

T’ =(3C/kw)(6kw)=18'C

Therefore the expression for T(t) is Eq. 5-51

cos| ———1t |+ Sin t
3 J1-(0.7)? T

25

20

15

T

0 I I I I r r I I r
0 5 10 15 20 25 30 35 40 45 50
time

Figure S5.15. Process temperature response for a step input
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b) The overshoot can obtained from Eq. 5-53 or Fig. 5.11. From Figure 5.11
we see that OS ~ 0.05 for £=0.7. This means that maximum temperature is

Tmax~ 70° + (18)(1.05) = 70 + 18.9 = 88.9°
From Fig S5.15 we obtain a more accurate value.
The time at which this maximum occurs can be calculated by taking

derivative of Eq. 5-51 or by inspection of Fig. 5.8. From the figure we see
that t / t = 3.8 at the point where an (interpolated) £=0.7 line would be.

tmax = 3.8 (3 min) = 11.4 minutes
5.16

For underdamped responses,

Y(t)=KM{1ect”[cos(vlczt}r ¢ -n(vlcztm (5-51)

Si
T \/1_g2 T
a) At the response peaks,
2 2 i
Q:KM {Eeg“f[co{ V1-6 t}+ § sin 176 t
dt T T 1-¢2 T

I
o

1-2  [\-¢ -2 )|
—e@’{— 5 sm[ 5 t]+—cos 5 t }
T T T T

Since KM #0 and e " %0

i R

T T T T\/]__QZ T

[ A1=¢? .
0 =sin 5 t |=sinnt |, t=n T
T 1-¢°

where n is the number of the peak.
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b)

d)

Time to the first peak, t =

y(t,) — KM
KM

0S= - exp(%aj{cos(n) + ﬁsin(n)}

- exp{ﬂ} _ ex,{—_ffé}
1/1-C2 J1-¢2

y(t3p) - KM
y(t,)—KM

Overshoot, OS =

Decay ratio, DR =

where y(t;,) = is the time to the third peak.

1-¢°

KM e’ [ ¢ ¢l 2nt
DR = erxp —;(te,p—tp)}:exp —

[ —2nC

¢

Consider the trigonometric identity

= exp

} =(0s)’

sin (A+B) =sin Acos B + cos AsinB

Let B:(UlC

t], sinA=,1-¢* , cosA=¢
T

1 .
y(t) = KM{l-e ™" ——[J1-¢? cosB + ¢sin B}
{ ll_cg [ ]

efgt/r )
=KM<1- sin(A+ B)
=

Hence for t >t , the settling time,

efc,t/'r
J1-¢2

<0.05 |, or tz-ln(o.05 1—3;2)2
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Therefore, tzéln[ 20 J

5.17

a) Assume underdamped second-order model (exhibits overshoot)

K_Aoutput_ 15-10ft _1/6 ft
Ainput  210-180 gal/min gal/min

165-15 15
15-10 5

Fraction overshoot = 0.3

From Fig 5.11, this corresponds (approx) to £ = 0.35
From Fig. 5.8, £ =0.35, we note that ty/t ~ 3.5

Since t, = 4 minutes (from problem statement, assuming first peak),

t J1-C2
r:gzug min
T

~ 1/6 ~ 0.17
(1.19)°s° +2(0.35)(1.19)s +1 1.42s% +0.83s+1

G,(s)

b) 4 minutes might not be the first peak (as shown in Figure 5.8); thus, the
solution may be not unique.

5.18

(a)
1=1,(=0.5.
Roots of denominator are: s> +s+1=0, s = -0.50+0.87j and -0.50-0.87j.
Imaginary roots suggest oscillation.
2 . 4

5 —:I|m2—=4.
S°+S+1s 208 °4+s5+1

Time to first peak: mt//1-(*=3.6
Overshoot: 2x 2xexp(-ni/+/1-¢*)=0.652

!im y(t) = Iing sY(s) = Iings
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Period: ﬂ =7.25
1-¢°

Figure can be sketched using Figure S5.8 in Chapter 5 for 7=1,{=0.5.

Step Response
T

45} -
351 -

251 B

Amplitude

15 B

0.5 -

] I I I I I
1] 2 4 53 g 10 12

Time (zec)

Figure S5.18 Step response of G.

(b)
Decay Ratio: exp(—27¢/+/1-¢*) =0.106

a) For the original system,
d o h
dt R,
a e
dt R, R,

where A; = A, = n(3)%/4 = 7.07 ft?
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ft3/min
gpm

Ri=Ry,= hi = 2.5 =0.187 Sft .
Cg, 0.1337x100 ft°/min

C=0.1337

Using deviation variables and taking Laplace transforms,

His) C  CR 0025

Qs) pgpl ARs+l 1325+1
Rl

His) _ LR _ RJR 1

HIS) pgs b ARs+l 1.325+1
R

Hy(s)  0.025
Q/(s) (1.325+1)

For step change in g; of magnitude M,

h . =0.025M

h;mex =0.025M since the second-order transfer function

0.025
(1.32s +1)?
2.5 ft

Hence Mpax= ———— =100gpm
m 0.025 ft/gpm P

is critically damped (£=1), not underdamped

For the modified system,

Adh_cq P
dt R
A=r(4)? 14 =126 ft?

V =V, +V, = 2x 7.07ft> x5ft = 70.7ft°
hmax = V/A = 5.62 ft

h  05x562 ft
Cg.  0.1337x100 ft*/min

R =

5-25



H'(s) C CR 0.0281

Q/(S) pg, 1 ARs+l 264s+1
R

h'.. =0.0281M
_ 281t
max

= ——————=100gpm
0.0281ft/gpm
Hence, both systems can handle the same maximum step disturbance in g;.

b) For step change of magnitude M, Q/(s) = M
S

For original system,

1 0025 M

Q1(5) = - H3(9) =

, 0.187 (1.32s+1)% s
_omam| 132 132 2
s (1.32s+1) (1.32s+1)

t
") =0.134M | 1= 1+ —— |7t/1%
631 { ( 1'32) }

For modified system,

s 2.64s+1

0(8)= L) =L 00281 M _ (M1 264
R 0.21(2.64s+1) s

q'(t) =0.134M []__e—t/2.64]

Original system provides better damping since q,(t) < ¢'(t) fort<3.4.
C) Computer simulation result
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014 T T T T T T T
Original

""" Modified

_________
———
-
-
-
-
-
-
-
-
-

0.12
0.1 o -

0.08 - % i

aq/M

0.06 - 4 N

0.04 - ! -

0.02r- ¢ i

1

U

r r r r r

0 1 2 3 4 5 6 7 8 9 10
Time/min

Figure S5.19 Computer simulation results on part (b)

Caustic balance for the tank,
dC
pV ot = W,C, +W,C, —WC

Since V is constant, w = wy + w, = 10 Ib/min

For constant flows,

pVsC'(s) = w,C/(s) +w,C, (s) —wC'(s)

C'(s)  w, 5 05
C/(s) pVs+w (70)(7)s+10 49s+1
C,(s) __K , K=(3-0/3=1 , 1t=~6sec=0.1min
C'(s) 1s+1

(from the graph)
C,(s) 1 0.5 0.5

C/(s) (0.1s+1) (49s+1) (0.1s+1)(49s +1)
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200

, 3
b) Ci(s)=—
S
Ch(e) =i
s(0.1s+1)(49s +1)
¢ (t) =151+ ————(0.1e"/%* —49e™'*)
(49-0.1)
05 3 15
c) Cn(s) = —=
(49s+1) s s(49s+1)
¢, (t)=15(—e"*)
d) The responses in b) and c) are nearly the same. Hence the dynamics of the
conductivity cell are negligible.
1.5
A |
g
0.5 N
— Partb)
00 20 40 60 80 ;I.OO 120 140 160 180
Figure S5.20 Step responses for parts b) and c)
5.21
Assumptions: 1) Perfectly mixed reactor
2) Constant fluid properties and heat of reaction
a) Component balance for A,
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VEER - (e, ) VK, &)

Energy balance for the tank,

PVC - = paC(T, ~T) + (CAH VKT, @)

Since a transfer function with respect to ca; is desired, assume the other
inputs, namely g and T;, are constant. Linearize (1) and (2) and note that

de, _de, T _dT’

dt  dt ' dt dt
dc! 20000,
\ dA qcy; —(q+Vk(T))c, —Ve k(M) —=— = — 1 3
pVC dth ( ZOOOO)T’—AHRVK('F)C’A (4)

Taking Laplace transforms and rearranging

Vs +q+ VKM, (s) = aCl (s)-Ve k(T)2°°°°T

ZOOOO}

(s) (®)

‘:pVCS+qu (~AH, VEk(T) T'(s) = (~AH VK(T)CL(s) (6)

Substituting C/, (s) from Eq. 5 into Eq. 6 and rearranging,

T'(s) _ (-AHR)VK(T)q

Ci(s) [Vs+q+Vk(T)J[pVCs+qu (—AH VEK(T) 20000}

(7)
C, Is obtained from Eq. 1 at steady state,
€, = — A __=0,01159 Ib mol/cu.ft.
q+Vk(T)

Substituting the numerical values of T , p, C, —AHg, q, V, T, into Eq. 7
and simplifying,
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T'(s) 12.69
Ci.(s) (0.082s+1)(55+1)

For step response, Cj, (s) =1/s

, 12.69
T'(s) =
(0.082s +1)(5s +1)s
T'(t) =12.69 1+;(0.0826‘“°'°82 —5e7%)
(50-0.082)

A first-order approximation of the transfer function is

T'(s) _12.69
C,(s) b5s+1
12.69
For st L T'(s)=———— or T'(t)=12.691-e"®
or step response, T'(S) sGs+1) or T'(t) [ ]

The two step responses are very close to each other hence the
approximation is valid. The ODE calculation indicates a slightly different
gain due to linearization.

164

162 - b

160 - -

188 - — ODE System 7
= — Linearized 2™ Order Systemn
= 156 + — Approximated 1% Order Systemn R
154 - 4
152 - -
150 1 1 1 1 1 1 1
1] 5 10 15 20 25 30 35 40
Time (min)

Figure S5.21 Step responses for the ODE system, 2" order t.f and 1 order
approx.
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5.22

(a)

Step response of a first-order process is:

Y(9) =G (s) =M

(s+1) s

Inverse Laplace gives:

y(t) =KM(@-e™") 1)

Taylor series expansion at t = 0: V" = 1- 1/t x t. Substitute into Eq. (1):

Y@t) = KM A (L—t/7)) =2 Mt )
T

Inverse Laplace on integrator G, (s) =&:
s

y(t) = K Mt (3)

Compared Egs. 2 and 3, we conclude when t is close to zero, or t << z, first order
system can be approximated by integrator with:

Ko =— 4)

(b)
Kl
From part (a), K, =—.
T

(c)

Eqg. 3 shows the integrator step response in time domain. With the step test data,
plot the data and approximate the slope of the line. Set the slope equal to KoM and
find Ko. The time delay would be estimated to be the time where the line
intersects the x-axis.
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Step Responze
T T

Amplitude

sl K
el e

0 2 £ [ g 10 12 14 16 18
Time (zec)

Figure S5.22 Step response data to find delay and approximated integrator process gain.

(a)

Y(s)=G(s)U(s)=—> =€)

(3s+1) s

Final value theorem:

iy =iy 9=l s 2 82|y S )

(3s+1) s s>0 (3s+1)

(b)

Y(5) = G(s)U (5) = 2

(3s+1) §?
Final value theorem:

I|my(t)—I|msY(s)—I|m > 1 =lim > =00 Undefined.
(3s+1)s* ) >0 (3s+1)s

(c)

For part (a), the heating rate returns to steady state after time 1, the tank
temperature will gradually return to the steady state value once the hotter fluid is
passed out of the stirred tank heater.

For part (b), the heating rate rises linearly with time and so does the outlet

temperature. Physical limitations include element burnout, boiling of the liquid,
and constraints on the amount of electrical power available. However, there
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should not be any short term physical limitations to the ramp, but it is an unsafe
situation.

a)

From block algebra,

Y(s) = G1(s)U(s) + G2(s)U(s) + G3(s)U(s)
or Y(s) = [G1(s) + G2(s) + G3(s)]U(s)

After some simple operations, and by account that U(s) = 1, then

1 4 -3 45+1
Y(S) - [; + 2s+1 + s+_1] U(S) T s(2s+1)(s+1)
or Y(S) _ 4s+1 % 1__ 4st1 % 1

(2s+1)(s+1) s 252+3s+1 s

Notice that this system is equivalent to a step input response of an overdamped

(€ = 1.06) second-order transfer function with numerator dynamics (see
Example 6.2 in your textbook).

For this example, t, > 11 (e.9., 4 > 2), so the response will exhibit some
overshoot.

The system poles (-0.5, -1) lie in the LHP, so y(t) will be bounded.

Finally,

y(0)= lim sY(s)=0 y(o) = lim sY(s)=1

S — s—0
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b)

Step Response

14

12r

Amplitude

r r r r r
2 4 6 8 10 12
Time (seconds)

Figure S5.24 Step response for part (a)

5.25
For such an integrating process at steady state, any positive/negative step
change in inlet flow will cause the tank level to increase/decrease with time.
Thus, no new steady state will be attained, unless the tank overflows or
empties.
Integrating processes do not have a steady-state gain in the usual sense. Note
that G(0) is undefined because of dividing by zero.

K =IimG(s)=Iim5:oo Undefined.
50 550§
5.26

(@)

At time 0, T, (0) and T(0O) are the same which is to. Then T (bath temperature)
follows a ramp:
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Tt)=t+T, (1)

Define deviation variables: Ty, =Ty —Tss=Tm—To, T"=T—-Tss =T —Ty,
substitute these into Eq. 1 :

T'M =t and LT: T'(8) == (2)

SZ

As known, thermometer can be modeled by a first order system with time
constant 0.1 and gain 1:

T, 8 G 1
T'(s) =+1 0.1s+1
Combine Egs. 2 and 3 :

(3) Eg.5-19 in the book

1 1 1
T '(s) = T'(s)= =
n' () 0.1s+1 ) 0.1s+1 s°

Apply PFE to Eq. 4:

(4)

a
L -t iz a3 2

T '(s) =
' (9) 0.1s+1 0.1s+1 s

=0.01

0
set s=10—~ .1 o005 A 43, % _p015,01a,
01s+1 s 01s+1 s s

As a result:

T (&)= )

0.1s+1 S

001 01 1
2

Use inverse LT to time domain:

(1) = 0.01- exp(— )
T (t)_0.0lolleXp( 0_1) 0.1+t Eq. 5-21 in the book

T, (t) =0.1(exp(-10t) -1) +t

Att=0.1 minand t= 1.0 min after the change in T(t), the difference would be:

5-35



T_(t) =T, (0)+0.1(exp(~10t) —1) +t
T(t)=T(0)+t (6)
AT, =T_(t) =T (t) = 0.1(exp(~10t) - 1)

AT, (0.1) =—0.0632
AT, (0.))=-0.1

(b)

By looking at Figure 5.5, the maximum difference occurs when t—oo and the
corresponding difference is: !im{O.l(exp(—lOt) -1)}=-0.1

()

For large time, exp(-10t) approaches zero and:

T,(t)=T,(0)+0.1(exp(-10t) -1) +t =T _(0) + (t - 0.1)

which indicates there is a 0.1 min time delay between measurement and true value
after a long time.

251

T-T{O)

Bath Termp.
Sensor Temp.

051

1 1 1 1 1
0 0.A 1 14 2 25 3
tirme

Figure S5.26 T(t) and T (t)

The temperature of the bath can be described as:

T(t) =120+ 20S(t) — 40S (t —10) (1)
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Define deviation variables as: 7°(z) = T(¢) — T(0) and Tr,’(¢) = Tr,'(¢) — T(0) where
T(0) = 120F. Transfer T(t) into 7(s) :
T'(t)=T(t)—120=20S(t) — 40S(t —10)
20 40 o105

T'(s )— (2)
S
According to the problem, the dynamics of the thermometer follow first order:
T '(s 1
ml( ) - (3)
T'(s) s+1
Combine Eqs 2 and 3:
- LB g
()_01 i 975G )

-20 20, ,—40 40,
T,'(s)= (— —) (— S) °
Use inverse LT to time domain:
T, '(t) =20(1—exp(-t)) —40(L—exp(—(t —10)))S(t —-10) 4)
Add T(0) back:
T, (t) = 20(1— exp(—t)) — 40(1 — exp(—(t —10)))S(t —10) +120 (5)

when 0 <t < 10s, T, (t) =20(1—-exp(-t))+120;
when t > 10s, T, (t) = 20(1—exp(-t)) —40(1—exp(—(t —10))) +120

145

g5 1 1 1
0 2 4 B g 10 12 14 16 18 20

tirme

Figure S5.27 T, vs. time
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(b)
whent=0.5s, T_(0.5) =20(1-exp(-0.5)) +120 =127.87F

whent=15s, T (2) = 20(1-exp(-2)) +120 =100.26F

1 a a
Y(8)=mpm = g B
s°(2s+1)° s s s+l (rs+1)° (rs+1])
We know that the a,,a,,a; terms are exponentials that go to zero for large values
of time, leaving a linear response.

ST N S
Us?(2s+1) s s (2s+1) i
sa,=lim L ;=1
0 (25+1)
. 1
Define Q(s):(25+1)3
dQ_ -6
T ds  (2s+D)*

Then a;= L im _—64
1 s50] (25+1)
(from Eq. 3-62)

a;=-6

.. the long-time response (after transients have died out) is
Y (t) =t-6

We see that the output lags the input by a time equal to 6.

(a) Energy balance:

dT
pVe, - =UA(T, -T)

where p is density of water
V is volume of water
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¢, Is heat capacity of water

U is heat transfer coefficient
A is surface area of tank
t is time in mins
Substituting numerical values in and noting that
A FLISLIE
d dt
dar

1OOO><%><O.52 x1x 418O><F<—: 120x 60 x 7 x 0.5><1><(T,; —T')

Taking Laplace transform:

T(s) 1

T.(s) 7257s+1

T, =20+(—15—20)S(t);'ITA =T =20

T, =-355(1) > T, (5) = -

. 35
T(s)=———>>
(5) s(72.57s+1)

Applying inverse Laplace Transform to find when the water temperature reaches

0¢C.
T r(t) — _35(1_ e—t/72.57) —~0-20=-35x% (l— e—t/72.57)
. 1=61.45min

(b) Since the second stage involves a phase change with a constant temperature,
thus, the time spent on phase change can be calculated based on the following

equation:
pVA=UA(T -T,)t

1000kg / m® ><%><0.52 x1m®x334x10%J / kg =120W / m*K x 7 x0.5x1m? x15K xt

t =386.6min

So the total time it takes to complete freeze the water in the tank is:

t,,, =61.45+386.6 ~ 448 min

(a) From the results after 15 hr, we can see:
It is a first order system, the gain K is:

K = 0-(-1)K —10°K / kKW
0—(~1000) kw
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It takes 57 to reach steady state, thus, the time constant
T= g hr =0.8hr = 2880s

(b) The interval of step changes for the input should be larger, possibly greater
than 4 hours.

T'(s . .
T'(s) __K ,mc, ar _ UA(T —T,) Because the gain is small and the time
Q(s) 7s+1 dt

constant is large, we can see that the mass, density, heat capacity and furnace
height are all large.

(©)
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Chapter 6

=]

c 07@2+2s+2)
(s)= s°+55* +95% +115? +85+6

By using MATLAB, the poles and zeros are:
Zeros: (-1 +4j), (-1-))

Poles: -3
-1
(0+)), (0-))
(-14j), (-1-))
T L T |5 T T L 5 5
15k O zeros ||
X poles
axis
1- & g
0.5~ i
©
a
a
P
g0
()]
&
E
05~ -
1- & -
.15 =~ o
r r r r r r r r r
-3 -2.5 -2 -1.5 1 -0.5 0 0.5 1

Real Part

Figure S6.1. Poles and zeros of G(s) plotted in the complex s plane.
b) The process output will be bounded because there is no pole in the right
half plane, but oscillations will be shown because of pure imagine roots.

¢) Simulink results:

Solution Manual for Process Dynamics and Control, 4th edition
Copyright © 2016 by Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp,
and Francis J. Doyle Il
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Step response
0.5 T T T T T T

0.45 - b

0.4 .

0.35 b

0.3 b

0.257 .

Amplitude

0.2 b

0.15 b

0.1 b

0.05 ‘L 4

O r r r r r r
0 20 40 60 80 100 120 140
Time

Figure S6.1c. Response of the output to a unit step input.

As shown in Fig. S6.1c, the system is stable but oscillations show up
because of pure imaginary roots.

4(s+2) o

) 8(0.55+1)
Standard form: G(s)= = >
@) Stendard form: G(s) = 5 e 2571 ° (055 +1)(25+1)°

(b) Apply zero-pole cancellation:
8
G(s)= e™
(5) (2s+1)
Gain =8; Pole=-0.5; Zeros=None

(©)

1-5/2s
1+5/2s

1/1 Padéapproximation: e =

The transfer function becomes
G(s) = 8 Y(1-5/2s)
2s+1)(1+5/2s)

Gain = 8; poles =-0.5, -0.4; zero = 0.4

6-2



Y(s)  K(r,s+])
X(s)  (t,5+1)

From Eq. 6-13

Y(t) =KM |:1—[1—T—aj e“’l} = KM |:1+ a1t et/r1:|
7 7,

a) y(0*) = KM{l+u}:T_aKM

T, o

, X(s):%

b) Overshoot — y(t) > KM

KM [1+ Ta—™ T et/11:| > KM

T
orwhen, t; —11 >0 , thatis, t,> 11

Y=—KMMe*“ﬁ<o for KM >0

7

C) Inverse response — y(t) <0

KM {14_ a™h e—t/rl:| <0
0O

+t/7y

Ta— 0

T
<-—e or “acl-e'r <0 att=0.
7 7

Therefore, t,<0.

ﬂ

From Eq. 6-15

Y(s)  K(r,s+1)
X(s) (t,5+1)(t,5+1) '

11>Tp,  X(S) =M/s

y(t) = KM {14_@9“% TP et/rz:|

’Cl—‘CZ 'tl—rz
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a) Extremum = y(t)=0

KM|:0—1(Ta _leetl‘fl _I_i[ra _TZ jet/‘rz:|=0
T\~ T T\~ T,

1 1
1-t. /1 *{ ] .
- a2 e\ ) >1 since 15T

1-t, /1,

b) Overshoot — y(t) > KM

KMP+ELE%”“—T

T =T T =T

a T

e”@}>KM

11

T, —1 *t[ ]
—2_1se \" W50, therefore 1,511

Ta =T,

C) Inverse response = y(t) <0 att=0"

KM {01(_] i(_j}o At t=0"
T\T1 =T, L\ =T,

1(t,—1 1(t,—7
_ - a 1 4= a 2 <0
L\~ T Lo\~ T,

L —1

Since t1 > 1o, 12 <0.

d) If an extremum in y exists, then from (a):
1 1
) (1
1-1,/1

t = 11T, In 1_Ta/’t2
HL=T -1, /v
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Using 1/1 Padé€approximation: e ** z@;
1+22.5s
G, (s)~ 1.4+13.5s 205 _ 1.4(1+9.64s) 505
PR (408 +1)(1+22.55) (40s +1)(1+22.5s)

Gain=14; 0<r, <7, S0 itisan over damped process,

14 T |8 L L
True Value

0.8

0.6

0.4

r r r

0 50 100 150 200 250 300

Figure S6.5. Step response of the system.

KZ
s+1

Y (s) :%U(s)+ K21U(s) =[%+

TS+

}U (s)

Y(s) Kis+K +K,s (Kit+K;)s+K,;
U (s) s(ts+1) s(ts+1)
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Put in standard K/t form for analysis:

d)

f)

9)

KlKr + Kst + 1}
Y(s) K,

()= Us) s(ts+1)

Order of G(s) is 2 (maximum exponent on s in denominator is 2)
Gain of G(s) is K;. Gain is negative if K; < 0.
Poles of G(s) are: s;=0 ands,=-1/t

S; IS on imaginary axis; s, is in the left hand plane.

The zero of G(5) is:

If K <0, the zero is in right half plane.

Kit+K,

Two possibilities:
1. Ki<0 and Kt + K, >0

Gain is negative if K; <0
Then the zero is RHP if Kyt + K, > 0. This is the only possibility.
Constant term and " term.

If input is M/s, the output will contain a t term that is not bounded.

() =(4-2)S(t) , P'(s) =§
' _ -3 , _ -3 E
Q)= 0s i1 &= 20541 s
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Q'(t)=-6(1-e™'*)
b) R'(s) +Q'(s) = P, ()
r') +9'(t) = p, (1) = P, (1) — P, (0)

r')=p, (t)-12+6(1-e'?)

3 r'(t = o0) ~18-12+6(1-0) P
p(t =) - p(t=0) 4-2
Overshoot,
r+ _ —r'(t = _ __ 15720y

OS:r(t_15) r'(t oo):27 12+6(1—-e ) 12:0_514
r'(t =) 12

OS =exp =0.514 , £=0.2
N

Period T for r'(t)is equal to the period for pm(t) because e decreases
monotonically.

Thus, T=50-15=35

and r:l 1-¢? =5.46
27

Pr(s) K . K’
P'(s) t°s°+2ws+1 1t's+1

(K?)s? + (Kt + 2K C1)s + (K + K')
(t?s® + 20 +1)(t's +1)

: P 9
d) Overall process gain = 510] =K+K'=6-3= SLO_
P'(s) o psi
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a) Transfer Function for the blending tank:
K
G s) = bt
n(8) 7, S+1
3
where K, = g and T, __m 2min

1m?/min

ZQi

Transfer Function for the transfer line

K
! (t,s+1)
where:
Ky =1
3
ty=— 2 4. 02min
5x1Im”/min
Thus,
Cou(5) _ Ky

C/(s) (2s+1)(0.02s+1)°
which is a 6"-order transfer function.

b) Since t,>> 1y [ 2 >>0.02], we can approximate s

——bye
(0.02s +1)° Y
5
where 6 =>"(0.02) =0.1
i=1

C(;ut (S) ~ Kbte_O.:LS
C..(s) 2s+1

C) Because T ~ 100 ty, we anticipate that this approximate TF will yield
results very close to those from the original TF (part (a)). This
approximate TF is exactly the same as would have been obtained using a
plug flow assumption for the transfer line. Thus we conclude that
investing a lot of effort into obtaining an accurate dynamic model for the
transfer line is not worthwhile in this case.

Note: if T, ~ 1y, this conclusion would not be valid.
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d) Simulink simulation

12 T T T T T

Output/Kbt

—— Exact model
=== Approximate model
:

-0.2 r r r r
0 5 10 15 20 25 30
Time

Figure S6.8. Unit step responses for exact and approximate models.

320(1-4s)e™ 80(1-4s)e™

24s* +28s+4  (6s+1)(s+1)
Gain= 80; time delay = 3; time constants 7, =6,7, =1 ; poles = -1, -1/6; zeros =
0.25
(b) Since 7, =—4 <0; it will show an inverse response.

6.10

a) The transfer function for each tank is

O

Cl.(s) (Vjs +1
q

where i represents the i" tank.

i=1,2,...,5
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C, is the inlet concentration to tank 1.
V is the volume of each tank.

q is the volumetric flow rate.

Ci(s) &l Cis)y ] (1Y
Co(s) _H[C{_l(S)}[fisﬂj ’

Then, by partial fraction expansion,

C,(t) = 0.60—0.15{1—@”6 {1+é+ 1

6-10
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b) Using Simulink,

0.6 p=

0.58

0.56

0.54

0.52

Concentration

0.5

0.48

0.46

0.44' r r r r r I r r r

time

Figure S6.10. Concentration step responses of the stirred tank.

The value of the expression for cs(t) verifies the simulation results above:

52 5° 5
Cc;(30) =0.60 - 0.15{1— e” {1+ S+t—+—+ —H =0.5161
21 31 41

6.11

First, consider then the undelayed response (with 6=0); then apply the Real

Translation Theorem to find the desired delayed response.
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Denote the undelayed response (for 6=0) by €', (t). Then,
c ()= € (t—0) 1)
Taking the Laplace transforms give,
Cr(s) =e"C;,(s) )

The transfer functions for the delayed and undelayed systems are:

&0 _e ®
(s) rts+1
Sl 1 @
(s) rts+1

For the ramp input, ¢'(t) = 2t; from Table 3.1:

-2 ©)

Substituting (5) into (4) and rearranging gives:

¢.0-(25)2) ©
1s+1/\S

The corresponding response to the ramp input is given by Eq. 5-19 with K=1, a=2, and t=10:

& (t)=20(e" —1)+2t (7)
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Let f, denote the time that the alarm goes on for the undelayed system; thus, the alarm lights up when
¢, (t,) =25 min; i.e,, when € (f,) =25-5=20 min. Substituting into (7) and solving for £, by trial
and error gives

t. =9.24 min

Let t, denote the time that the alarm goes off for the system with time delay. It follows from the
definition of a time delay that,

t, = £ +0=9.24+2.00=[11.24 min

a) Using Skogestad’s method

Ge (21+02)s o325

()= (12s+1) 12s+1

Using Simulink,

5

True
----- Approximate
0 5 10 15 20 25 30 35 40 45 50

Figure S6.12 Unit step responses for the exact and approximate models.
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(c) Maximum error =0.265, at t= 9.89s, and the location corresponding to the
maximum error is graphically shown in above figure by black vertical line.

From the solution to Exercise 2.5(a) , the dynamic model for isothermal
operation is

VlMﬂ:Pd_Pl_Pl_Pz (1)
RT, dt R R,

a

V,Mdp, R-P, P-P @
RT, dt R, R

c

Taking Laplace transforms, and noting that
P/(s)=0

since Ps is constant,

Pl’(S) — Kb Pd (i):_:ia PZ, (S) (3)
py(5) = <) @
1,5+1

where

Ka =R, /(R +Ry)
Kb = Rb /(Ra + Rb)

K, =R /(R, +R,)

. _ViM_RR,
'R, R, +R,)

. _V.M_RR
*"RT, (R, +R))

Substituting for P/(s) from Eq. 3 into 4,
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P(s) _ KoK,

P/(s) (1 5+D)(t,5+])-K,K, [ 11,
1-K,K,

Substituting for P, (s) from Eq. 5 into 4,

K
pls) (1 K,K j(””)

R ) AELF I P Sl T P
1-K,K, 1-K,K,

(6)

To determine whether the system is overdamped or underdamped, consider the

denominator of the transfer functions in Egs. 5 and 6.

Therefore,

(ol (uem) \/(1 K.Ke) \/7 \/7
2(1-K,K)  Jur, 1, /(1 K.K,)

Since x + 1/x > 2 for all positive x,
1

C - \/(1_ KaKc)

Since K K. >0,
=1

Hence the system is overdamped.
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6.14

6.15

4e% 4e7%

Let G(s)= > = >
(0.45+1)" (25 +3s+1) (0.45+1)" (2s+1)(s+1)

We want an approximate model of the form,

Ke—és
approx (S) =

G ==
7s+1

In order for the approximate model and the original models to have the

same steady-state gain, we set

The largest time constant in G(s) to neglect is 1. Thus,
i 2+@(1) _

Approximate the smallest time constant by:

1 ~ p04s

0.4s+1

Thus,

éz9+(%)2+2(0.4):

From Egs. 6-71 and 6-72,
C:R2A2+R1A1+R2A1:£ R, A N R,A, +£ RA
2,/R,R,AA, 2lVR,A, YV RA ) 2VRA,

. 1 . . .
Since x+— > 2 for all positive x and since R;, Ry, Aj, A, are positive
X

1., 1 [RA
>2(2)4 = |2t 5y
: 2()+2 RA,
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6.16

Mass balance on Tank 2:

dh
A 2 — -
pA, dt Pdo — P42
Dividing by p,
dh
A2 — g —
2" 490 — 492

For a linear resistance, (cf. Eq. 4-50),

1
=—h
q> R, 2
Substitute,
dh 1
A2 =g
2 dt 90 R, 2
or

dh
pA%) dt 240 — N2

Introducing deviation variables and Laplace transforming yields

Hy(s) _ R
Q(') (S) A2R2S + 1
Because
/ 1 ’
Os(s)=—H(s)
R,
we obtain,

Q) _ 1 R 1
Qb(S) R2 A2R2S +1 A2R2S +1

Letting 7, = AR,
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o) _ 1
Ou(s) 1p5+1

b)  Mass balances on the two tanks yield (after dividing by p, which is constant)

dh dh
A, L= A2 — g 4l —
ldt q1 2 dt 90 791492
Valve resistance relations:
—i(h —hy) —Lh
q1 R, 1 2 q9> R, 2

C) These equations clearly describe an interacting second-order system; one
or more transfer functions may contain a single zero (cf. Section 6.4). For
the Q/Qo transfer function we know that the steady-state gain must be
equal to one by physical arguments (the steady-state material balance
around the two tank system is @, = Q).

d)  The response for Case (b) will be slower because this interacting system is
second order, instead of first order.

6.17

The input is T,'(t) =12sin ot where

oo 27 radians 0262 hr
24 hours

The Laplace transform of the input is from Table 3.1,

120

T/(s) =
(S) s% + ®?

Multiplying the transfer function by the input transform yields

T/(s) = (—72+363)(Zn :
(10s+1)(5s +1)(s° + ®°)

To invert, either (i) make a partial fraction expansion manually, or (ii) use the
MATLAB residue function. The first method requires solution of a system of
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algebraic equations to obtain the coefficients of the four partial fractions. The
second method requires that the numerator and denominator be defined as
coefficients of descending powers of s prior to calling the MATLAB residue
function:

MATLAB Commands:

>> b = [ 36%0.262 —72*0.262]
b=
9.4320 -18.8640
>>a =conv([10 1], conv([5 1], [1 0 0.262"2]))
b=
50.0000  15.0000 4.4322 1.0297 0.0686
>> [r,p,K] = residue(b,a)
r =
6.0865 — 4.9668|
6.0865 + 4.9668]
38.1989
-50.3718

—0.0000 - 0.2620j
—0.0000 + 0.2620j
—0.2000
—0.1000

(]

Note: the residue function re-computes all the poles (listed under p). They
are, in reverse order: p; = 0.1(t, =10), p=0.2(t, =5), and the two purely
imaginary poles corresponding to the sine and cosine functions. The
residues (listed under r) are exactly the coefficients of the corresponding
poles; in other words, the coefficients that would have been obtained via a
manual partial fraction expansion. In this case, we are not interested in the
real poles since both of them yield exponential functions that go to 0 as
t— oo.

The two complex poles are interpreted as the sine/cosine terms using
Appendix L.

The coefficients of the periodic terms:
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6.18

—bt

a .
y(t) =ae ™ coswt +—2e ™ sinwt +...
a1 w

b= 0, thus the exponential terms = 1. Using (L-13) and (L-15), @ =0.264.

y(t) =12.136cosmt +9.9336sin wt +...

The amplitude of the composite output sinusoidal signal, for large values,
of tis given by

A=,/(12.136)% +(9.9336)% =15.7

Thus the amplitude of the output is 15.7° for the specified 12° amplitude
input.

150 T T T T t L/ﬂ/f L
148 - = l

146 [ ] - yl N

144 |- y2| |

142 - ]
140+ / .
138 - / .
136 // ]
134 - // 1

1321-// .

=]
=]

130 r r r r r

Figure S6.18 Comparison between y1 and y2
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6.19

(a) The mathematical model is derived based on material balance:

v % = F.c, + RF,c, — Fc, —VKe,

v % = Fc, —(1+R) F,c, - Vke,

Subtracting the steady-state equation and substituting deviation variables
yields:
v ‘?j—ctl = F.c, + RF,c, — Fc, —Vke,
dc, : . .
Y e Fc, —(1+R) F,c, —Vk,

(b) The transfer function model can be derived based on Laplace transform:

VsC, (s)=F,C,(s)+RF,C,(s)—FC,(s)-VKC,(s)
VsC, (s)=FC,(s)-(1+R)F,C,(s)-VKC,(s)
Solve above equations, we have:

C.(s)

- s Ci(s)
V2’ +[ vk +(F, +F, + RF,) [Vs + FF, +Vk (1+ R) F, + FVk +V°k*

(c) When R — 0 , we have:
. FF .
C,(s)= b C,(s

:(5) V2s® +[ 2Vk +(F, + F,) [Vs + FF, + VKF, + FVKk +V °k? o(s)
F,F .
— 0°1 CO (S)
[Vs+Vk +F][Vs+Vk +F, |
which is equivalent to the transfer function of the two tanks connected in
series.

(c) When k=0, Equation in (b) becomes:
: F,F .
CZ(S): 2.2 — Co(s)
V*s®+(F +F, +RF,)Vs+ FF,
Since F, =RF,+F,,F, =F,
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6.20

, R (RR+F) -
c _ 0 0 0 C
)= (R, <R, 26, s (RF < ), )

S (1+ 1]
R

= Co(s)
2.2 2 0
Vs +£VS+ZFOVS+ F02+F—°
R R
When R— 0 , C,(s)= i C, (s) , equivalent to a single tank with a
2Vs+F,

volume = 2V.
The gain of above transfer function is 1.

The dynamic model for the process is given by Egs. 2-45 and 2-46,
which can be written as

dh 1

a—p—Ami—W) (1)
ar _ W+ 1y, Q

dt  pAh (T T)+pAhC @)

where h is the liquid-level
A is the constant cross-sectional area

System outputs: h, T
System inputs : w, Q

Assume that w; and T; are constant. In Eq. 2, note that the nonlinear term

(h %—Ij can be linearized as

Hdl _+_d_Th’
dt dt

or ﬁdl since d—T:O
dt dt

Then the linearized deviation variable form of (1) and (2) is

d' 1,
= W

dt pA
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ar’ -w, _, 1
dt  pAh  pAhC

QI

Taking Laplace transforms and rearranging,

H) K, HO_, T _, T6_ K
W's) s = Q(s) " W/(s) " Q(s) T,5+1
where K, -1 ; and K, b T, _ pAh
pA w,C w,

For an unit-step change in Q: h(t)=h , T@)=T +K,(1—-e"'%)

Foran unitstep change inw: h(t)=h+Kit, T({t)=T

Additional assumptions:
(i) The density p and specific heat C of the liquid are constant.

(ii) The temperature of steam, Ts, is uniform over the entire heat transfer
area.

(iii) The feed temperature Tg is constant (not needed in the solution).

Mass balance for the tank is

dv
_— = — 1
at - -4 1)

Energy balance for the tank is

pC d[V(T _Tref )] _

dt quC(TF _Tref)_qu(T_Tref)+UA(Ts _T) (2)

where T IS a constant reference temperature and A is the heat transfer area
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Eqg. 2 is simplified by substituting for (jj—\: from Eq. 1. Also, replaceV by A;h

(where A; is the tank area) and replace A by p;h (where pr is the perimeter of
the tank). Then,

dh
Ar g =9 (3)

pCAN S =GepC(T. ~T)+Uph(T,~T) (4)

Then, Eqgs. 3 and 4 are the dynamic model for the system.

a)  Making a Taylor series expansion of nonlinear terms in (4) and introducing
deviation variables, Egs. 3 and 4 become:

dh”

- 5
™ d: — ¢ (%)

A,

_dT! T\n~' = HW\T/ T/ ol T\ I/
pCAh T pC(Te —=T)dr —(pC: +Up,h)T" +Up.hT/+Up, (T, -T)h" (6)

Taking Laplace transforms,

! _i ! _i !
H'(s) = ArSQF (s) ArsQ (s) ()
_PCAN ol =) PET=T) o,
{[ pCa; +UpTH]S+1:|T (5)= _quF +UpTﬁ_ Qe (o)
+[—_UF’TH _}Ts’(S) b Yer=T) ) ®)
pCq: +Up;h | PCQ: +Up;h |

Substituting for H'(s) from (7) into (8) and rearranging gives

([ pCAR ey | PC(T—T) ,
[As] (pCGF +UpTﬁjS+1}T (s)_[quF +UpTﬁATS}QF(S)

uphAs | U =T | i
+_quF+UpTﬁ:| . LCO_IF+U|OTH}[QF(S) Q'(s)] )
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Let ‘[:&

pCT: +Up;h
Then from Eq. 7

H@E_ 1 H(s)__ 1 H'(s) _
Q:(s) As ’ Q(s) As ’ T.(s)

And from Eq. 9

{ UpTcE—T‘)_Mpcm_—T‘)_ATJSH}
T'(s) | eCa: +Up;h ||| Up, (T, -T)

QL(s) (As)(ts+1)

T'(s) _ {pch +Up;h
Q'(s) (As)(ts+1)

T'(s) | pCa, +Up;h
T.(s) s+1
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Note:
. _PC(-T)A

) —= is the time constant in the numerator.
UpT (Ts _T)

Because T. —T <O (heating) and T, =T >0, t, is negative, we can show this
property by using Eq. 2 at steady state:

quF (TF _f) = _UpT H(rs —f)

_fy_-Unh (T -T)

or pC(T:
F

Substituting

= __i

Or
Let V =hA. sothat t,=-— = —(initial residence time of tank)
F
For T,(S) and ! I(S) the “gain” in each transfer function is
Q:(s) Q'(s)

K = UpT(-ITs _f) _
Ar (quF +UpTh)

and must have the units of temperature/volume . (The integrator s has units of
th).

To simplify the transfer function gain, we can substitute

Up, (-lfs —'IT) __ pCQ, (I_F —'IT)

from the steady-state relation. Then

- —pCQ (-FF _-r)_
hA (pCg; +Up:h)

TT,
\7(1+UpT_h )
pCa:
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and the gain is positive since T —T. > 0. Furthermore, it has dimensions of
temperature/volume.

(The ratio UpT_h is dimensionless).
pCa:

(b) The h—q. transfer function is an integrator with a positive gain. Liquid level

accumulates any changes in g, increasing for positive changes and vice-versa.

h—q transfer function is an integrator with a negative gain. h accumulates
changes in g, in the opposite direction, decreasing as g increases and vice
versa.

h—T, transfer function is zero. Liquid level is independent of T, and
steam pressure P, .

T —q transfer function is second-order due to the interaction with liquid
level; it is the product of an integrator and a first-order process.

T —q. transfer function is second-order due to the interaction with liquid
level; it has numerator dynamics since g affects T directly as well if
T =T.

T —T, transfer function is first-order because there is no interaction with
liquid level.

h—q.: hincreases continuously at a constant rate.
h—q: h decreases continuously at a constant rate.

h—T,: h stays constant.

T—q.:for T. <T, T decreases initially (inverse response) and then
increases. After long times, T increases like a ramp function.

T —q: T decreases, eventually at a constant rate.

T —T,: T increases with a first-order response and attains a new steady
state.
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a) The two-tank process is described by the following equations in deviation

variables:
dy _ 1 [ 1. .
E_pAi[Wl R(hl hz} (1)
d, 1[1.. .
E——pAiR(hl hz} 2

Laplace transforming

PARSH, (5) = RW; (s) ~ H;(5) + H,(8) 3)

pARSH, () = H; ()~ H;(s) (4)
From (4)

(PARS+1)H,(s) = H;(9) (5)
or ,

Hy(s) 1 1 ©)

H.(s) pARs+1 1,5+1
where t, = pAR
Returning to (3)
(PARs+1)H,(s) —H,(s) = RW, (s) (7)

Substituting (6) with t, =pAR

{(nsﬂ)— - }HL(SFRW{(S) (8)
+1

T,

or
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[ (T,T)s +(5,7,)8 | Hy (5) = R(z,5 + DW, (5) )
H,(s) R(t,s+1)
le(s) s [11123 +(t + 12)]

(10)

Dividing numerator and denominator by (t, +t,) to put into standard form

Hy(s) _ [R/(z, +1,)I(x,5+1)

WS (11)
1) s{mz s+1}
’C1+‘E2
Note that
K — R _ R _ 1 :i (12)
u+1, PAR+pAR p(A+A) pA
since A=A +A,
Also, let
T, = Ul — szzAlAZ :pRAlAZ (13)
T,+17, PR(A+A) A
so that
H1:(s) _ K(zs+)) (14)
W, (s) s(ts+1)
and
H,(s) H,(s)H,(s) 1 K(r,5+1)
W (s) H ()W (s) (1,5+1) s(t;5+1)
K
B S(t,5+1) (19)

Transfer functions (6), (14) and (15) define the operation of the two-tank
process.

The single-tank process is described by the following equation in
deviation variables:
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b)

dh 1

E_pA i

Note that @, which is constant, subtracts out.

Laplace transforming and rearranging:

H(s) _1/pA
W) s

Again

K=—
pA

HE_K
W/(s) s

which is the expected integral relationship with no zero.

For A=A =A/2
1, =pAR/2
1,=pAR/4

Thus t, =21,

We have two sets of transfer functions:

One-Tank Process Two-Tank Process

H(s) K H,(s) K(2t,5+1)

W (s) s W (s)  s(t,s+1)
Hy(s) K

W,(s)  s(t,5+1)
Remarks:

- Thegain (K =1/pA) is the same for all TFs.

- Each TF contains an integrating element.
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- However, the two-tank TF’s contain a pole (t,S+1) that will “filter
out” changes in level caused by changing wij(t).
- On the other hand, for this special case, we see that the zero in the first
tank transfer function (H.(s)/W, (s)) is larger than the pole:
27, > 1,

Thus we should make sure that amplification of changes in h;(t)
caused by the zero do not more than cancel the beneficial filtering of
the pole so as to cause the first compartment to overflow easily.

Now look at more general situations of the two-tank case:

H,(s) _ K(pARs+D) _ K(z,5+1)
W, (s) S(PRA&AZ s+1) S(ty8+1)
A

(20)

Hy(s) K

W, (s)  s(t,5+1) (1)

For either A >0 or A, -0,

T3

_PRAA, 5
A

Thus the beneficial effect of the pole is lost as the process tends to
look more like the first-order process.

The optimum filtering can be found by maximizing t, with respect
to A; (or Ap)

_PRAA, _pRA(A-A)
A A

T3

. or, pR
Find max t, :i:%[(A—A&)M&(—D]

Set to O: A-A-A=0
2A =A
A=Al2

Thus the maximum filtering action is obtained when A = A, = A/ 2.
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6.23

The ratio of 1, /1, determines the “amplification effect” of the zero on

h, (t).
T _ PAR _A
t, PRAA A
A

As A goesto 0, RN
T3

Therefore, the influence of changes in w; (t) on h,(t) will be very large,
leading to the possibility of overflow in the first tank.

Summing up:

The process designer would like to have A = A, = A/2 in order to obtain
the maximum filtering of h (t) and h,(t). However, the process response
should be checked for typical changes in w;(t) to make sure that h, does
not overflow. If it does, area A needs to be increased until it is not a
problem.

Note that 7, =7, when A = A, thus a careful study (simulations)

should be made before designing the partitioned tank. Otherwise, leave
wellenough alone and use the non-partitioned tank.

The process transfer function is

) _g5) - "
(0.1 +1)%(4s% + 25 +1)

ue)
where K = K;Ko.
The quadratic term describes an underdamped 2"-order system since

° =4 - T=2

6-32



b)

d)

201=2 - £=05

For the second-order process element with t, = 2 and this degree of
underdamping (¢ = 0.5) , the small time constant, critically damped 2"-

order process element (t; = 0.1) will have little effect.

In fact, since 0.1 << 1, (= 2) we can approximate the critically damped
element as e " so that

Ke70.25

G ——
(5) 4s® +2s+1

From Fig. 5.10 for £=0.5, OS ~0.15 or from Eqg. 5-51

Overshoot = exp[ 6 ] =0.163

J1-¢2

Hence Ymax = 0.163 KM + KM = 0.163 (1) (3) + 3 =3.5

From Fig. 5.3, Ymax OCcurs at t/t = 3K or tnax = 6.8 for an underdamped
2"-order process with ¢ =0.5.

Adding in the effect of the time delay t'=6.8+0.2=7.0

By using Simulink

T1 = 0.1:

35

— Exact model

-==Approximate model

Figure S6.23a Step response for exact and approximate models; t; = 0.1.
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TJ_:].:

Output

— Exact model
-==Approximate model
05 r r r r T

0 5 10 15 20 25 30

Time

Figure S6.23b Step responses for exact and approximate models; t; = 1.

’51=5:

35

15F

Output

0.5~

0 -

— Exact model
-=-- Approximate model
05 r r r r T
0

5 10 15 20 25 30

Time

Figure S6.23c Step response for exact and approximate models ; t; = 5.
As is apparent from the plots, the smaller 1 is, the better the quality of the

approximation. For large values of t; (on the order of the underdamped
element’s time scale), the approximate model fails.
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0.2

-0.6

Output

0.8

a2k

14 L c
0 50 100 150 200 250 300 350 400

Fig. S6.24. Unit step response in blood pressure.

The Simulink- block diagram is shown below

-1
T A
40st+1
Step Transfer Fen Transport L]
Delayl=30s
Scope
-0.4
> BNy
40s+1
Stepl Transfer Fen1 ~ Transport
Delay =75 s

The system appears to respond approximately as a first-order system or
overdamped second-order process with time delay.
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6.25

The system equations are:

dh, 1 1
= ,——h’ y ! =_h’
Al dt ql Rl 1 ql Rl 1
dh, 1 1 1
:_hl__hl , !:_hl
AZ dt Rl 1 R2 2 q2 R2 2
Using a state space representation,
X =Ax+Bu
y =Cx+ Du
hl
where X:{hi} , u=g; and Yy=gq,
2
then,
dh; 1]
1 3 1 0 b/ -
dt RA, : A
= 1 + q
, 1 1 '
dh, - h, 0
m RA  RA
hI
, .
=0 2]
2 hé
Therefore,
1 [ L]
_ - 0 Ai
A= A , B= , C=|0
1 B 1 0
RA  RA
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Applying numerical values, equations for the three-stage absorber are:

% —0.881y, —1.173, +0.539%,

(Litz — 0.634x, —1.173x, +0.539,

d—XtS —0.634x, —1.173x, +0.539x,

y, = 0.72x,

Transforming into a state-space representation form:

dx,
dt

-1.173 0.539 0 X, 0.881
9% = | 0634 -1.173 0539 || x, | +| O |y,
at 0 0.634 -1.173]|| X, 0
dx,
L dt
Y, 072 0 0 |[ x
Y, | = 0 072 0 X, | + 10 |y
BE 0 0 0.72]] x,

Therefore, because x; can be neglected in obtaining the desired transfer
functions,

[-1.173 0539 0 0.881
A=| 0634 -1173 0539 | B=| 0
| 0 0634 -1.173 0
072 0 0 0
C=| 0 072 0 D=0
0 0 072 0
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Applying the MATLAB function ss2tf , the transfer functions are:

Y/(s)  0.6343s® +1.4881s +0.6560
Y/(s) s®+3.5190s* +3.443s+0.8123

Y,(s) 0.4022s +0.4717
Y{(s) s°®+3.5190s°+3.443s+0.8123

Y,(s) 0.2550
Y/(s) s°®+3.5190s*+3.443s+0.8123
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Chapter 7

In the absence of more accurate data, use a first-order transfer function:

T'(s) Ke™
Q'(s) 1ts+1
K — T (0)—T (0) _ (124.7-120) 0235 F_
Aq; 520-500 gal/min

0 =3:08 am — 3:05 am = 3 min

Assuming that the operator logs a 99% complete system response as “no change
after 3:34 am”, five time constants elapse between 3:08 and 3:34 am.
5t =3:34 min — 3:08 min = 26 min
T =26/5min =5.2 min
Therefore,
T'(s) _0.235¢*
Q'(s) 52s+1
To obtain a better estimate of the transfer function, the operator should log more
data between the first change in T and the new steady state.

Process gain,

_ h(5.OA) ~h(0) _652-5.50 _ ,,0 min
q.

K 2
| 30.1x0.1 ft

a) Output at 63.2% of the total change
=5.50 + 0.632(6.52-5.50) = 6.145 ft

Interpolating between h=6.07ft and h=6.18ft

1=06+-28206) 4145 607)min =0.74min
(6.18—6.07)

Solution Manual for Process Dynamics and Control, 4th edition
Copyright © 2016 by Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp,
and Francis J. Doyle Il
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b)

dh| _h(0.2)-h(0) _5.75-550 ft _ . ft
dt |, 0.2-0 02 min ~  min
Using Eq. 7-15,

KM 0.339x(30.1x0.1)

dh| ) 1.25
dtl,

c)  The slope of the linear relation between tjand z, = In{l

~0.82min

h(t,) —h(0)

- —h(oo) - h(O)} gives

an approximation of (-1/1), according to Eq. 7-13.

Using h(e0) = h(5.0) = 6 .52, the values of z; are

ti Zi 19 4
0.0 0.00 14 -1.92
0.2 -0.28 1.6 -2.14
0.4 -0.55 1.8 -2.43
0.6 -0.82 2.0 -2.68
0.8 -1.10 3.0 -3.93
1.0 -1.37 4.0 -4.62
1.2 -1.63 5.0 -0

Then the slope of the least squares fit, using Eq. 7-6 is

slope :(_lj =138t2—_stsé (1)
t) 13S,-(S,)

where the datum at t = 5.0 has been ignored.
Using definitions,

S, =180 S, =404
S,=-235 S,=-511

Substituting in (1),

(_1)=—1.213 1= 0.82min

T

d)
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6.8 T T T T T T T T T

6.6~ -

6.4~

6.2~

* Experimental data

' — Model a)
58 ~— Model b) 1

Model c)
5.6 s

k.
5.4 r r r r r r r r r

0.5 1 15 2 25 3 3.5 4 4.5 5

Figure S7.2 Comparison between models a), b) and ¢) and the step response data.

a)
w — L TZV(S) — Kz
Q'(s) s+l T(s) t,5+1
T;(s) _ KK, _ K,K,e ™

Q(s) (rs+)(r,s+1) 15+l 1)

where the approximation follows from Eq. 6-58 and the fact that t;>1,, as
revealed by an inspection of the data.

_ T,(50)-T,(0) 18.0-10.0
Aq 85-82

=2.667

Kl

k _T(0)-T,(0) _26.0-20.0 _

2 = = =0.75
T,(50)-T,(0) 18.0-10.0
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Let z; and z, be the natural log of the fraction incomplete response for T
and T, respectively. Then,

(1) = In{Tl(SO) ~Ty(t) } _ In[18—T1(t)}
T1(50)-T,(0) 8

1 (t) = Ir{TZ(50) ~T,(1) } _ In{ZG—TZ(t)}
T,(50) = T,(0) 6

A plot of z; and z; versus t is shown below. The slope of the z; plot is
—0.333; hence (1/-11)=-0.333 and t;=3.0

From the best-fit line for z, versus t, the projection intersects z, = 0 at
t~1.15. Hence 1, =1.15.

T,'(s) 2.667

Q'(s) 3s+1 @)

T,'(s) 075
T,'(s) 1.15s+1

©)

0.0

-1.0 4 20

-2.0 A
-3.0 4

21,2

-4.0 A
-5.0 A
6.0 -
-7.0 A

-8.0
time,t

Figure S7.3a z; and z, as a function of t

b) Using Simulink-MATLAB, the following results are obtained:
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28

°r ek

.
241 :’l‘”je/
%
28 g
20
el

1
----- T

2
12 * 7 (experimental) H
* T2 (experimental)

1 r r r r r r i T i T

2 4 6 8 10 12 14 16 18 20 22
time

Figure S7.3b Comparison of experimental data and models for a step change.

2 15
YO =GO X = e @06+~ s

Taking the inverse Laplace transform,
y(t) = (-75/8) exp (-t/5) + (27/4) exp (-t/3) - (3/8)exp(-t) +3 (1)

Fraction incomplete response

_inf1-Y®
z(t)_ln{l 3}
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0.0 $oo5
104
-2.0
3.0 -
4.0
5.0 -
6.0 -
7.0
8.0 -
-9.0

z(t)

z(t) = -0.1791 t + 0.5734

time,t

Figure S7.4a Fraction incomplete response; linear regression

From the plot: slope =-0.179 and intercept ~ 3.2

Hence,
-1/t =-0.179 and t1=5.6
0=32
Gls)= 52.2:3

In order to use Smith’s method, find typ and tgo:

y(tzo)= 0.2 x 3=0.6

y(tso)= 0.6 x 3=1.8

Using either Eq. 1 or the plot of this equation, tyy=4.2 , tgo = 9.0
Using Fig. 7.7 for tyg teo = 0.47

(=0.65 , tg/t=1.75 and t=5.14

2
~ 26.45% +6.685+1

G(s)
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The models are compared in Fig. S7.4b:

25 T T T T T T T

=
-
»®

7 — Third-order model
—— First order model
Second order model

¥
3

ik // ]
¥/
)/
05f / g
.':'
g
VA
g
]
)
]
)
’
0 ke ! r r r r r r r
0 5 10 15 20 25 30 35 40

time,t

Figure S7.4b Comparison of three models for a step input

For a first-order plus time-delay model G =

e assumer=16=0.1110,
7s+1

we have:
a) #/r=01:

0.9

0.8 X:2.017
Y:0.853

0.7

0.6

0.5

X: 0.5355
0.4 Y:0.3531

0.3 /
0.2

Response

Time/s

Figure S7.5a Plot of the true data; /7 =0.1
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So t, =0.5355;t, = 2.017;
-.0=13t -0.29t, =0.1112
r=0.67(t,—t,)=0.9926

1

True data
o9~ | mm—— Approximate data

0.8 B

0.7 B

0.6~ '

0.5 b

Response

0.4 .

0.3 '

0.2 -

0.1 -

0 r r
0 5 10 15

Time/s

Figure S7.5b Comparison of true data and approximate model

Sum of squared error = 0.0232

b) O/r=1:

1 T 3

X:2918 _—
0.9 Y:0.8531

0.8

0.7

0.6

0.5

X: 1.436
0.4 Y:0.3537

0.3 /
0.2

Response

Timels

Figure S7.5¢ Plot of the true data; 8/7 =1
So t, =1.436;t, = 2.918;
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£.0=13t -0.29t, =1.021
r=0.67(t,~t,)=0.9929

1

True data
oo/ | ==——- Approximate data []

0.8 '

0.7 '

0.6~ '

0.5 r

Response

0.4 '

0.3 -

0.2 -

0.1~ -

0 r r

Time/s

Figure S7.5d Comparison of true data and approximate model

Sum of squared error = 0.1050

c) 0/7=10:

0.9

0.8 x 1102 S
0.7 /
0.6 /
05 /

0.4

Response

0.3

|

0.1

Time/s

Figure S7.5e Plot of the true data; 8 /7 =10
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So t, =10.44;t, =11.92;
-.0=13t -0.29t, =10.12
r=0.67(t,—t,)=0.9916

1 T

True data
0.9 ———— Approximate data
0.8~
0.7
0.6~

Response
© ©o o o
N w I (6]
I I I li

©
[
T

o
o
[l

Time/s
Figure S7.5f Comparison of true data and approximate model

Sum of squared error = 4.3070

a) Drawing a tangent at the inflection point which is roughly at t ~ 5, the
intersection with y(t) = 0 line is at t ~ 1 and with the y(t)=1 line at t ~ 14.
Hence 6 =1 and t=14-1=13

e—S
G.(8) ~ 13s +1

b)  Smith’s method

From the plot, t,0=3.9, tso = 9.6 ; using Fig 7.7 for tyo tgo = 0.41

=10, te/t=20 , hencet=48 andti=1,=1=4.8
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1

Nonlinear regression

From Figure E7.5, we obtain these values (approximate):

Table Output values from Figure E7.5

Time Output
0.0 0.0
2.0 0.1
4.0 0.2
5.0 0.3
7.0 0.4
8.0 0.5
9.0 0.6
11.0 0.7
14.0 0.8
17.5 0.9
30.0 1.0

For the step response of Eq. 5-48, the time constants were calculated so as
to minimize the sum of the squares of the errors between data and model
predictions. Use Excel Solver for this Optimization problem:

171=6.76 min and t,=6.95min

1
" (6.95s +1)(6.765 +1))

G(s)

The models are compared in Fig.S7.6:
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b)

1 T T T T T L
0.9+ N i
// ,,,,,,
VAP gt
'/
0.8+ P4 -
4
4
4
/ /
4
0.7+ / . -
4 7
7
7
J
0.6~ / -
7 o
/ ;
7
- /
2 /
£o05F / 5
(o] J .
1 -
7 s
0.4 /¢ b
17
;s
1y
II:.
0.3 A i
1.
3
r
r
II
0.2~ { b
i
J
J " -
01 § — Non linear regression model H
12 First-order plus time delay model
) -== Second order model (Smith's method)
0 r r r r r r r r r
0 5 10 15 20 25 30 35 40 45 50

time

Figure S7.6 Comparison of three models for unit step input

From the plot, time delay 6 = 4.0 min
Using Smith’s method,

from the graph, t,, +6~56 , t,+6~9.1
FromFig.7.7, £=163 ,t,/t=3.10 , t=1.645

Using Eqgs. 5-45 and 5-46, t, =4.81 min , t, =0.56 min

Overall transfer function

o 10e™
(ts+1)(t,5+1)

G(s)

T, > T,
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Assuming plug-flow in the pipe with constant-velocity,

~0,s 3 1 .
G. (s)=e™ , 8 =——x—=0.1min
plpE( ) P05 60

Assuming that the thermocouple has unit gain and no time delay

G (9) = since 1,<<T1
S
2
Then
10e7%
G, (s)= ,
e (8) 7,S+1
so that,

10e*
7,5+1

G(s) =G, (S)Gpipe (S)G;c(s) = (

—0.1s 1
j ) ( 1,S +1j

(a) 63% response method

From inspection of the data, it is obvious that there is no time delay in the system
(6=0).

Time constant t is estimated by the 63% response method:
h'(z)=0.63(h, —h,)=0.63*20.3=12.78 t
h(7)=12.78+10.4 = 23.18ft

From inspection at the data, T =~ 270 min.

The process gain is calculated as:

_h-hy o 203-0 208, Lo

K = =
q-q, (4.8-15)x0.1337 0.4412

The estimated process model is:

H(s) K 46
Q(s) s+l 270s+1
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(b) Nonlinear regression
By using deviation variables, the first order tank can be expressed as

H(s) K
Q(s) rs+l

The inlet flow rate is quickly changed from 1.5 gallon/min to 4.8 gallon/min so it
is a step change, Q’(s) 3.3/s:

- K . K (4.8-1.5)x0.1337 K 0.4412
H (5) = (5)- K (AR

7s+1 7s+1 S s+1 s

Apply the inverse Laplace transform:
h'(t)=0.4412K (1-e™")
By using EXCEL, the estimated model is:

H(s) K _ 4631
Q(s) zs+1 2.65s+1

A comparison of the data and the two models is shown in Fig.S7.8.

24

221

20f

18f

h (ft)
16}

141

12f

10

0 0.5 1 1.5 2 25 3
t (min)

Figure S7.8 A comparison of the step responses of the data and the two models.

The Sum of Squared Errors for the two models are:

SSE (63.2%) = 0.75
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SSE (NR) = 0.43

As indicated in Fig.S7.8, both methods fit the data well. The NR model is
preferred due to its smaller SSE value.

6=2 (by inspection)
Use Smith’s method to find t1 and <.

y20 =¥(0) +(0.2) (Ay) =0+ (0.2) (3) = 0.6
From inspection of the data,

tzo =4-0=2
Similarly,
Yeo = ¥(0) + (0.6) (Ay) =0+ (0.6) (3) = 1.8
teo =7-0=5
Therefore,
Y_2_g4
t, S
From Fig. 7.7:
(=12
and
tﬂ:z.l = r:tﬂ:izz.ss
T 21 21
Thus the transfer function can be written as:
-2s
G(s) = 0.75e

5.66s%+5.71s+1

From (5-45) and (5-46) or by factoring (e.g., using MATLAB command roots)
gives:

B 0.75e

 (4.445+1) (1.285+1)

G(s)
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7.10

Assume that T(c0) = T(13) = 890 °C. The steady-state gain K is the change in
output divided by the change in input:

890 — 850 _

K =950 _1000 = — 0-8 °C/cfm

Assume that the input change in air flow rate is made at t = 2* min so that the
observed input first changes at t = 3 min ; the output first changes at t = 5 min.
This means that the time delay is two sampling periods, i.e., 6 =2 min. Why is
6=2 min, rather than 6=3 min? To understand this point, first consider a process
with no time delay (6=0). For a step change at t = 2" min, the first observed
changes in the input and the output of this undelayed would occur at t = 3 min,
because the output cannot change simultaneously due to the process dynamics.
But for our process, the first changes are observed at t = 5 min which implies that

0 =2 min.

Time constant t can be obtained from the 63.2% response time:
Te3.20 = 850 °C + (890 — 850 °C)(0.632) = 875.3 °C
Interpolating between t = 7 min and t = 8 min gives

te3.200 = (%(%)%-%%)(Teaz% = T(7)) +t(7)

8-7
= (m)(875.3 —873)+7

=7.46 min
Then
te320 = T+ 6 +1(0)
where t(0)=3, the time when the input first changes. Thus
T=tegom—0-1(0)=7.46-1-3

1=3.46
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So the FOPTD model of the process is

_—0.8e™*

G(S)=———
®) 3.46s+1

(a) For a SOPTD model shown in below,
K —os
G(s)=mz—r—¢"
7°8° +2{71s+1
Based on visual inspection on the figure, it is an underdamped process, using
Equation (5-51) we have gain

_ In(0S) ]
K=1,9=2,0S:£=0.5:>§: [n( )] > =0.1572~0.16
1-0 7*+[In(0S)] !
t,=55-0=55-2=35s
Based on Equation (5-50):

__Gy1=¢®  55%V1-0.1572"
T T

G(S) — > 1 e—ZS :2;8—25

1.735+2*0.16*1.73s +1 3s° +0.555 +1

=1.7289~1.73

An alternative method is to use the Smith’s Method shown in Figure 7.7:
0=2,K=1t,=26,t,=31

The adjusted times are employed for the actual graphical analysis:
ty,=t,-0=2.6-2=0.6

ty,=t,—0=31-2=11

t

2 =054
t60
: te, 3.1
Based on Figure 7.7, we have { =0.14,>= =13=7= 13 2.38
T .
1 _2s 1 -2s

G(s)= : — — e = . e
2.38°s+2*%0.14*2.38s5+1 5.67s“+0.67s+1

(b) Because a damped oscillation occurs, this matches the features of SOPTD.
FOPTD method does not allow for oscillation.
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7.13

(a) For a FOPTD model shown in below:

Ke—HS
G (S) - 7s+1

Based on visual inspection, the gain K =2; 6 =2.5; when the response reaches
63.2% complete, i.e., 2*0.632=1.264, 7 =tg,,, =5S
(b)

2.5 T

FOPTD

®* Raw data
b ath B -SRI
i N

15

0.5

0 ¢
5 10 15 20 25 30

-0.5
0
t,sec

Figure S7.12 The response of the derived FOPTD model

(c) The inverse response at the initial state is caused by a right-half plan zero and
is not captured by FOPTD model.

a) Replacing t by 5, and K by 6 in Eq. 7-25
y(k)=e"°y(k -1) +[1—e*"*16u(k 1)

b) Replacing t by 5, and K by 6 in Eq. 7-22
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y(k) = (1—%)y(k—1)+§6u(k—1)

In the integrated results tabulated below for At = 0.1, the values are shown
only at integer values of t, for comparison.

Table S7.13 Integrated results for the first order differential equation

y(k) y(k) y(k)
(exact) (At=1) (At=0.1)

0 3 3 3
1 2.456 2.400 2.451
2 5.274 5.520 5.296
3 6.493 6.816 6.522
4 6.404 6.653 6.427
5 5.243 5.322 5.251
6 4.293 4.258 4.290
7 3.514 3.408 3.505
8 2.877 2.725 2.864
9 2.356 2.180 2.340
10 1.929 1.744 1.912

Thus At = 0.1 does improve the finite difference model making it a more
accurate approximation of the exact model.

To find a, and b, use the given first order model to minimize

J= Z(y(k) —a,y(k-1) -bx(k ~1)’

where y(k) denotes the data.

g—; = ZZ(Y(k) —a,y(k=1)-bx(k -1)(=y(k-1) =0
aJ 10

T~ 22000 -ay(k D -bx(k-D)(-x(k 1) =0

Solving simultaneously for a, and b, gives

7-19



> Y0k -1 -b 3 y(k-Dx(k -

a =" 10
D y(k-1)°
n-1

10

Sk -Dy()Y vk -1 -3 y(k-Dx(k -0 y(k -1y (k)
bl _n=l n=1 =1 el

ix(k —1)2§: y(k —1)? —(i y(k=1)x(k —1)j

Using the given data,

i x(k —1)y(k) =35.212 i y(k —1)y(k) =188.749

n=1 n=1

10 10
dx(k-12=14 , > y(k-1)*=198112
n=1

n=1

i y(k —1)x(k —1) = 24.409

nel
Substituting into expressions for a, and b, gives

a,=08187 , b=1.0876
The fitted model is  y(k +1) = 0.8187y(k) +1.0876x(k)
or y(k) = 0.8187y(k —1) +1.0876x(k —1) (1)
Let the first-order continuous transfer function be,

Y K
X(s) ts+1

For Eq. 7-34, the discrete model is

y(k)=e " y(k —1) +[1—e 2" ]Kx(k —1) (2)

Comparing Egs. 1 and 2, for At=1, gives
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t=5s and K=6volts

Hence, the continuous transfer function is

6

G(s) =
(5) 5s5+1

8 T T T T T T T T

T

— actual data
=== fitted model

y(t)

r r r r

r

0 1 2 3 4 5 6 7 8

time,t

Figure S7.14 Responses of the fitted model and the data

a) FOPTD model:

Since K=1, using linear interpolation to find times corresponding to the 35.3%

and 85.3% of response:
tos 30, = 2.89; 15 5, = 8.66

5 0=13t 4, —0.2%, ., =1.24
7 =0.67 (tgg 39, —Las306 ) = 3.87

b) Discrete-time ARX model:
y(k)=0.911y(k —1)+0.1329u(k —1) (since u(k)=u(k-1)

Thus:
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e =0.91L K (1-e¥")=0.1329= K =1.49
An alternative way to calculate K is to set y(k)=y(k-1)=y,,u(k-1)=uy =1

0.1329
y,. =0.911y, +0.1329 = K = =1.49
089
1 T T T T T T T
True value -
0.9| ===== FOP | T
s ARXmodel | =2
R 4
o
0.7+ ",o"” B
257
7
® 0.6 ‘,-"1 -
2 /"//
S o05f- 7 .
a Ry
&’ e P
0.4 ke !
R4
R4
L /’, 4 -
0.3 ./, I,,
Cd ’
0.2 4 4
b ,/
0.1r / N
’
/
0 4 r r r r r r r r
0 1 2 3 4 5 6 7 8 9 10
Time

Figure S7.15. Comparison of true data and model responses.
The result obtained using the ARX model is different from that obtained using an
FOPTD model, because the extra constraint “K=1" is not used. In other words,
the discrete time data do not include the final steady-state value, so the calculation

gives a different gain. If more data points are added on steady-state values, the
result obtained using ARX model will converge to K=1.

y(k)=ayk-1+a,y(k-2)+bu(k -1)+bu(k -2) 1)
a) For the model in (1), the least squares parameter estimates are given by

-1

B=(X"X) XTY )

For the basall dataset:
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a 4 0 25 0 -4
~ | a, -4 4 25 25 -11
p= , X=| . .. hand Y =| |

b, : : : : :

b2 -213 -211 25 25 -214

Calculate parameter estimates using (2):

p=[129 -031 -367 1.26]|

Next, we generate model predictions for the calibration data (dataset basall)
using past inputs and past model predictions, but not past output data.
Figure S7.16a compares the calibration data and the model predictions,

where Ay =y - y(0). Metric S denotes the corresponding sum of squared
errors,

s = Y[y - 90T @

50 T T T T T T T T
basall

_____ 2nd Order Discrete Time Model Prediction
o S =1921

T =

-100 -

Ay (mg/dL)

-150 -

-200 -

_250 r r r r r r r r r
0 25 50 75 100 125 150 175 200 225 250
Time (min)

Figure S7.16a Comparison of model predictions and calibration data for the 2nd
order discrete-time model (S is the sum of squared errors in Eq. 2).

b) The comparison of the validation data (dataset basal2) and the corresponding
model predictions is shown in Figure S7.16b.
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20 |5 5 15 5 5
basal2
0 2nd Order Discrete Time Model Prediction

\ S = 60282

1

20+

40

AY (mg/dL)

-80

-100 -

-120 -

-140 -

_160 r r r r r r
0 50 100 150 200 250 300 350

Time (min)

Figure S7.16b Comparison of model predictions and validation data for the 2nd
order discrete time model (S is the sum of squared errors in Eq. 2).

b) Now, consider the first-order transfer function model

Y(s K
e ©

U(s) rs+1

First, determine the steady-state gain, K = Ay/Au. The output finally reaches a
new steady state of about 250 mg/dL. For dataset basall, the input change is
Au=2.5 units/day. Thus,

250 100 mg day

K=-""-= :
25 dL units

To identify time constant z, determine the time at which 63.2% of the total
change has occurred. This corresponds to the time at which the output, Ay has a
value of - 250 %63.2% = - 158. For inspection of the data, z = 134 min when
Ay= 158 mg/dL.

The model predictions for the model in (3) can be calculated from the step
response for a first-order transfer function in (5-18)

y(t)=KM(@1-e"") (5-18))

The input step sizes are M = 2.5 units/day for basall and 1.5 units/day for
basal2.
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Figures S7.16¢ and S7.16d show the model predictions for the calibration and
validation data, respectively.

50 T T T T T T T T T g
basall
__________ 1st Order Transfer Function Model Prediction
0 "™ S = 2428 J
50+
-
B
g -100 -
>
<
-150 -
-200 -
_250 r r r r r r r r r
0 25 50 75 100 125 150 175 200 225 250

Time (min)

Figure S7.16c Comparison of the model predictions and calibration data for the
1% order transfer function (S is the sum of squared errors in Eq. 2).

20 T T T T T T
basal2

oH N |, 1st Order Transfer Function Model Prediction
., S = 48194

20~

40+

-60

Ay (mg/dL)

-80

-100 -

-120 -

_140 r r r r r r l
0 50 100 150 200 250 300 350

Time (min)
Figure S7.16d Comparison of the model predictions and validation data for the
1% order transfer function (S is the sum of squared errors in Eq. 2).

c) Discussion of results

Table S7.16 lists the calculated values of S for the two models.
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Table S7.16. Average squared error for the model predictions.

Modelh
Discrete-time Transfer
function
Calibration data 1921 2428
(basall)
Validation data 60,282 48,194
(basal?)

The discrete-time model is more accurate than the transfer function model for
the calibration data, which is not surprising because the former has more
model parameters. Although, the transfer function model is more accurate for
the validation dataset, neither model is very accurate for this dataset.

a) Fit a first-order model:

Let y = hydrocarbon exit temperature, Tyc
u = air flow rate, Fa

Note: There is a typo in the 1% printing. The step change in u should start at 17.9
m*/min, not 17.0 m*min.

The step response data is shown in Fig. S7.17a. The step change in u from 17.9 to
21 m*min occurs at t = 14 min. By inspection of the noisy y data, the time delay

is approximately 6 = 4 min.
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Figure S7.17a Step response data for the furnace module.

From the step response data, the following information can be obtained:

KA 25K Lo K

AU 2Amimin T m¥imin

y(0) =609.5 K,  y(c0)=584.5K; thus Ay =609.5—584.5=-25K
Ye32 = 609.5 + (0.632)(-25) = 593.7 K

From the figure, tg3, = 19.5 — 14 - 4 = 5.5 min. Thus, the transfer function model
is:

Y(s) -11.9

U(s) 5.5s+1

b) Fit a second-order model:
Use Smith’s method to find t; and <.
y20 = y(0) + (0.2)(Ay) = 609.5 + (0.2)(-25) = 604.5 K
Yeo = Y(0) + (0.6) (Ay) =609.5 + (0.6)(-25) = 594.6 K
From inspection of the data,
t0~19.5-10 = 1.5 min
Similarly,

t50=23—18=5min
Therefore,

7-27



60 5
From Fig. 7.7:
(=22
and
@:4 = r:tﬂ=§=1.25min
T 4 4

Thus the second-order transfer function can be written in standard form as:

Toc(s) 1.5e7%
F.(s) 5.665°+5.71s+1

THC (s) _ ~11.9e ™
F.(s) (1.25)2s%+2(2.2)(1.25)s +1

From (5-45) and (5-46) or by factoring (e.g., using MATLAB command roots)
gives:

T — -119e*

F. (5.25+1)(0.35+1)

c) Simulations

615

I
- = = FOPTD
A A A == Data

gem A EELVa i A T e SOPTD ||
5
2 605 ’
5 \‘\
£ \
2 600 \
3 \
= 3
0 505 >
5 Y
g s

590 :
g \'! ’ A SO
z 585 ~4 V"LYAm&

560

t (min)

Figure S7.17b Comparison of furnace step response data and model responses.

d) Discussion
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The model comparisons in Fig. S7.17b indicate that the two models are very
similar and reasonably accurate. However, the low-order transfer function models
fail to capture the higher order dynamics of the physical furnace model that was
used to generate the step response data. The first-order model has a lower value of
the least squares index, S:

First order model: S$=1.71 x 10*
Second-order model: S=201x10*

7.18

(a) Fita FOPTD model to the column step response data:

Let y = distillate MeOH composition, Xp
u = reflux ratio, R

The step response data is shown in Fig. S7.18a with the step change in u from
1.75 to 2.0 occurring at t = 3950 s. By inspection of the noisy data, the time delay
IS0~ 50s.

The following information can be obtained from the step response data:

xp(0) = 0.85, xp(o0) = 0.88;

thus
A Xp=0.88—-0.85=0.03
and
K= ﬂ = % =0.12
Au 0.25
Also,

Yea2 = 0.85 + (0.632)(0.03) = 0.869
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Figure S7.18a Step response data for the column module.

From the figure, t = tg32 — t(0)= 5050 — 3950 - 50 ~ 1050 s. Thus, one estimate of
the time constant is t = 1050 s. A second estimate can be obtained from the
settling time, ts = 7600 — 3950 = 3650 s. Thus, t = ty, = 912 s. Averaging these
two estimates gives:

_ 1050 +912 _081s

T ave

Thus the identified transfer function is,

Xp(s) 0.12e7%
R(s) 981s+1

(b) SOPTD model:
Use Smith’s method:
y20 = 0.85 + (0.2)(0.03) = 0.856
Yeo = 0.85 + (0.6)(0.03) = 0.868

From the step response data:
too ~ 4280 — 3950 — 50 = 280 s
teo ~ 4900 — 3950 — 50 = 900 s
Thus,
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ty 280

t, 900

From Fig. 7.7:

and
=20
The SOPTD model can be written as:

Xo(S) Ke™ _ 0.12e™
R(s) 1’s®+2Cts+1 4x10*s®+800s+1

which can be factored using (5-45) and (5-46):

X(s) 012
R(s)  (769s+1)(54s +1)

c) Simulations

0.895

0.89

o Ak Ay%?%%w&%g
Jikk

0.875 -
s

xD

0.87 1.1 - = = FOPTD
N? Data

0.865 MV .=.=.SOPTD
0.86 [u
4
0.855 "‘V
0.854
4000 5000 6000 7000 8000 9000 1000¢
t(s)

Figure 7.18b Comparison of column step response data and model responses.

d) Discussion

The model comparisons in Fig. S7.18b indicate that both models are reasonably
accurate. However, the second-order model is more accurate as indicated visually
and by its slightly lower S value:
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First order model: $=9.014x10"
Second-order model: $=9.012x10"
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Chapter 8 ©

Many of the problems in this chapter require determining whether a controller should be
direct-acting or reverse-acting. The following chart can help guide the thinking process
for these problems when also considering the style of the valve. Note that the chart
assumes all unmentioned gains are positive (measurement, I/P, etc.).

Table S8.1: Chart for determining if controller should be direct-acting or reverse-acting.

Then the controller

If the process gain is: And the valve is: should be:
Positive Fail Close (Air-to-Open) Reverse-Acting
MV 1, CV Kt Ke+
KT’ N 1 For MV |, wantp | For CV 1, wantp |
p
For control, if CV 1, Fail Open (Air-to-Close) Direct Acting
want MV | Kv— Ke -
For MV |, wantp 1 For CV 1, wantp 1
Negative Fail Close léAirr-to-Open) Dlref<t éb\ctlng
v _
MVQ, v For MV 1, wantp 1 For CV 1, wantp 1
o—
For control, if CV 1, Fail Open (Air-to-Close) Reverse-Acting
want MV 1 Kv— Ke+
For MV 1, wantp | For CV 1, wantp |

[Type here] 8-1 [Type here]



The response of a Pl controller to a unit step change in set point at t = 0 is shown in
Fig. 8.6. The instantaneous change at t = 0 is K¢ and the slope of the response is
Kc/ti. Now consider a more general step change in the set point of magnitude M.

P(s) _K, (1+ _) K.+ K¢
E(s) 7,8 7,8
E(s) =+

o= K, e

tfort>0

p(t) =K.M + KM
7

The instantaneous change at t = 0 is KcM and the slope of the response is KcM/x

From the data given in the table, the initial instantaneous change is -1.3 mA and the

slope is -0.0335 mA/s for a step change of M = 2.5 mA. Thus,
-13mA -13mA _

K = = = -052
M 2.5mA
KM =— 0.0335 mA/s
7
o KM _ —0.52(2.5mA) _
' _0.0335 mA/s —0.05 mA/s

Because Kc is negative, we classify this controller as direct acting.

K.ty
P'(s) K K,+K,7;s+K K, +K s+l
a) — 1 K2 — 1 21 2 —(K K ) Mt 2
E(s) rt,5+1 T,5+1 T,5+1

b) Kc=Ki+Kz — Ke=Kc¢-Ki
T, =0T,

Ky Kty
K,+K, K;+K,




K, =K,a-K, =K, (a-1)

Substituting,
K, = (K, = K;)(@~1) = (a-DK, - (@ -DK,

Then,
K, =(“—_1ch
o
C) If Kc=3 , =2 , a=01 then,

K, = 09, 3_ o7
0.1

K, =3—(-27)=30
1=01x2=02

Hence
Ki+Ky=-27+30=3

K,t,  30x0.2
K, +K, 3

G.(5) :3( 2s+1 )
0.2s+1

2

_ﬂ

a) From Eq. 8-14, the parallel form of the PID controller is :

G, (s) = K{1+,i+r't,s}
T,S

8-3



From Eq. 8-15, for o.—0, the series form of the PID controller is:

G,(s)= K{1+ is}[%s +1]

T

=K 1+T—D+i+rDs}
T, T8

=K, 1+T—DJ 1+ ! +_tod
T [1+TDJT,S [1+TDJ
T T

Comparing Ga(s) with Gi(s)

K! =KC(1+"'—DJ
T

b)  Since [1+ T—Djz 1 for all tp, 7, therefore

7y
K.<K! , 1, <1, and 1, 2>1]
c) ForK:=4, =10 min, tp=2 min

Ki=48 , 1, =12mn , 1, =1.67min
d) Considering only first-order effects, a non-zero value o will dampen all

responses, making them slower.
8.4 I

a) System | (air-to-open valve): as the signal to the control valve increases,
the flow through the valve increases = Ky > 0.

System 11 (air-to-close valve): as the signal to the control valve increases,
the flow through the valve decreases = Ky < 0.



b)

System I: Flow rate too high = need to close valve = decrease
controller output = reverse acting controller

Or:  Process gain +
Valve gain +
Controller gain must be + (which means reverse acting)

System Il: Flow rate too high = need to close valve = increase
controller output=> direct acting controller.

Or:  Process gain +
Valve gain —
Controller gain must be — (which means direct acting)

System I: K¢ > 0.
System II: K¢<0.

From Egs. 8-1 and 8-2,

p(®) = P+ K[y O~ Y )] (1)
The liquid-level transmitter relation is

ym(t) = K h(t) 2

h is the liquid level

where:
Kt >0 is the gain of the direct acting transmitter.

The control-valve relation is

q(t) = Kyp(t) 3)

where
g is the manipulated flow rate

Ky is the gain of the control valve.

(@) Configuration (a) in Fig. E8.5:

As h increases, we want to decrease g;, the inlet flow rate. For an air-to-close
control valve, the controller output p should increase. Thus as h increases p
decreases = a direct-acting controller.
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Configuration (b):

As h increases, we want to increase g, the exit flow rate. For an air-to-close
control valve, the controller output should decrease. Thus as h increases p
decreases = a reverse-acting controller.

(b) Configuration (a) in Fig. E8.5:
As h increases, we want to decrease g, the inlet flow rate. For an air-to-open
control valve, the controller output p should decrease. Thus as h increases p
decreases = a reverse-acting controller.

Configuration (b):

As h increases, we want to increase g, the exit flow rate. For an air-to-open
control valve, the controller output should increase. Thus as h increases p
increases = a direct-acting controller.

For PI control

pt)=p+ K{e(t) + ij.e(t*)dt *J
’Cl 0

p'(t) = Kc[e(t) + ije(t*)dt *]
‘El 0

Since
e(t):ysp—ym:O-Zz-Z

Then
p'(t) = KC(—2+ij(—2)dt*] = K{—Z—it]
o T

The initial response att =0is — 2 K¢

. 2K
The slope of the response is ——=
T

Substitute the numerical values of the initial response and slope from Fig. E8.6:
-2Ke=6 = K¢=-3

2K ) }
— = <¢=12mint! = 1 =5min
T




(a) The error signal can be described by:

e(t) =0.5t
E(s)= 0—25
S

The PID controller transfer function is given by (Eg. 8-14):

L(s) = K{1+L+7Ds}
E(s) 7,8

Substituting gives the controller output:

P'(s) = 0'52KC {1+i+rDs}
S S

p'(t) = 05K, {t+i
2T

t? + z'DS(t)}
Substituting numerical values and adding p =12 mA gives:
1,
Peio (1) =12+§t +t+0.55(t)
(b) The equation for a PI controller is obtained by setting tp to zero.
1.
P (1) :12+§t +1

(c) The plot of the controller response for both controllers is shown in Fig. S8.7.

The two controllers have similarly-shaped responses. The difference is the
sudden jump at t=0 that occurs with the PID controller as a result of the
derivative term. When the set point begins to change with a constant slope, there
is a step change in the error derivative from 0 to 0.5. The derivative term in the
controller gives it a jumpstart right when the setpoint begins to change that the
PID controller does not have.
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b)

Controller Output (mA)
O » S

-
r

—
o

—PID

- = =PI

1' 2
t (min)

]
e
D. -

Figure S8.7: PID controller output response

From inspection of Eq. 8-25, the derivative kick = K, TA—'f[Ar

Proportional kick = K_Ar

1= =e3=.. =ex2=6€k1=0
Bk = Ek+1 = EBk+2 = ...= Ar
P = p

P, =P+ Kc[Ar+£Ar+TA—DtAr}

T

8-8



Pi=P+ K{Ar+(1+i)§Ar} , 1=1,2, ...

T

K. LDAr
pk At

e _"L_"_f"
W | T e

a) To eliminate derivative Kick, replace (ex — ex-1) in EQ. 8-25 by - (Yk-Yk-1).

(Note the minus sign.)

a) Let the constant set point be denoted by Y. The digital velocity P
algorithm is obtained by setting 1/t = 1o =0 in Eq. 8-27:

Apk = Ke(ek — ex-1)
= KC l(ysp - yk) - (ysp ~ Y )J

= K[y = Vi

The digital velocity PD algorithm is obtained by setting 1/t = 0 in Eq. 8-
27:

Apc = Ke[(ex— exa) + TA—Dt (ex — 2ex1 + ex2)]

= Ko [ (yho+ Yea) + & (= 2fea+ yia) ]
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8.10

In both cases, Apk does not depend on Y, .

b) For both these algorithms Apk = 0 if yk2 = yk1 = Yk. Thus a steady state is
reached with a value of y that is independent of the value of y . Use of

these control algorithms is inadvisable if offset is a concern.
C) If the integral mode is present, then Apk contains the term Kc (ysp Ye)-

Thus, at steady state, Apk =0and yk-2=Yi1 =Yk, Y= Y, and the offset
problem is eliminated.

a) sz{l+i+ oS j

E(s) 7,5 atys+1

K (t,5(0tpS+1) + 0ty S +1+155T,S)
¢ 7,5(at, S +1)

_K {1+(r, +och)s+(1+oc)r,rDsz}

T,5(atyS +1)
Cross- multiplying
(0T, 7ps% +1,5) P'(s) = K (14 (t, +0tp)s + 1+ 0)T,T55° ) E(S)

Taking inverse Laplace transforms gives,

T, Tp dzd[:;(t) +T, d(FjJt,(t) (e(t)+(r +aTy)—— () +(1+a)T, T, ddfgt)j

b w—K T,5+1 TpS
) EGs) L 1,5 larys+l

Cross-multiplying

7,5%(atps+1) P'(s) = K, ((t,5 +1)(t,5 +1)) E(s)
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8.11

d2 !t d 't de(t dzet
T, Ty d‘zz()"'ﬁ F;t():Kc[e(t)"'(ﬁ +TD)%+TITDT§)J

C) The simulation is performed for the following parameter values:
K.=2 , 1=38, 1,=05 , a=01 , M=1

The Simulink-MATLAB results are shown in Figure S8.10.:

22 |5 L : : L L
— Parallel PID with a derivative filter
--=- Series PID with a derivative filter |

20

i

18} .

16

14} 1

p'(t) 12| I

r

N

0 2 4 6 8 10
Time
Figure S8.10. Step responses for both parallel and series PID controllers
with a derivative filter.

The integral component of the controller action is determined by integrating the
error between the measurement and the set point over time. As long as the sign on
the error stays the same (i.e., if the measurement does not cross the set point), the
integral component will continue to change monotonically. If the measurement
crosses the set point, the error term will change sign and the integral component
will begin to change in the other direction. Thus, it will no longer be monotonic.
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8.12

a) False. The controller output could saturate or the controller could be in the

manual mode.

b) False. Even with integral control action, offset can occur if the controller output

8.13

8.14

saturates. Or the controller could be in the manual mode.

First consider qualitatively how hy responds to a change in g2. From physical
considerations, it is clear that if g increases, h. will increase. Thus, if hy is
increasing, we want g2 to decrease, and vice versa. Since the g2 control valve is air-
to-open, the level controller output p should decrease in order to have g2 decrease.
In summary, if hy increases we want p to decrease; thus a reverse-acting controller
is required.

First consider qualitatively how solute mass fraction x responds to a change in steam
flow rate, S. From physical considerations, it is clear that if S increases, x will also
increase. Thus, if x is increasing, we want S to decrease, and vice versa. For a fail-
open (air-to-close) control valve, the controller output p should increase in order to
have S decrease. In summary, if x increases we want S to decrease, which requires
an increase in controller output p; thus a direct-acting controller is required.

First consider qualitatively how exit temperature Th2 responds to a change in cooling
water flow rate, we. From physical considerations, it is clear that if wc decreases, Th2
will increase. Thus, if Tho is decreasing, we want w, to decrease, and vice versa. But
in order to specify the controller action, we need to know if the control valve is fail
open or fail close. Based on safety considerations, the control valve should be fail
open (air-to-close). Otherwise, the very hot liquid stream could become even hotter
and cause problems (e.g., burst the pipe or generate a two phase flow).

For an air-to-close control valve, the temperature controller output p should
increase in order to have wc decrease. In summary, if Tz decreases we want we to
decrease, which requires controller output p to increase; thus a reverse-acting
controller is required.
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Two pieces of information are needed to specify controller action:
)} Is the control valve fail open or fail close
i) Is X1 > X2 Or X1 <Xz

If X1 > X2, then the mass balance is:

X W, + X,W, = XW = X(W, +W,)

X, > X,

LXK =X A

(X, + AW, + X, W, = X(W, + W, )

X, W, + AW, + X, W, = X(W, +W,)

X, (W, + W, ) + Aw, = X(W, +W,)
Aw,

X=X, +——2—
* (w+w)

Since all the variables in the equation are positive, then x > x> . The only way to
decrease x is to increase wa (but x can never be less than x2). Therefore, w2 should be
increased when x increases, in order to have x decrease. If the control valve is fail
open (air-to-close), then the composition controller output signal p should decrease.
Thus a reverse-acting controller should be selected. Conversely, for a fail close (air-
to-open) control valve, a direct-acting controller should be used.

If X1 < X2, then

X, W, + X, W, = XW = X(W, +W,)

X, <X,

X =X —A

(X, = A)W, + X, W, = X(W, +W,)

X, W, — AW, + X,W, = X(W, + W, )

X (W, +W,) — AW, = X(W, +W,)

Aw,

X=X, ————
(W, +Ww,)

Since all the variables are positive, then x < xz . If x increases, the controller will

need to decrease it to bring it back to the set point. The only way to decrease x is to

decrease w> (although x can never be smaller than x1). If the control valve is fail

open (air-to-close), then the composition controller output signal p should increase

in order to reduce wy. Thus the composition controller should be direct acting.

Conversely, for a fail close control valve, a reverse acting controller should be used.
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Chapter 9 ©

a)  Flow rate transmitter:

. [ 15psig - 3 psig
qm(p3|g)—(400 gpm-0 gpm

j(q gpm - 0 gpm) + 3 psig

= (0.0sﬂj g(gpm) + 3 psig
gpm
Pressure transmitter:

20mA -4 mA
30in.Hg -10in.Hg

Pm(mA):( J(pin.Hg—lOin.Hg)+4 mA

= (o.s_m—Aj p(in.Hg) —4 mA
in.Hg
Level transmitter:

5vDC-1VvDC
10m-0.5m

= (0.421EJ h(m) +0.789 VDC
m

hm(VDC):( J(h(m) -0.5m)+1VDC

Concentration transmitter:
10 VDC -1VDC
20g/L-3¢g/L

= (0.529%] C(g/L) —0.59VDC
g

Cm(VDC):[ ](C(g/L)-B g/L)+1VDC

b) The gains, zeros and spans are:

Flow Pressure Level Concentration
Gain | 0.03 psig/gpm | 0.8 mA/in.Hg |0.421 VDC/m| 0.529 VDC/g/L
Zero 0 gpm 10 in.Hg 0.5m 3g/L
Span 400 gpm 20 in.Hg 95m 17 g/L
9.2
ype here] 9-1

[Type here]



The safest conditions are achieved by the lowest temperatures and pressures
in the flash vessel.

VALVE 1.- Fail close (air-to-open)
VALVE 2.- Fail open (air-to-close)
VALVE 3.- Fail open (air-to-close)
VALVE 4.- Fail open (air-to-close)
VALVE 5.- Fail close (air-to-open)

Setting valve 1 as fail close prevents more heat from going to flash drum and
setting valve 3 as fail open to allow the steam chest to drain. Setting valve 3
as fail open prevents pressure build up in the vessel. Valve 4 should be fail-
open to evacuate the system and help keep pressure low. Valve 5 should be
fail-close to prevent any additional pressure build-up.

b) Vapor flow to downstream equipment can cause a hazardous situation

VALVE 1.- Fail close (air-to-open)
VALVE 2.- Fail open (air-to-close)
VALVE 3.- Fail close (air-to-open)
VALVE 4.- Fail open (air-to-close)
VALVE 5.- Fail close (air-to-open)

Setting valve 1 as fail close (air-to-open) prevents more heat from entering
flash drum and minimizes future vapor production. Setting valve 2 as fail
open (air-to-close) will allow the steam chest to be evacuated, setting valve 3
as fail close (air-to-open) prevents vapor from escaping the vessel. Setting
valve 4 as fail open (air-to-close) allows liquid to leave, preventing vapor
build up. Setting valve 4 as fail close (air-to-open) prevents pressure buildup.

c) Liquid flow to downstream equipment can cause a hazardous situation

VALVE 1.- Fail close (air-to-open)
VALVE 2.- Fail open (air-to-close)
VALVE 3.- Fail open (air-to-close)
VALVE 4.- Fail close (air-to-open)
VALVE 5.- Fail close (air-to-open)

Set valve 1 as fail close to prevent all the liquid from being vaporized (This
would cause the flash drum to overheat). Setting valve 2 as fail open will
allow the steam chest to be evacuated. Setting valve 3 as fail open prevents
pressure buildup in drum. Setting valve 4 as fail close prevents liquid from
escaping. Setting valve 5 as fail close prevents liquid build-up in drum

9-2



9.3

Note: This exercise is best understood after the material in Ch. 11 has been considered.

a)

b)

d)

Changing the span of the temperature transmitter will change its steady-state
gain, according to Eq. 9-1. Because the performance of the closed-loop
system depends on the gains of each individual element (cf. Chapter 11),
closed-loop stability could be adversely affected.

Changing the zero of a transmitted does not affect its gain. Thus, this change
will not affect closed-loop stability.

Changing the control valve trim will change the (local) steady-state gain of
the control valve, dg/dp. Because the performance of the closed-loop system
depends on the gains of each individual element (cf. Chapter 11), closed-loop
stability could be adversely affected

For this process, changing the feed flow rate could affect both its steady-state
gain and its dynamic characteristics (e.g., time constant and time delay).
Because the performance of the closed-loop system depends on the gains of
each individual element (cf. Chapter 11), closed-loop stability could be
adversely affected.

Starting from Eq. 9-7:

c,-—3 @
NF (1), [A
0,

The pressure drop in the valve is:

AP =AP—AP, 2
where

AP, = Kg® ©)
Solve for K by plugging in the nominal values of q and AP,. First, convert

the nominal value of q into units of m/h to match the metric units version
of N (the parameter N = 0.0865 m*/h(Kpa)'? when q has units of m%h and
pressure has units of KPa).




g, =0.6 m*/min=36 m°/h
AP,, =200 kPa
k=L 200KPA__ ) 0h pasm®hy?
0y 36° (m*/h)
Now substitute (3) into (2) to get an expression for AP, in terms of q.

AP, = AP —Kqg’ (4)
Substitute (4) into (1) to get:
©° ZP Kq? ©)
Nf (1) \/gq

The problem specifies that qq should be 2/3 of gmax (Where gmax is the flow
rate through the valve when the valve is fully open).
2
Qs = gqmax

3 3
=>qg,==36 m*/h
qmax 2 qd 2
0, =54mM°/h
Now find the C, that will give gmax = 54 m3/h. Substitute q = gmax and f (I)=1
(valve fully open) into (5).
C — qmax
. 2
\ JAP KO
9

Now that all of the variables on the right hand side of the equation are
known, plug in to solve for C..

3
AP =450 kPa, K =0.154—KP2 N _0.0865_™

(m®/h)?’ h(kPa)*?’
g.=12, q,, =54m’h
3
54
C, = h

\

o [450kPa —0.154(n:ff;‘;‘)2542(m3/h)2
h(kPa)"? 1.2
3 3
54 54
h _ "
3
(0.88(kPa)")  0.076"

0.0865

- 3
0.0865— 1
h(kPa)

C,=7105




Let APy/APs = 0.33 at the nominal ¢ =320 gpm
APs= APp+ AP, = 40 + 1.953x 10 ¢?
APy= P - AP = (1 —2.44x 10° ¢)Ppe — (40 + 1.953x 10 ¢?)

(1-2.44x10° x320%)P,. - (40 +1.953x10™ x320%)

=0.33
(40 +1.953x10™* x320%)

Ppe = 106.4 psi
Let o= g =320 gpm

For the rated C,, the valve is completely open at 110% qq i.e., at 352 gpm or the
upper limit of 350 gpm

1
2
Cv — q (%j
9s
1

(1-2.44x107° x350%)106.4 — (40 +1.953x 10~ x 350%) ]Z

C, =350
0.9

Then using Eq. 9-27,

| 0 (664-455x10"¢’ e
101.6 0.9
=1+

In 50

The plot of the valve characteristic is shown in Figure S9.5. From the plot of the
valve characteristic for the rated C, of 101.6, it is evident that the characteristic is
reasonably linear in the operating region 250 < q < 350.

The pumping cost could be further reduced by lowering Ppe to a value that would
make APJ/APs=0.25 at q =320 gpm. Then Ppe = 100 and for g¢ = 320 gpm, the

rated Cy = 133.5. However, as the plot shows, the valve characteristic for this design
is only slightly more nonlinear in the operating region. Hence, the selected valve
coefficient is Cy = 133.5.



a)

b)

400 T T T

]
300
250
q (gpm)

200

150

------- C.=101.6

100+

---- Cy=1335

-
-
R
s
-
-

50

-
-
-
-———

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
I (valve lift)

Figure S9.5. Control valve characteristics.

There are three control valves. The selection of air-to-close vs. air-to-open is
based on safety considerations:

i.  Steam control valve: Air-to-open to prevent overheating of the
evaporator.

ii.  Level control valve (that adjusts liquid flow rate B): Air-to-open to
prevent the steam coils from being exposed to the vapor space,
which could lead the coils to being burned out.

iii.  Pressure control valve (that adjusts solvent flow rate D): Air-to-close
to prevent over-pressurization of the evaporator.

For the three controllers:

i.  Concentration controller: As the product concentration xg increases,
we want the steam pressure, Ps to increase. Since the steam valve is
air-to-open, this means that the controller output signal to the control
valve (via the I/P) should increase. Thus, the controller should be
direct-acting.



ii.  Level controller: As the liquid level h increases, we want the product
flow rate B to increase. Since the control valve is air-to-open, this
means that the controller output signal to the control valve (via the
I/P) should increase. Thus, the controller should be direct-acting.

iii.  Pressure controller: As the pressure P increases, we want the solvent
flow rate D to increase. Since the control valve is air-to-close, this
means that the controller output signal to the control valve (via the
I/P) should decrease. Thus, the controller should be reverse-acting.

Because the system dynamic behavior would be described using deviation
variables, the dynamic characteristic can be analyzed by considering that the input
terms (not involving x) can be considered to be constant, and thus deviations are
zero. The starting form is the linear homogeneous ODE:

M X R kx=0
g, dt? o dt
Taking the Laplace transform gives,
X(s)[Ms2 +Rs+ KJ:O
X (s) M e Reii]0
Kg. K

Calculate T and { by comparing this equation to the standard form of the second-
order model in (5-39) (keeping in mind that gc = 32.174 Ibm ft/(Ibf s?)).

M

T= —=0.009653
Kg,
261 =26 | — M =B
Kg, K

=R 9 1553
2 \ KM

The valve characteristics are highly overdamped and can be accurately
approximated by a first-order model obtained by neglecting the d?x/dt? term.
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Configuration I: This series configuration will not be very effective because a
large flow rate has to pass through a small control valve. Thus, the pressure drop
will be very large and flow control will be ineffective.

Configuration II: This parallel configuration will be effective because the large
control valve can be adjusted to provide the nominal flow rate, while the small
control valve can be used to regulate the flow rate. If the small valve reaches its
maximum or minimum value, the large valve can be adjusted slightly so that the
small valve is about half open, thus allowing it to regulate flow again.

9.10

First write down the time-domain step response for a step change of 10°C. Then
solve the equation to find when y(t) is equal to 5 (since the variables are in deviation
variables, this represents when Twm will reach 30°C).

Yo () = KM (1-e™")

where M =10°C, K =1, and r=10s
Yo (t) =10(L—€ )

5=10(1—-e ")

t, =6.93

Therefore, the alarm will sound 6.93 seconds after 1:10PM.

0.1 psig

20 psig
e accuracy is unknown since the "true™ pressure in the tank is unknown

e precision = =0.5% of full scale

e resolution = Olﬂ =0.5% of full scale
20 psig

e repeatability = %:10.5% of full scale
psig

9-8



9.11

Assume that the gain of the sensor/transmitter is unity (i.e. there is no steady-state
measurement error). Then,

T.(s) _ 1
T'(s) (s+1)(0.1s+1)

where T is the temperature being measured and Tm is the measured value. For the
ramp temperature change:
T'(®)=03t (°Cls) , T'(s) =22
s

T'(s) 1 0.3

= X
(s+1)(0.1s+1) s?
T ()= —0.00333¢ ™ +0.333e " +0.3t—0.33

The maximum error occurs as t—oo:

Maximum error = |0.3t — (0.3t — 0.33)| =0.33 °C

If the smaller time constant is neglected, the time domain response is slightly
different for small values of t, although the maximum error (t— «) does not change.

T °C
6 .
5
4
3
2
1
O:""" e ‘Time's.
0 5 10 15 20

Figure S9.11. Response for process temperature sensor/transmitter. Orange solid
line is T'(t), and purple dashed line is T m(t).
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Chapter 10 ©

Assumptions:
1. Incompressible flow.
2. Chlorine concentration does not affect the air sample density.
3. T and P are approximately constant.

The detection time, ¢4, depends on the transportation time delay, 6, and the response
time of the analyzer, ¢, = 10 s:

td:9+tr (1)

Time delay 6 can be calculated as the ratio of the volume of the tubing V divided
by the volumetric flow rate of chlorine g:

=" )
q
where g = 10 cm®/s and,
nD’L
V=— 3
2 ©)

where the inside diameter D; is:

Di = 6.35 mm — 2(0.762 mm) = 4.83 mm = 4.83 x 103 m
Substitute Dj and L = 60 m into (3):

V=110x103m3

Substitute Dj into (2):

3.3 3
e:\i: 1.10x103 m [100cmj 110 s
q 10 cm®/s 1m

Substitute into (1):

t4=0+t=110+10=120s =2 min
Carbon monoxide (CO) is one of the most widely occurring toxic gases, especially
for confined spaces. High concentrations of carbon monoxide can saturate a
person’s blood in matter of minutes and quickly lead to respiratory problems or

[Type here] 10-1 [Type here]



even death. Therefore, the long detection time would not be acceptable if the
hazardous gas is CO.

10.2

(a) Start with a mass balance on the tank. Then solve the equation to find how much
time it takes for the height to decrease from 1 m to 0.25 m.

Adh(t)
dt cJh@

@ = E ho®

dt A

h™°dh = —Edt
A

0.25 N _tf C
!h“sdh_j—xdt

0

2(/0.280m] - i) =~ ~ (t, ~0)
T

A 0.5
t, ==1m°
=22

_ 7(0.5)°[m?]
" 0.065[m?° / min]
t, =12.1min]

[(m°°]

Therefore, the alarm will sound at 5:12:06AM

(b) To find how much liquid has leaked out of the tank, calculate the difference in
volume between the starting level and the alarm level.

AV =V, =V, oo = ﬂ(%[m]j (1m]-0.25[m]) = 0.59m*

0.59m3 of liquid has leaked out when the alarm sounds.

10.3
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10.4

The key safety concerns include:
1. Early detection of leaks to the surroundings

2. Over-pressurizing the flash drum
3. Maintain enough liquid level so that the pump does not cavitate.
4. Avoid having liquid entrained in the gas.

These concerns can be addressed by the following instrumentation.
1. Leak detection: sensors for hazardous gases should be located in the vicinity

of the flash drum.

2. Over pressurization: Use a high pressure switch (PSH) to shut off the feed
when a high pressure occurs.

3. Liquid inventory: Use a low level switch (LSL) to shut down the pump if a
low level occurs.

4. Liquid entrainment: Use a high level alarm to shut off the feed if the liquid
level becomes too high.

This SIS system is shown in Fig. S10.3 with conventional control loops for
pressure and liquid level.

=@
r@* —0O-0©

P

Figure S10.3: SIS system

10-3



10.5

The proposed alarm/SIS system is shown in Figure S10.4:

Lk

ZZCcroo

Figure S10.4: Proposed alarm/SIS system

The solenoid-operated valve is normally closed. But if the pressure in the
column exceeds a specified limit, the high pressure switch (PSH) activates
an alarm (PAH) and causes the valve to open fully, thus reducing the
pressure in the tank.

Define k as the number of sensors that are working properly. We wish to calculate
the probability that k>2, P(k > 2).

Because k = 2 and k = 3 are mutually exclusive events (cf. Appendix F),
Pkk>2)=Pk=2)+P(k=3) (1)

These probabilities can be calculated from the binomial distribution *

P(k=2)= @(0.05)1 (0.95)% =0.135

P(k=3)= @(0.05)0 (0.95)* =0.857

10-4



10.6

n
where the notation, L J refers to the number of combinations of n objects taken r
r

3
at a time, when the order of the r objects is not important. Thus (2} =3 and

3
( le. From Eq. 1,
3
P(k >2)=0.135+0.857 ={0.992

1 See any standard probability or statistics book, e.g., Montgomery D.C and G.C. Runger,
Applied Statistics and Probability for Engineers, 6" edition, Wiley, New York, 2013.

Solenoid switch: us =0.01

Level switch: uLs = 0.45

Level alarm: pa=0.3
Notation:

Ps = the probability that the solenoid switch fails

PLs = the probability that the level switch fails

Pa = the probability that the level alarm fails

P\ =the probability that the interlock system (solenoid & level switch fails)
We wish to determine,

P = the probability that both safety systems fail (i.e., the original system
and the additional level alarm)

Because the interlock and level alarm systems are independent, it follows that (cf.
Appendix F):

P= P| PA (1)

From the failure rates, the following table can be constructed, in analogy with
Example 10.4:

Component 7 R P=1-R
Solenoid: 0.01  0.990 0.010
Level switch: 045 0.638 0.362
Level alarm 0.3 0.741 0.259

10-5



Assume that the switch and solenoid are independent. Then,

Pi=Ps + Psw-Ps Psw
P, = 0.01 + 0.362 — (0.01)(0.362)
P, =0.368

Substitute into (1):

P =P Pa=(0.368)(0.259) =|0.095

Mean time between failures, MTBF:

From (10-6) through (10-8):
R=1-P=1-0.095=0.905
u =-1n (0.905) = 0.0998

MTBF = = =100 years
y2

Let P2 = the probability that neither D/P flowmeter is working properly. Then P»
and the related reliability, Rz, can be calculated as (cf. Appendix F):

P, =(0.82)*=0.672
Ro=1-P>=1-0.672=0.33
To calculate the overall system reliability, substitute R> = 0.33 for the reliability

value for a single D/P flowmeter, 0.18, in the R calculation of Example 10.4:

R= f[ R. = (0.33)(0.95)(0.61)(0.55)(0.64)

i=1

R =0.067

Thus, the addition of the second D/P flowmeter has increased the overall system
reliability from 0.037 (for Example 10.4) to 0.067.

10-6



10.8

10.9

Let Ps = the probability that none of the 3 D/P flowmeters are working properly.
Then Pz and the related reliability, Rs, can be calculated as (cf. Appendix F):

P3=(0.82)* = 0.551
R3=1-P3=1-0.551=0.449

To calculate the overall system reliability, substitute Rz = 0.449 for the reliability
value for two D/P flowmeters (R>=0.33) in the R calculation from Exercise 10.7:

R= f[ R. = (0.449)(0.95)(0.61)(0.55)(0.64)

R =0.092

Thus, the addition of the third D/P flowmeter has increased the overall system
reliability from 0.067 (for Exercise 10.7) to 0.092.

Assume that the switch and solenoid are independent. From the failure rate data,
the following table can be constructed, in analogy with Example 10.4:

Component 7) R P=1-R
Pressure switch 0.34 0.712 0.288
Solenoid switch/valve: 0.42 0.657 0.343

Assume that the switch and solenoid are independent. Then, the overall reliability
of the interlock system is,

R = (0.712)(0.657) =
i =-In (0.468) = 0.760

MTBF = — —[1.32 years
yzi
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Chapter 11

111

11.2

_<
<1
m
0

Sp

G.(s) = K{ldriJ

T,S

The closed-loop transfer function for set-point changes is given by Eg. 11-36

with K. replaced by KC(1+ ig]
T

KKK K K, 1t |2
H'(s) 7,8 ) (1s+1)

H! (s)
2O kKKK K 1 2|2
7,5 ) (15+1)

where K, =R = 1.0 min/ft*,
and T = RA = 3.0 min. Note also that 7; = ¢ = 3.0 min.

Solution Manual for Process Dynamics and Control, 4th edition
Copyright © 2016 by Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp,
and Francis J. Doyle Il
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11.3

min

mA

- 3 -
Ko = K KpK K K, = (5.33)(0.75 Pt j(o.zﬁ /”_”'“J(l.o
mA psi

H(s) 32 (3537; 1) (351+ 7) _ 32

.I:tZ

[

1.0

H;p(s)_1+3_2(3s+1)( 1 )_3s+3.2=0.94s+1

3s 3s+1

For Hs'p(s):—(s_z) 1

h'(t)=1-e™*"

t=-0.94In[1-h'(t)]
h(t)=25ft h'(t)=05ft t=0.65min
h(t)=3.0ft h'(t)=1.0ft t—oo
Therefore,

h(t =0.65min) = 2.5ft

h(t — o) = 3.0 ft

G.(s) =K, =5 ma/ma
Assume 1, =0, t,=0, andK; =1, inFig11.7.

a)  Offset= T/ (0)~T'(e0) =5'F —4.14'F =0.86'F

KchKIPKv( K2 j

b) T'(s) 5+1
T 4, KmKCK,PKV( K, j
1s+1

Using the standard current range of 4-20 ma,

11-2
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11.4

(@)

. 20ma—-4 ma 032 mal°E
50°F

K,=12 , Ky =0.75psi/ma , t=5min, Ts’p(s):E
S

7.20K,

T'(s) =
s(5s+1+1.440K,)

7.20K,
(1+1.440K,)

T'(0) = IirgsT’(s) =
T'(00) = 4.14°F K, =3.34°F/psi
From Fig. 11.7, since T'=0

P/(0)K, K, =T'(0) , P/(o0) =1.03 psi

and PK,K,+TK, =T , P =3.74psi

P.(e0) = P, — P/(0) = 4.77 psi

Controlled variable: c3

Manipulated variable: g,

Disturbance variable: ¢, (note: g; and c; are kept constant.)

If ¢, changes, then g, must be adjusted to keep c; at the set point.
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C'yfs)

G
Ib sol d
fts
Clsp(S)__C'5p(S) __E(s) P'(s) __ P%(s) Q',(s)
" K, > G, Gjp | G, "I G,
'bf;o' ma ma ma psi USGPM
t3
C'Bm(s) C‘3(S)
ma Cm Ib sol
fts
(b)
G, (s) = K, e " assuming tn =0
G, (s) = Me*% — (2.67sze25
9-3) b sol b sol/ft
ft®
G, (s) = K{1+ iJ
T,S
Gp(s) =K, =0.3 psi/ma
G.(5)= K, = (10— 20) USG.PM 167 USGI.DM
(12-6) psi psi
For process and disturbance transfer function:
Overall material balance for the tank,
USgallons ) , dh
(7-481ﬂ—3jAa =0, +0; —0s
As h is held constant at 4 ft by the overflow pipe:
0=10+15-q; Q)

Thus |G, =25

Component balance for the solute,
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d(c
fjtS) =0,C; +0,C, —5C, (2)

7.481 Ah

Linearize each term on the right hand side of Eq. 2 as described in Section 4.3:

g.C, = q1(_:1 + q1cll+qll 61
0,C, = qzc_:z + qzc'z +q'2 62 (3)
0,C; = G3C3 + q3C'3+q'3 63

At steady state:
0=0,C, +7,C, — 0,C; (4)

Put (2) into deviation variable by considering (3) and (4):

d
7.481 Ah % =0,C,+0', C, —0;C'3—0'5 C;
As 1 is constant, g’ = g :

dc'y _ _

7.481 Ah o q,c',+q',C, —0,C',—q', C;

dc'y . N o~
7.481Ahd_t3 =0,C,+0', (C, —C;) —05C; ()

Taking Laplace transform and rearranging gives

K K
Ci(s) =—2-Q;(s) +—2C,(s 6
(9= Q)+ 2 i) ©)
— __ 3 p—
where K, = 22 =% _0,0g 2SOV " %o 46 and = 248N 15 min
0, USGPM d, d,

since A=nD?/4=126ft* ,and h=4 ft.

0.08 and |G, (s) = 0.6
15s +1 15s +1

Therefore, |G, (s) =

(c)
The closed-loop responses for disturbance changes and for setpoint changes can
be obtained using block diagram algebra for the block diagram in part (a).
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Therefore, these responses will change only if any of the transfer functions in the
blocks of the diagram change.

I. C,changes. Then block transfer function G (s) changes due to K;. Hence G(s)
does need to be changed, and retuning is required.

ii. Ky changes. The close loop transfer functions changes, hence G¢(s) needs to be
adjusted to compensate for changes in Gy, and Ky,. The PI controller should be
retuned.

iii. Ky, remains unchanged when zero is adjusted. The controller does not need to
be retuned.

To verify the linearization results, the nonlinear model is used:
7.481 Ah % =(,C, +,C, —0,C,
0, +0, =0,

Step response of ¢z to g: (Gain 0.077 compared with linearized gain (K;) 0.08 in
Eqg. 6)

e, (b of solutefr)

0 a0 100 150
Time {min)

Step response of c3 to ¢,: (Gain 0.6 compared with linearized gain (Kgy) 0.6 in Eq.
6)
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11.5

¢, (b of solutedfe)

1
100
Time (min)

The results agree with linearization.

(a)

From Eq. 11-26 we get the closed loop transfer function for set point changes

Y K G:G,G,

Yo 1+ GeGyGyG

Substituting the information from the problem gives

150

4
Y sts+4 4 B 4
Ysp_1+ 4 Cs(s+4)+4 s24+4s5+4
s(s+4)

Or in standard form (Eq. 5-40), with t = % and =1

(b)

Given a unit step change in set point we obtain
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11.6

4

V() = s(s?+4s+4)

Using the Final VValue Theorem we get

s—0 s s

Therefore y(o0) =1

(c)  Asthe step change is a unit step change, and we have shown that y(«) =1,
we can say that offset = 0. This is consistent with the fact that the gain of
the overall transfer function is 1, so no offset will occur. Normally
proportional control does not eliminate offset, but it does for this
integrating process.

(d) Using Eq. 5-50 or taking the inverse Laplace transform of the response
given above we get

y(t)=1-(1+2t)e™
Substituting the value of 0.5 for t gives
y(t) =0.264

(e) We can tell from the response derived above that the response will not be

oscillatory, since £ =1.

For proportional controller, G, (s) = K,

Assume that the level transmitter and the control valve have negligible
dynamics. Then,

G, (5) =K,
G,(5) =K,
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The block diagram for this control system is the same as in Fig.11.8.
Hence Egs. 11-26 and 11-29 can be used for closed-loop responses to
setpoint and load changes, respectively.

The transfer functions G (s) and G, (s) are as given in Egs. 11-66 and
11-67, respectively.

Substituting for G¢, Gm, Gy, and G into Eq. 11-26 gives

KchKv(_lj
Y As) 1

Yo 1+KCKV(—1)Km wl
As

where 7 = __ A Q)
K.K,K

c v m

For a step change in the setpoint, Y, (s) =M /s

Y (t — o) = limsY (s) = Iims[M /S} -M
s—0 s—>0 | 1S+1
Offset= Y, (t > 0)-Y({t >0)=M-M =0

Substituting for G¢, Gm, Gy, Gy , and Ggq into (11-29) gives

o Lk
Y(S) . (AS) KchKm

D(s) ., KCKV(—/UKm s+l

S

where 7 is given by Eq. 1.
For a step change in the disturbance, D(s)=M /s

Y (t > 0) = limsY (s) = “ngs{— M /(KCKVKm)} -M

s(s+l) | KKK,

KchKm

Hence, offset is not eliminated for a step change in disturbance.
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Using block diagram algebra

Y =G,D+G,U (1)
U ZGC[YSp_(Y_épU)] ()
G,Y, -G
From (2), u=—=*__°_
1-G,G,

Substituting for U in Eq. 1

h+G,@G,-G,)) =6,0-6.G,)D+G,G.Y

sp

Therefore,

Y Gch

Yo 1+G.(G,-G,)

and
Y G(1-GG))
D 1+G,(G,-G,)

11.8

The available information can be translated as follows
1. The outlets of both the tanks have flow rate g at all times.
2. T,(s)=0

3. Since an energy balance would indicate a first-order transfer function
between T; and Qo

T'(®)
T'(x0)

=1-e""  or §=1—e‘12”1 , 71 = 10.9 min

11-10



Therefore

T.(s) 3 F/(-0.75gpm) 4
Q(s) 10.9s+1 10.9s+1

To(s) _ (5-3)'F/(-0.75gpm) _ 267

= for Tx(s)=0
Q,(s) 7,5+1 7,5+1

T,(s) (78-70)'F/(12-10)V 4
V,(s) 10s+1 10s+1

T,(s) (90-85)°F/12-10)V 25
V,(s) 10s+1 10s+1

5. 51, =50 min or t» =10 min

Since inlet and outlet flow rates for tank 2 are go and the volumes of
the tanks are equal,

T(s) /0 _ 1
T,(s) 1,5+1 10.0s+1
6. B _q15
T5(s)
30

7. T,(t) =T1(t —&j =T,(t-0.5)

Tz_(s) _ g 05s
T, (s)

Using these transfer functions, the block diagrams are as follows.

11-11



b)

105 +1

1095 +1 108 +1

The control configuration in part a) will provide the better control. As is
evident from the block diagrams above, the feedback loop contains, in
addition to G, only a first-order process in part a), but a second-order-
plus-time-delay process in part b). Hence the controlled variable responds
faster to changes in the manipulated variable for part a).

11-12
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11.9

11.10

a)

The given block diagram is equivalent to

G

C

G*(1-e)

For the inner loop, let

P o G,
E ° 146G (1-¢%)

In the outer loop, we have

Substitute for G/,

G,G
G.G
1+G,G (1-e™™)

Y
D1+

G,Gl+G.G a-e™))
1+G,G (1-e*)+G,G

Y_
D

Derive CLTF:

Y =Y,+Y,=G,Z+G,P
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b)

11.11

Y =G,(D+Y,)+G,K.E

Y =G,D+G,G,K.E+G,K.E

Y =G,D+(G,G,K, +G,K,)E E=-K,Y
Y =G,D-K,(G,G, +G,)K,Y

G,
1+ K, (G,G, +G,)K,,

Al
D

Characteristic Equation:

1+ K, (G,G, +G,)K,, =0

1+ K, i+ 4 =0
1s—1 2s+1

1+ K

525 +1) +4(s 1) 0
| s-D@s+1) |

(s-1(2s+1)+K_[5(2s+1) + 4(s-1)]=0
25’ —s—1+K_(10s+5+4s—-4)=0

2s? + (14K, -1)s+(K,-1) =0

Necessary conditions: K, >1/14 and K, >1

For a 2" order characteristic equation, these conditions are also sufficient.
Therefore, K_ >1 for closed-loop stability.
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Ce'(s)
> GL
Kg/m?3
Cyl8)  C.(s) E P! P Q,
— Kq _’®_’ G, Kie 1 Gy " G,
Kg/m? ma g ma ma psig m3/min
> GD
C'n(s) Cr C
G G
ma m Kg/m?3 i Kg/m?3

b)
Transfer Line:
Volume of transfer line = = /4 (0.5 m)*(20m)=3.93 m®

Nominal flow rate in the line = G, +J. = 7.5 m*/min

3
Time delay in the line = _398m” =0.52min

7.5 m3/min
Gy (s) = Ca

Composition Transmitter:

(20—4) ma _0.08 ma

G, (s) = = =0.
n(8) =Ky (200-0) kg/m?® kg/m?

Controller

From the ideal controller in Eq. 8-14

P'(s) = K{1+ iSJE(s) +K 1p8[CL (9)-C1(9)]
T

|
In the above equation, set 65',) (s) =0 in order to get the derivative on the
process output only. Then,

G, () = K{HiJ

7,8
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Gy (s) =-K, 158

with K. >0 as the controller should be reverse-acting, since P(t) should
increase when Cp,(t) decreases.

I/P _transducer

. (15-3) psig _ 0.75P519
(20—4) ma ma

Control valve

KV
t,5+1

G,(s)=

5t, =1 , 1, =0.2min

ﬁv -3

k. =99 _0031/12)(In20)(20) 2

ﬁv -3

0, =0.5=0.17+0.03(20) ©

ﬁv -3

0.03(20) 2 =0.5-0.17=0.33

m?3/min

psig

K, = (1/12)(In20)(0.33) = 0.082

0.082

G, (s) =
«(8) 0.2s+1

Process

Assume cp is constant for pure A. Material balance for A:

V——=0,Ch +0cCe — (A4 +0¢)C €y

Linearizing and writing in deviation variable form
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11.12

!

VE 6,0, + ek — (@, +2)c - <,

Taking Laplace transform

[Vs + (@, +9:)C'(5) = (€4 ~€)QA(5) +TrCE (5) )
From Eq. 1 at steady state, dc/dt =0,

C = (aCa +TUeCe ) /(T4 + ) =100 kg/m”

Substituting numerical values in Eq. 2,

[5s+7.5]C'(s) = 700Q’ () + 7CL (S)

[0.67s +1]C'(s) = 93.3Q) (5) + 0.93C/. (5)

93.3
G (s)=—0
() 0.67s+1
0.93
G,(s)=
() 0.67s +1

The stability limits are obtained from the characteristic Eq. 11-83. Hence
if an instrumentation change affects this equation, then the stability limits
will change and vice-versa.

The transmitter gain, K., changes as the span changes. Thus Gpy(s)
changes and the characteristic equation is affected. Stability limits would
be expected to change.

The zero on the transmitter does not affect its gain Kp,. Hence Gp(s)
remains unchanged and stability limits do not change.

Changing the control valve trim changes Gy(s) . This affects the

characteristic equation and the stability limits would be expected to
change as a result.
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11.13
K

14— —0<552+65+1+K =0
@ +(55+l)(s+1) < 58" +6s+1+K,

Applying the quadratic formula yields the roots:

—6+,/36-20(1+K,)
- 10
To have a stable system, both roots of the characteristic equation must have

S

negative real parts. Thus, 20(1+ KC) >0=K, >-1

K. (1+1]
(b) 14\ 0S)

(5s+1)(s+1)
e When 7, =0.1,055°+0.65* +0.1(1+K_)s+K, =0
Using direct substitution, and set s = jo :

=01, (553+632+s+ Kcs)+ K,=0

(-0.50° +0.1(1+K, ) @) - 0.60" + K, =0

Re: —0.6w?*+ K, =0 Q)
Im: —0.5w3 + 0.1(1 + K,)w = 0(2)
w#0:K, =0.136

To have a stable system, we have:
0<K,<0.136

e When 7, =1,55° +6s* +(1+K;)s+K, =0

Set s=jw:
(-50° +(1+K,) @) j 60" + K =0
Re: —6w?+ K, =0 (1)
Im: 5w+ (1+K)w=0 )
w#0:K,, =-6
To have a stable system, we have:
K.>0
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e When 7, =10 ,50s° +60s’ +10(1+K,)s+K_ =0

Sets=jo:
(-500° +10(1+ K, ) ) j 600’ + K, =0
Re: —60w? + K, =0 (1)
Im: —50w° + 10(1 + K.)w = 0 (2)

o#0:K, =-1.09
To have a stable system, we have:
K. >0

(c) Adding larger amounts of integral weighting (decreasing rz, ) will destabilize

the system
11.14

From the block diagram, the characteristic equation is obtained as

2
M N SRR
¢ 2 s—-1]|| s+10

1+ (1)

s+3

that is,
1+ K, 2 2 1 =0
|S+5] s—-1] s+10
Simplifying,
s® +14s® +35s + (4K, —50) =0

Sets=jo:
(—0® +350) j 140" + (4K, ~50) =0
Re: —14w? + 4K, —50=0 1)
Im: () —w®+350=0 (2
w#0:K,, =135
w=0:K,, =125

12.5<K, <135
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11.15

Substituting the transfer functions into the characteristic equation in (11-81)

gives:
K
K.K,e”—2* o
Y KnG.G,G, 7,5+1 KKK e
—_— = = 765
Yo 1+GGGG, 1. ¢ kot Ky  7s+1+K KK e
o 7,5+1

Let K. =K, =K, =7,=60=1, we have L:e—_; thus, G, =&

s+1l+e® 1+s

sp

Simulate the above relation through MATLAB, we have:

t

Clock To Workspace
o[ ]
Scope
1
| Ry — >y
s+1
Step Transport Transfer Fon To Workspace1
Delay
Step response of a closed loop function

07 T T 15

0.6~

0.5~
2 0.4~
o
Q.
3
x 03r-

0.2~

0.1

0 r r r r r r r r

0 0.5 1 1.5 2 2.5 3 35 4 4.5 5
Time

Figure S11.15 Step response of a closed loop function
As shown in the figure, the time delay will not lead to an inverse response.
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11.16
1

G,(s) = K{1+—]

7,8

o)oK 13
! (10/60)s+1 0.167s+1

G (=== since A=3ft? = 2249
As  22.4s ft
G,(s)=K, =4

Characteristic equation is

14K 141 ( 13 )[ -1 j(4):o
7,5 )\ 0.167s +1 \ 22.4s

(3.73t,)s® + (22.41,)s* + (5.2K 1,)s + (5.2K,.) =0
Use direct substitution, and set s = jo :
(-3.737,0° +5.2K 1, 0) j - 22.47,0° +5.2K, =0
Re: —2241,0% +52K. =0 (1)
Im: () —3.731,w3 + 52K, ;o =0 (2)
w#0:7,=0.167

To have a stable system, we have:
K.>0,7, >0.167

11.17

(s) = K T,5+1 5 =N(S)
o ‘L ts \(@0s+1)2 ) D(s)

D(s) + N(s) = t,5(100s* + 20s +1) + 5K (1,5 +1) =0
=100r,s® +20t,s* + (1+5K_)1,s+5K_ =0

Set s= jo , we have:
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[-1007,0° +(1+5K, ) 7,0 | j - 20r,0" + 5K, =0

Re: —-207,w* + 5K, =0 Q)

Im: () — 100703 + (1 + 5K)1,0 = 0 (2)

Find 1, as K, > o

. 25K . 25
lim ¢ = lim|——|=5
Ko 1+ 5K, Kool 1/ K, +5

T, >5 guarantees stability for any value of K. Appelpolscher is
wrong yet again.
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11.18

b)

G.(s) =K,
K
G, (s)=—
V() T,8+1
KV=dWS __ 06 0106 Ibm/s
dp |, 2v12-4 ma
57, =20s 7, =4s
2.5e°°
G, (s) =
» () 10s+1
Gy(s) =K, = 0= dma__, ,ma
(160—120)° F F

Characteristic equation is

1+(KC)[O'106) 2.5e” (0_4)=0
4s+1 | 10s +1

Substituting s=jo in (1) and using Euler's identity

e¥®=cosw —j sin ®
gives

-400% +14jo + 1+ 0.106 K (Cosm — jsinm)=0
Thus
-400% + 1 + 0.106 K. cosw = 0

and 14 - 0.106K. sinm =0

From (2) and (3),
14w

tanw = >
400" -1

Solving (4), ® =0.579 by trial and error.
Substituting for o in (3) gives

Kc=139.7 = K¢
Frequency of oscillation is 0.579 rad/sec

Substituting the Pade approximation into (1) gives:

11-23
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- 1-0.5s
1+0.5s
20s® +47s% + (14.5—0.053K_)s + (1+0.106K ) = 0

Substituting s=jw in above equation, we have:

~47" +1+0.106K,, +[ —2000° +14.50-0.053K @ | j =0
Thus, we have:

—470° +1+0.106 K, =0 o =0.587
{—20503 +14.50-0.053K 0 =0 - {KC —143.46

Therefore, the maximum gain, K. = 143.46, is a satisfactory
approximation of the true value of 139.7 in (a) above

11.19
4(1-5s)

a) G(s) =
(255 +1)(4s +1)(2s +1)

G, (s) =K,
D(s)+ N(s) = (255 +1)(4s +1)(2s+1) + 4K, (1-5s) =0
200s® +158s” + (31— 20K _)s +1+4K_=0
Substituting s=jw in above equation, we have:
~1580° +1+4K, +[ —2000° +310— 20K @ | j =0
Thus, we have:

—1580° +1+ 4K, =0 »=0.191
{—200@” +31lw—-20K. 0 =0 - {Kcm =1.19

b) (255 +1)(4s+1)(2s+1D) +4K_ =0
200s® +158s% +31s+ (1+4K_) =0
Substituting s=jo in above equation, we have:
~15800° +1+ 4K, +[ -2000° + 31w | j=0
Thus, we have:
{—158602 +1+4K_ =0 :{ w =0.394
—~2000° + 310w =0 K., =5.873

C) Because K can be much higher without the RHP zero being present,
the process can be made to respond faster.
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11.20

The characteristic equation is
1. 05K * 0 1)
10s +1
a) Using the Pade approximation
0% o 1-(3/2)s
1+(3/2)s
in (1) gives
15s% +(11.5-0.75K _)s + (1+0.5K ) =0
Substituting s=jw in above equation, we have:
~150° +1+ 05K +[11.50—0.75K @] j =0
Thus, we have:
~150° +1+0.5K_ =0 @ =0.760
{ 11.50-0.75K.0 =0 = {Kcm =15.33

b) Substituting s = jo in (1) and using Euler's identity.

e = cos(3m) — jsin(3w)

gives

10jw+1+0.5K [cos(3w) — jsin(3w)]|=0
Then,

1+0.5K, cos(3w) =0 2
and 10w-0.5K,sin(3w) =0 3)
From (2) and (3)

tan(3w) = -10w 4

Eqg. 4 has infinite number of solutions. The solution for the range
n/2 < 3w < 3n/2 is found by trial and error to be ® = 0.5805.
Then from Eq. 2, K, = 11.78
The other solutions for the range 3® > 37/2 occur at values of « for which
cos(3w) is smaller than cos(3x5.805). Thus, for all other solutions of w,
Eqg. 2 gives values of K. that are larger than 11.78. Hence, stability is
ensured when
0<K:<11.78
To solve Egs. 2 and 3, another way is to use Newton’s method. With
initial guess K. = 5, o = 0 ( steady state), the solution to Egs. 2 and 3 is:
Ke=-2, =0

With a different initial guess (e.g., K¢ =5, @ = 5), the solution is:
K. =11.78, ® = 0.5805
Again, o. = 0.5805 and the stability is ensured when
0<K;<11.78
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K =15.33, unstable
150 T T T T T T T T T

50 - *

o

response
&
=]
T
!

-100 - *

-150 - N

-200 -~ *

250 r r r r r r r r r
0 50 100 150 200 250 300 350 400 450 500

time

KC=14, stable but slow convergence with oscillations
150 T T T T T T T T T

50 - *

o

response
&
=]
T
!

-100 - *

-150 - N

-200 -~ *

250 r r r r r r r r r
0 50 100 150 200 250 300 350 400 450 500

time

KC=6, stable and quick convergence
150 T T T T T T T T T

100 - N

50 - *

o

response
&
=]
T
!

-100 - *

-150 - N

-200 -~ *

250 r r r r r r r r r
0 50 100 150 200 250 300 350 400 450 500

time

Figure S11.20 Simulation results of different K, settings
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11.21

(b)

To approximate Goy(s) by a FOPTD model, the Skogestad approximation
technique in Chapter 6 is used.

Initially,
3K g (-5+02+02)s 3K e

Ga (6) (60s +1)(55 +1)(3s +1)(2s +1)  (60s +1)(5s +1)(3s +1)(2s +1)
Skogestad approximation method to obtain a FOPTD model:

Time constant ~ 60 + (5/2)

Time delay ~ 2 +(5/2) + 3+ 2 =9.5
Then

3K e %%

o) > 55 5571

The characteristic equation is

L 3Kee L )
62.5s+1
Substituting s = jo in (1) and using Euler's identity.
e %1” = c0s(9.5w) — jsin(9.5w)
gives
3K, c0s(9.5w)+1+[62.5w 3K, sin(9.5w)] j =0
Then,
1+ 3K, c0s(9.5w) =0 (@)
and  62.50—-3K_sin(9.50) =0 3)
From (2) and (3)
tan (9.5w) = —62.50 (4)

Eq. 4 has infinite number of solutions. The solution for the range
/2 < 9.5w < 3n/2 (to make sure K, is positive) is found by trial and error
to be o = 0.1749.
Then from Eq. 2, K, = 3.678
Hence, stability is ensured when
0< K. <3.678

Conditional stability occurs when K, =K , =3.678;0=0.1749
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KC=»1, unstable

0 T T T T T T T T T

response

14 r r r r r r r r r
0 100 200 300 400 500 600 700 800 900 1000
time

K.=3.678, stable but with oscillations

1 T T T T T T T T T

0.9 |

0.7 -

response
o
o
T
1

0.4 N

0.1 -

0 r c c r c c c r c
0 100 200 300 400 500 600 700 800 900 1000

time

K =15, unstable
250 T T T T T T T T T

200

150

100

50

response

-100

-150

-200

.

.

r r r
0 100 200 300 400 500 600 700 800 900 1000
time

250 r r r r

Figure S11.21 Simulation results of different K, settings
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11.22

11.23

Characteristic equation is:

5-as s’ +3s”+3s+1+5K, —aKs
“(s+1)° (s+1)°
_s°+3s? +(3-aK,)s+1+5Ks
- (s +1)°

1+G,G,G,G, =1+K

A necessary condition for stability is all the coefficients of the numerator
are positive.

When a < 3/K; (K. > 0), the coefficient of s becomes negative so the
control system becomes unstable.

(a)
Offset = hgs — hfinas = 22.00 — 21.92 = 0.08 ft
(b)

. _20-4 MA_ 6 Al ft

10 ft
15-3 .
=—=0.75 psi/mA

" 20-4 P
Ky =0.4 cfm/ psi and K,=5
We have:

Koo = KnKKpK,G, =1.6x5x0.75x 0.4K , = 2.4K

Offset equals to:

offset = M __ 22-20 =0.08

1+ Ko 1+24K,
K, =10ft/cfm

(©)

Add integral action to eliminate offset.
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11.24

The open loop process transfer function is:
K 2

P

G, = (rs+1)(r,5+1)  (4s+1)(s+1)

The controller transfer function is:
G, = Kc(l+i) = 2+i
7,S 2s

(a) According to Eq. 11-26, the closed loop transfer function for set point
tracking is:

25,1
Y KnG,GG,  (4s+1)(s+1) 23
Y, 1+G,G,G.G, 1+#X(2+L)
(4s+1(s+12) 23
2 1
L x(Q2+—
L_ KmGchGv _ (4S+l)(3+1) ( 25) _ 1
- - T a2
Yo 1+G,G,GG, 4. 2 (2+i) s +s+1

——— X
(4s+1)(s+12) 2s
The closed loop transfer function is:

Y 1

Y, s’+s+1

(b)
The characteristic equation is the denominator of the closed loop transfer
function, which is underdamped (£ = 0.5):

s?+s+1

(©)

For stability analysis, G, = KC(1+4i) is substituted into 1+ GG GG,
S

and we get:

1+G,G,G.G, =1+ a1+

2
— X
(4s+1(s+12) 4s
_2s(s+1)+Kc  2s®+2s+Kc
2s(s+1) 2s(s+1)
To find the stability region, the roots of the numerator polynomial should

be on the right half plane. For this 2" order polynomial, this means:
K. >0
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K. can be arbitrarily large for this P1 controlled second order system and
still maintain stability.

11.25

First we use Eq. 11-26 to get the closed loop transfer function

10
Y +D@s+1) 10 _ 10
Ysp_1+ 10 T (s+1D@s+1)+10 2s24+3s+11

s+1@2s+1)

Or in standard form

Y 10/.4 ‘ 3v22 V22
_— —_— T=——om
Yep %52 + %s +1 44 1

The time at which the maximum occurs is given by Eq. 5-52

t, =TT t, = 1.41
1-¢

(b)
The response is given by

20
s(2s? +3s+11)

Y(s) =

The Final Value Theorem gives the steady state value as

) 20
) = —
Y 11

Subtracting the steady state value from the set point change gives offset as

ff: t—2
offset=7
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11.26

(c)

The period of oscillation is given by Eg. 5-55
21T

P = P =2.83
1-¢

(d)

25 T T T T T T T T T T T T T T

\_/

Ta= 28
time=1.41

os- -

Figure S11.25 y(t) responses as a function of time.

Hint:  You do not need to obtain the analytical response y(t) to answer
the above questions. Use the standard second order model expressed in
terms of { and t (see Chapter 5).

The closed loop transfer function for a set point change (Eq. 11-26), is
given by

Y KG:G,G,

Yoo 1+ G.GyGyG
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Substituting the values from above and in part (a), we get,

Y K.E

Y 1+K.E

Multiplying by a unit step change in set point gives

K.E 1 K.E

= y() =

Y(s) = -
)= IFKEs 1+K,E

A sketch might look like this (the step change at t = 5)

Fart (3) - Response toa unt step change s t=5

it
o
i

1+KE .|

Figure S11.26a Step response to unit step change with
proportional control.

As evidenced by the sketch, there is offset for this controller.

For part (b), we substitute the values into Eq. 11-26 to get

Y E 1

Ysp_TIS-l_E_%S-l-l

Multiplying by a unit step change in set point gives

Y(s) L =1 ( Et)
s) = - =1—exp|(——
%s+15 Y P 7
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A sketch would look like this

Fart (b - Response to a unit step change a t=0

Figure S11.26b Step response to unit step change with integral control

As evident in the sketch, there is no offset for this controller.

11.27

8
G, ~ (s+2)° - 8

- T3 2
1+GGG,G, 1. K, x1x 8 X1 S +6s” +125+8+8K
(s+2)

The characteristic equation for above is shown as:
s°+6s*+12s+8+8K_ =0

Substituting s=jw in above equation, we have:
~60° +8+8K, +[120- 0’ | j=0
Thus, we have:
{—6(02 +8+8K, =0 _ {a)= 243
120 - =0 K =8
So K, =1 is stable; K, =8 is marginally stable, and K_ =27 is unstable

Al
D

For a step change D = 1 , applying the final value theorem:
S
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1

8f

Offset: lim y(t) = lim| s ————S -1
to0 201§ +658° +12s+8+8K, | 1+K,
(b)
8
Y G, 3 (S+2)3 3 87,s
~ - - 3
D 1+GG,G,G, 1+Kc(1+1j . 1 7,5(s+2)° + K, (7,5 +1)
7S (S+2)

For a step change D = 1 , applying the final value theorem:
s

1
8-1,s
Offset: limy(t)=lim| s S =0

o 20 7,5(s+2) +K, (7,5+1)

So there is no offset for Pl controller.

11.28

The closed loop transfer function for set point changes is given by

Y K GcGyG,

Yoo 1+ GoGyGpGr,

Substituting the information in the problem gives

y K.(s+3) _ K.(s+3)
Y;p (s+1)(0.5s+1)(s+3)+3K, 0.5s3+3s2+55s+3+ 3K,

So the characteristic equation is
0.5s3+3s2+555s+3+3K. =0

Substituting s=jo in above equation, we have:
~30° +3+ 3K, +[550-050" | j =0

Thus, we have:

{—3602 +3+3K, =o:>{ w=A11

5.50—-0.50° =0 K =10

¢, max
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So the answers to parts (a)-(c) are:
() stable

(b) unstable

(c) unstable

The following plot shows the Simulink responses and confirms the above
answers:

Figure S11.28 y(t) responses with different K

11.29

a) Proportional controller:
We derive the transfer function as follows:

Y K,G.G,G

m>~c>=v>=p

Y, 1+G,G.G,G

m>=c>=v>=p

K ®
Yo Y K K,
E_1+K 1 _(s+1)3+Kc_53+382+3s+1+Kc
C(s+1)3
The characteristic equation of (1) is the following:
s°+3s°+3s+1+K_=0 (2)

Substituting s=jm in above equation, we have:

11-36



-3’ +1+K, +[30-0’ | =0
Thus, we have:
-3’ +1+K_ =0 w=A3
=
3v-w’=0 Kemx =8
We conclude that the system will be stable if

K, <8 ®3)
Simulation results are in Figure S11.29a.

—Kz=79
25 —K=8

AN AR A AR RA S AR
T
/AR

]
- d

1.

Y
=

0.

ol

P |
—
P

P

<
——]
i

<
——

-0.5

0 50 100 150
Time (min)

Figure S11.29a: System response to a unit step setpoint change. Note that the
system is stable at K;=7.9, marginally stable at K.=8, and unstable at K.=8.1.

b) PD controller:
We derive the transfer function as follows:

G, =K, (1+ TDS)
Y K,G.G,G

m>=c v p

Y, 1+G GGG

m>=c v p

K, (1+7,8)
Y (147 )(s+1)3
Yo 14K, (L+7,s
o fD)(s+1)3
K. (7p5+1)

= ; (4)

P 4352 +35+1+ K, +7,K.S

where K.=10.
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The characteristic equation of (4) is the following:

s®+3s?+(107, +3)s+11=0

Substituting s=jw in above equation, we have:
—30° +11+[(107D +3)a)—a)3] j=0

Thus, we have

response

{(1070 +3)w-w’=0

1.8

1.6

1.4

1.2

1

response

0.8

0.6

0.4

0.2

0

1500

1000

500

-500

-1000

-1500
0

—3w?+11=0

\tau_d=0.1, stable
T T T

= Ty i = % —0.0667

r r r r r r r r r

0 10 20 30 40 50 60 70 80 90

time

(l) Tp > TD,min

\tau_d=0, unstable

100

r r r r r r r r r

10 20 30 40 50 60 70 80 90
time

(") Tp < Tp,min

100

Figure S11.29b Simulation results of different 7, settings
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Chapter 12 °

12.1

For K =1, 11=10, 12=5, and 6=0, the PID controller settings are obtained using
Eq.12-14 as

K —10tn 15 im1s ) r =0T _333

K 1, T, T, +71,

The characteristic equation for the closed-loop system is

1+| K, 1+i+rDs 10+a =0

T,S (10s+1)(5s +1)
Substituting for K¢, 11, and tp, and simplifying gives
1.5+(1+a)=0
In order for the closed loop system to be stable, the coefficients of this first-order
polynomial in s must be positive. Thus,
Tc > 0
and
1+a)>0 = a>-1.

Results:
a) The closed loop system is stable for o > -1
b) Choose 1 >0
C) The choice of tc does not affect the robustness of the system to changes in

a. For 1c < 0, the system is unstable regardless of the value of a. For

1 > 0, the system is stable if o >—1, regardless of the value of . .

[Type here] 12-1

[Type here]



12.2

12.3

G=G,G,G, = 4d-s)
S

a) Let G=G. Factor the model as
G=G,G
with:
~ ~ 4

G, =1-s, G =2
S

The controller design equation in (12-20) is:
G, = i f
G

with a given first-order “filter”,

Substitute,
G’ 1 s

T4 7.S+1
b) The equivalent controller in the classical feedback control configuration in
Fig. 12.6(a) is:

c

Substitute to give,
1

G, =
4(7,+1)
Thus G is a proportional-only controller.

For the FOPTD model, K=2, t=1,and 6 =0.2.
a) Using entry G in Table 12.1 for t¢ = 0.2
K=t = 1 -1
K(r,+6) 2(0.2+0.2)

7, =7=1
b) Using entry G in Table 12.1 for t¢ = 1
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y(t)

d)

f)

1.2

K=—" —=—1 _o4
K(z,+6) 2(1+0.2)

r,=7=1

From Table 12.4 for a disturbance change

KKc = 0.859(6/7) %% or K¢=2.07
/11 = 0.674(0/1) %% or 1,=0.49

From Table 12.4 for a set-point change

KK = 0.586(8/1)%%% or K.=1.28
v/t =1.03-0.165(0/1) or 7 = 1.00

Conservative settings correspond to low values of K¢ and high values of .
Clearly, the IMC method (tc = 1.0) of part (b) gives the more conservative
settings; the ITAE method of part (c) gives the least conservative settings.
The controller setting for (a) and (d) are essentially identical.

A comparison for a unit step disturbance is shown in Fig. S12.3

|

|

I
0
o)
3
o

!
!
o
o)
3
O

5 10 15
time
Figure S12.3. Comparison of Pl controllers for a unit step disturbance.
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The process model is,

-3s

G(s)= 4e (assume the time delay has units of minutes) Q)

(a) Proportional only control, G¢(s) =Kc. The characteristic equation is:
1+K.G(s)=0

Substitute and rearrange,
s+4K e =0

Substitute the stability limit conditions from Section 11.4.3: s = jo, ® = wy, and
Kc.: Kcu:

jo, +4K e =0 )
Apply Euler’s identity, e =cos(0)— jsin(0):
e = cos(3m,) - jsin(3m,)
Substitute into (2),
Jo, +4K_ [cos(3w,) — jsin(3w,)] =0
Collect terms for the real and imaginary parts:
4K, cos(3w,) =0 (3)
o, —4K_, sin(Bw,) =0 4)

For (3), because K_, =0, it follows that:

cos (3w,)=0 = 3a)u=g (5)
= o, = g —0.5236 rad/min (6)

From (4) — (6),
_ 05236 _

cu

0.130

0.5236—4K_, sin (%) =0 = K
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(b) Controller settings using AMIGO method

The model parameters are: K =4, 6=3
For this model, use the right-hand column of Table 12.5.

- 0.35 _ 0.35 0029
Ké 12

7, =13.40 =13.4(3) = 40.2
12.5

Assume that the process can be modeled adequately by the first-order-plus-time
delay-model in Eg. 12-10. The step response data and the tangent line at the

inflection point for the slope-intercept identification method of Chapter 7 are shown
in Fig. S12.5.

18

Output

Time

Figure S12.5. Step response data and tangent line at the inflection point.

This estimated model parameters are:

K = Kip Ku(KoKn) = (0.75ﬂj 0oPst[169-120mA Y, o
mA psi 20-18 psi

0=1.7min

0+t=72min = 1=55min
a) Since 6/t > 0.25, a conservative choice of ¢ = lr is used. Thus, tc = 2.75

min. From Case H in Table 12.1:
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12.6

b)

d)

T+—
2 _176

70
27+0

=0.736min

T, :T+%:6.35min, Tp =

From Table 12.6, the AMIGO tuning parameters are:

K =2(02:1045% =L (024045221
K 0) 1.65 1.7

c

7\ = 0.40+0.87 0 0.4(1.7)+0.8(5.5) (L.7) = 3.8min
6+0.1r 1.7+0.1(5.5)

.= 0.50r _ 0.5(1.7)(5.5) _ 0.78min
0.30+7 0.3(1.7)+5.5

From Table 12.4, the ITAE PID settings for a step disturbance are

KK. = 1.357(6/0)°%7 or K= 2.50
T/t =0.842 (0/7)%™8 or 1 = 2.75min
o/t =0.381 (6/7)*%° or 1p=0.65min

The most aggressive controller is the one from part ¢, which has the
highest value of K¢ and smallest value of T

The model for this process has K=5, =4, and 6=3. The PI controller parameters
for an FOPDT model using IMC tuning are given by entry G in Table 12.1:

KC = T = 4 =O.
K(z,+6) 5(3+3)

7, =7=4

The parameters for a PID controller are given by entry H in Table 12.1:
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0 3

T+— 44—
K, =——2-=—2-=024
K(r.,+=) 50E@+—
(+y) 53+)
T|=T+Q=4+§=5.5
2 2
0 403

T = = =1.
P 2r40 2(4)+3

The simulated process for a step change in the set point is plotted below for both
the Pl and PID controllers. Note that the PID controller was implemented in the
proper form to eliminate derivative kick (see chapter 8).

1.5 . . . .

Tr

—PI

05}
- -—-PID

15 20 25

DD 5 10 156 20 25

Figure S12.6: Responses to a step change in the set point at t = 1for Pl and PID
controllers.

The PID controller allows the controlled variable to reach the new set point more
quickly than the PI controller, due to its larger K¢ value. This large Kc allows an
initially larger response from the controller during times from 1 to 4 minutes. The
reason that the K¢ can be larger is that, after the controlled variable begins to change
and move toward the set point, the derivative term can “put on the brakes” and slow
down the aggressive action so the controlled variable lands nicely at the set point.
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12.7

a.i)

a.ii)

b)

The model reduction approach of Skogestad gives the following
approximate model:

-0.028s
e

G(s) =
(s+1)(0.22s +1)

Since 6/t < 0.25, an aggressive choice of tc = 6 = 0.028 is made. From
Case | in Table 12.1 with t3 = 0, the IMC settings are:

_1zg+v,

K. =
Kz +0

=218

1, =1,+1, =122, 1, =%=o.180
1 2

To use the AMIGO tuning relations in Table 12.6, the model reduction
method of Skogestad can be used to reduce the model to a FOPDT model.
The time constant in the resulting FOPDT model is the largest time constant
in the full-order model plus one half of the next biggest time constant, 1 +
0.5(0.2) = 1.1. The time delay in the resulting FOPDT model is half of the
second-biggest time constant in the full-order model, 0.5(0.2) = 0.1. The
other smaller time constants are neglected.

-0.1s
€

1.1s+1

G(s) =
The AMIGO rules for a PID controller in Table 12.6 give:

K =1[02+045% |=[02+0451t)|-515
K 0 0.1

; 0404087, 040D +08AY () (4
0+0.1r 0.1+0.1(1.1)
0507 _ 050.0(LY _,

Ty = = =0.049
0.3¢0+7 0.3(0.1)+1.1

The simulation results shown in Figure S12.7 indicate that the IMC
controller is superior for a step disturbance due to its smaller maximum
deviation and lack of oscillations. This result makes sense, given that we
made an aggressive choice for tc for the IMC controller.
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— IMC
———AMIGO ]

Figure S12.7. Closed-loop responses to a unit step disturbance at t=1.

From Eq. 12-40 (with y=0):

PO = P+ K. [ Ay, Oy, D]+ K, i Je(eydts—r, o

This control law can be implemented with Simulink as follows:

CONTROLLER
r |
l |
l |
| WEIGHTING FACTOR [
I [
SET-POINT | o PROPORTIONAL| NTROLLER

t > —>®—> ACTION COOUTSUT
| “ |
l |
[ INTEGRAL

> > ACTION I
I |
l |
| | CONTROLLER
[ INPUT

|

I |
e e e e e . o . o o o e o e e —— —— —— — — — — — — — —



12.9

Closed-loop responses are compared for four values of 8: 1, 0.7, 0.5 & 0.3.

25-

05 [t/ B

| | | |
0 50 100 150 200 250 300
Time

Figure S12.8. Closed-loop responses for different values of 3.

As shown in Figure S12.8, as 8 increases the set-point response becomes faster
but exhibits more overshoot. The value of 8 =0.5 seems to be a good choice. The
disturbance response is independent of the value of S.

a) From Table 12.2, the controller settings for the series form are:
1, %o
K. =K1+ |=00971
T
T, =T, +Tp =26.52
1, =—10 —2753
T + Tp
Closed-loop responses generated from Simulink are shown in Fig. S12.9.
The series form results in more oscillatory responses; thus, it produces more
aggressive control action for this example.
b) By changing the derivative term in the controller block, the Simulink results

show that the system becomes more oscillatory as tp increases. For the
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parallel form, the closed-loop system becomes unstable for tp > 5.4; for the
series form, it becomes unstable for 1p > 4.5.

3 T T T T T
—— Parallel form
=== Series form

25+

y(t) 1.5

T

0.5 -

0 r r r r r

0 50 100 150 200 250 300

Time

Figure S12.9. Closed-loop responses for parallel and series controller forms.

12.10

a) Block diagram

Xy
- Gd
X'sp X'sp E P W', X'
—| K, Ge — G, - Gp >
(mA) (mA) (mA) (Kg/min)
X‘m
(mA) Gr
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b) Process and disturbance transfer functions:

Overall material balance:

W, +w, —w=0 (1)
Solute balance:

W, X, + W, X, —wx:pv% (2)
Substituting (1) into (2) and putting into deviation variables:

’

dx

! ! ’ v ! =
W, X[ + Wy X, =W X —W,X —W,X = pV v

Taking the Laplace transform:

W, X (8) + (X, = X)W, (8) = (W, +W, +pVs)X'(s)

Finally:
X, — X
X'(s X, —X W, + W
Gp(S): ,( ) — 2_ — 1 2
W,(s) w,+W,+pVs 1+1s
Wl

X'(s W, W, + W
Gd (S)= ,( ) — _l — 1 2
X{(s) w, +W,+pVs 1+1s

where 1= pV_

w, + W,

Substituting numerical values:

26x107*
G (s)="r—
o () 1+4.71s

0.65
G, (s)= ——
a(5) 1+4.71s

Composition measurement transfer function:

G, (s)= 2%_5495 =32

Final control element transfer function:

12-12



15—3>< 300/1.2 1875
20—4 0.0833s+1 0.0833s+1

G,(s) =

Controller:

-4
1875  26x10° ., .

Let G=G,G,G, =
0.0833s+1 1+4.71s

1.56e°

then G-=
(4.71s +1)(0.0833s +1)

For process with a dominant time constant, t, = t,,, /3 is recommended.
Hence . T, =1.57 min. From Table 12.1

Kc=192 and t=4.71min

c) Simulink results:

0.04

0.035

0.03

0.025

y®) 0.02

0.015

0.01y

0.005

I
1

I
1

]
1

Time

Figure S12.10c. Closed-loop response for the step disturbance.
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d) Figure S12.10d indicates thatt, =1.57 min gives very good results.

-0.02~ 4

-0.04 - 4

y(®) -0.06~ E

-0.08 - hl

0.12 r r r r r r r r r
0 2 4 6 8 10 12 14 16 18 20

Time

Figure S12.10d. Closed-loop response for set-point change.

e) Improved control can be obtained by adding derivative action: T, =0.4 min.

-0.02 - b

-0.04| e

y(t)

-0.06 [~ '

-0.08 - '

0.1

2 4 6 8 10 12 14 16 18 20

Time

Figure S12.10e. Closed-loop response after adding derivative action.
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f) For 6 =3 min, the closed-loop response becomes unstable. It is well known that
the presence of a large time delay in a feedback control loop limits its
performance. In fact, a time delay adds phase lag to the feedback loop, which
adversely affects closed-loop stability (cf. Ch 13). Consequently, the controller
gain must be reduced below the value that could be used if a smaller time delay
were present.

0.8 r r r r r r
0 5 10 15 20 25 30 35

Time

Figure S12.10f. Closed-loop response for 6 = 3 min.

12.11

The controller retuning decision is based on the characteristic equation, which
takes the following form for the standard feedback control system.

1+ GcGI/PGvaGm =0

The PID controller may have to be retuned if any of the transfer functions, Gy,
Gy, Gp or Gm, change.

a) Gm changes. The controller may have to be retuned.

b) The zero does not affect Gm. Hence the controller does not require
retuning.

C) Gy changes. Retuning may be necessary.

d) Gp changes. The controller may have to be retuned.
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12.12

2e°
The process model is given as: G(S) =

3s+1

a) From Table 12.1, the IMC settings are:

1 =

= =0.75
Kz +60

7, =7=3min

b) Cohen-Coon tuning relations:

K. =L7[09+0/12¢] = 1.39
K0

- _6[30+30/7)] _ 1.98min
9+20(0/7)

The IMC settings are more conservative because they have a smaller Kc

value and a larger 1 value.

C) The Simulink simulation results are shown in Fig. S12.12. Both controllers
are rather aggressive and produce oscillatory responses. The IMC controller
is less aggressive (that is, more conservative).

18 T T T T T T

—Cohen-Coon|

0.8

0.6

0.4

0.2

N

[ [ [ [ [
0 10 20 30 40 50 60 70
Time

Figure S12.12. Controller comparison.
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12.13

From the solution to Exercise 12.5, the process reaction curve method yields,
K=1.65 6=1.7min, T=5.5min
a) IMC method:
From Table 12.1, Controller G with tc = ©/3:

1 1 5.5 0
° Krt,+0 165 (55/3)+17
11=t=5.5min

K

b) Ziegler-Nichols settings:

1.65e "¢
55s+1

G(s) =
First, determine the stability limits; the characteristic equation is:
1+GG=0
Substitute the Padé approximation,

s _1-0.85s
1+0.85s

into the characteristic equation:

1.65K_ (1—0.855)
4.675s% +6.355 +1

0:1+GcG =1+

Rearrange,

4.6755% + (6.35 —1.403Kc)s + 1 + 1.65Kc = 0
Substitute s=jay at Kc = Keu:
— 4.675 o + j(6.35 — 1.403Kcy) oy + 1 +1.65Key = 0 + jO
Equate real and imaginary coefficients,

(6.35 — 1.403Kce)oou = 0
1+ 1.65Kcu — 4.675 @2 = 0
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Ignoring wy= 0, the approximate values are:
Kew =4.53 and wy=1.346 rad/min

P :2—”:4.67min

u
(4

u

The Z-N PI settings from Table 12.7 are:

K¢ =2.04 and 71 = 3.89 min (approximate)

Note that the values of K and oy are approximate due to the Padé
approximation. By using Simulink, more accurate values can be obtained
by trial and error. For this case, no Padé approximation is needed and:

Kcu =3.76 Pu =59 min
The Z-N PI settings from Table 12.7 are:
Ke=1.69 7= 4.92min  (more accurate)

Compared to the Z-N settings, the IMC method setting gives a smaller K
and a larger 1, and therefore provides more conservative controller settings.

12.14

Eliminate the effect of the feedback loop by opening the loop. That is, operate
temporarily in an open loop mode by switching the controller to the manual mode.
This change provides a constant controller output and a constant manipulated input.
If oscillations persist, they must be due to external disturbances. If the oscillations
vanish, they were caused by the feedback loop.

12.15

The sight glass has confirmed that the liquid level is rising. Because the controller
output is saturated, the controller is working fine. Hence, either the feed flow is
higher than recorded, or the liquid flow is lower than recorded, or both. Because
the flow transmitters consist of orifice plates and differential pressure transmitters,
a plugged orifice plate could lead to a higher recorded flow. Hence, the liquid-flow-
transmitter orifice plate would be the prime suspect.
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12.16

a) IMC design:

From Table 12.1, Controller H with tc = t/2 =3.28 min is:

K 1, +0/2 220325+2/2

(1 x+0/2 1 65+2/2

K. =0.00802

T, :t+9:6.5+2=7.5min
2 2

1y =0 = (0@ _ 567 min
20+0  2(6.5)+2

b) Relay auto tuning (RAT) controller
From the documentation for the RAT results, it follows that:
a=>54, d=05
From (12-46),

_4d _ 4(0.5)

= =0.0118
ra 7(54)

cu

P, =14 min
From Table 12.7, the Ziegler-Nichols controller settings are:

K, =0.6K_, =0.0071

T, :%:7 min, 7, :%=1.75 min
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C) Simulation results

The closed-loop responses for the IMC and RAT controller settings and a step
change in feed composition from 0.5 to 0.55 are shown in Figs. S12.16a and

Hydrocarbon Temperature (K)

Fuel Gas Flowrate (m3/min)

S12.16b, respectively.
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Fig. S12.16a. Performance of the IMC-PID controller for a step change in
hydrocarbon flow rate from 0.035 to 0.040 m3/min.
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Fig. S12.16b. Performance of the RAT controller for a step change in
hydrocarbon flow rate from 0.035 to 0.040 m3/min.

The RAT controller is superior due to its smaller maximum deviation and shorter
settling time.

d) Due to the high noise level for the xp response, it is difficult to obtain

improved controller settings. The RAT settings are considered to be
satisfactory.
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12.17

a) IMC design:

From Table 12.1, Controller H with tc = t/2 =381 is:

K 1, +60/2 0.126 381+138/2

w1 x+0/2 1 762+138/2

K, =14.7

T, :r+%=762+%=831min

W _ (762(38) _

Ty = = 3.3min
21+0  2(762)+138

b) Relay auto tuning (RAT) controller

The distillation column model includes an RAT option for the xg control loop,
but not the xp control loop. Thus, the Simulink diagram must be modified by
copying the RAT loop for xs and adding it to the xp portion of the diagram.
Also, the parameters for the relay block must be changed. The new Simulink
diagram and appropriate relay settings are shown in Fig. S12.17a. The results
from the RAT are shown in Fig.S12.17b.

From the documentation from the RAT results, it follows that:
a=5.55x103, d=0.2
From (12-46),

_4d__ 402)

“~ 7a  7(555x10°)

P =950
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From Table 12.7, the Ziegler-Nichols controller settings are:

K,=0.6K, =275

T, :%=425 S, 7p =%=1198

(N R T ) — . SM Ch 12 (8-2-10) [Compatibility Mode] - Microsoft Word [= %
Tkt = =
4 Home l Insert  Pagelayout  References  Mailings  Review View MathType  Acrobat ©
| Cut S—— e Y WY - W E——
E i & &[T umn_PI L A A —
{ Function Block Parameters: Relay ﬂ Column_PID_DES RAT g Al
‘ Paste 3 Relay ([ File Edit View Simulation Format Tools Help
Output the specified 'on’ or 'off value by comparing theinput ot Il| [ | & G & | © B2 B | <= = 4+ | 2| » = [30000... [Nomal v|| O g & REn
thresholds. The on/off state of the relay is not affected by input || | ‘ ‘ ‘ I —H o =
Main Signal ib Eror To Workspace1 R To Wi . g
Switch on point: | »—>| off |—>| 147831633
| Overhead Overhead
b Overhead Loop Switch Composition R:‘:It.i‘: e
Switch off point: Compoasition »

Relsyl  self-Tuning

: Toop ST
o xD Set Point
Output when on: T W e Feed Composition ™ Overl

0.2 'I Feed Comp To Workspace Come

- (=n]
Output when off: = ] N [

xD T
-0.2 Feed Flow To Workspace 5
xB Set Point To Workspace

sepoin =N B I
-0.005

Enable zero-crossing detection
Sample time (-1 for inherited):
-1

Bottom
Composition

Setpoint Loop Switch Composition
Controller Bot
— Comp
Relay Self-Tuning
m ] | Loop Switch
Tistnaton
] [ Cancel I [ Help ] Apply Column

Desktop 8 Libraries I Dale Seborg £ Computer 3 Network

Fig. S12.17a. Modified RAT Simulink diagram and relay settings.
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Fig. S12.17b. Results from RAT.

Simulation results

The closed-loop responses for the IMC and RAT controller settings and a step
change in feed composition from 0.5 to 0.55 are shown in Figs. S12.17¢ and

S12.17d, respectively.

The RAT controller provides a somewhat better response with a smaller
maximum deviation and a shorter settling time.

d)

Due to the high noise level for the xp response, it is difficult to obtain

improved controller settings. The RAT settings are considered to be

satisfactory.

12-24



0.88

Xp 0.86

084 i | i i i | i
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
t (min)
2
e e A A T
N s e e

14

I i ] ; ! 1 ! !
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
t (min)

Fig. S12.17c. Performance of the IMC-PID controller for a step change in feed
composition from 0.5 to 0.55.
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Chapter 13°

13.2

13.3

13.4

ype here]

According to Guideline 6, the manipulated variable should have a large
effect on the controlled variable. Clearly, it is easier to control a liquid level
by manipulating a large exit stream, rather than a small stream. Because R/D
>1, the reflux flow rate R is the preferred manipulated variable.

Exit flow rate w4 has no effect on x3 or x4 because it does not change the
relative amounts of materials that are blended. The bypass fraction f* has a
dynamic effect on x4 but has no steady-state effect because it also does not
change the relative amounts of materials that are blended. Thus, w> is the
best choice.

Both the steady-state and dynamic behaviors need to be considered. From a
steady-state perspective, the reflux stream temperature 7z would be a poor
choice because it is insensitive to changes in xp, due to the small nominal
value of 5 ppm. For example, even a 100% change in from 5 to 10 ppm
would result in a negligible change in Tk. Similarly, the temperature of the
top tray would be a poor choice. An intermediate tray temperature would be
more sensitive to changes in the tray composition but may not be
representative of xp. Ideally, the tray location should be selected to be the
highest tray in the column that still has the desired degree of sensitivity to
composition changes.

The choice of an intermediate tray temperature offers the advantage of early
detection of feed disturbances and disturbances that originate in the
stripping (bottom) section of the column. However, it would be slow to
respond to disturbances originating in the condenser or in the reflux drum.
But on balance, an intermediate tray temperature is the best choice.

13-1
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135

13.6

(b)

For the flooded condenser in Fig. E13.4, the area available for heat transfer
changes as the liquid level changes. Consequently, pressure control is easier
when the liquid level is low and more difficult when the level is high. By
contrast, for the conventional process design in Fig. 13.2, the liquid level
has a very small effect on the pressure control loop. Thus, the flooded
condenser is more difficult to control because the level and pressure control
loops are more interacting, than they are for the conventional process design
in Fig. 13.2.

The larger the tank, the more effective it will be in “damping out”
disturbances in the reactor exit stream. A large tank capacity also provides
a large feed inventory for the distillation column, which is desirable for
periods where the reactor is shut down. Thus a large tank is preferred from
a process control perspective. However a large tank has a high capital cost,
so a small tank is appealing from a steady-state, design perspective. Thus,
the choice of the storage tank size involves a tradeoff of control and design
objectives.

After a set-point change in reactor exit composition occurs, it would be
desirable to have the exit compositions for both the reactor and the storage
tank change to the new values as soon as possible. But concentration in the
storage tank will change gradually due to its liquid inventory. The time
constant for the storage tank is proportional to the mass of liquid in the tank
(cf. blending system models in Chapters 2 and 4). Thus, a large storage tank
will result in sluggish responses in its exit composition, which is not
desirable when frequent set-point changes are required. In this situation, the
storage tank size should be smaller than for case (a).

Variables : qi, 02,.... gs, h1, h2 Nv=8

Equations :
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Three flow-head relations: q, = C\,l\/h—1

0s :CVZ\/h—Z

q, = f (h1' hz)

Two conservation of mass equations:

dh
PAld_tl=p(q1+q5 —0; _q4)
dh
pAzd_tz :p(% +d, _qs)
Conclude: Ne=5

Degrees of freedom: =Nre=Ny—-Ng=8-5=3

Disturbance variable: gs = Np=1

Nr = Nrc + Np
Nepc=3-1=2

Consider the following energy balance assuming a reference temperature
of Tref =0:

Heat exchanger:

C.A—f)w (T, -T,)=Cw,(T,-T,,) (1)
Overall:

Cw,(T,-T,)=Cw,(T,-T.,) (2)
Mixing point:

w, =(@0- f)w, + fw, 3
Thus,
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13.8

Ne=3 , Nv=8  (f,w,, Wy, Ty, Teo Teos Ty Tho)
Ne=Ny —Ng =8-3=5

Nrc=2 (f, wn)
also

No =Ng =Ngc =3 (We, Ter, Te2)

The degree of freedom analysis is identical for both cocurrent and
countercurrent flow because the mass and energy balances are the same for
both cases.

The dynamic model consists of the following balances:
Mass balance on the tank:

dh
PASE = (= T, + W, —w, )

Component balance on the tank:

oA dhe)

dt = (1= )XW, + X W, — X5Wy (2

Mixing point balances:

wsg = ws + fwg 3)

XaW4 = XaW3 + fX1wi (4)
Thus,

Ne = 4 (Egs. 1- 4)

Nv=9 (h, F,w,, Wy, W, X, X, Xs, Xy)

Ne=Nv-Ne=5
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13.9

Since three flow rates (fw,,w, and w,) can be independently adjusted, it
would appear that there are three control degrees of freedom. But the bypass
flow rate, fw,, has no steady-state effect on x4. To confirm this assertion,

consider the overall steady-state component balance for the tank and the
mixing point:

X, W, + X, W, = X, W, (5)

This balance does not depend on the fraction bypassed, f, either directly or
indirectly,

Conclusion:  Nrc=2 (wz2and ws)

@) In order to analyze this situation, consider a steady-state analysis.

Assumptions:

1. Steady-state conditions with w, T, and T, at their nominal
values.

2. Constant heat capacities

No heat losses

4. Perfect mixing

.

Steady-state balances:
W, +W, =W (1)

W, +wT, =wT 2

Assume that T=Tsp, Where Tsp is the set point.
W, +W, =W (3)
wT, +wT, = WTSp 4

Equations (3) and (4) are two independent equations with two
unknown variables, wn and wc. For any arbitrary value of Tsp, these
equations have a unique solution. Thus the proposed multiloop
control strategy is feasible.

This simple analysis does not prove that the liquid level h can also
be controlled to an arbitrary set point hsp. However, this result can
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13.10

(b)

(a)

(b)

be demonstrated by a more complicated theoretical analysis or by
simulation studies.

Consider the steady-state model in (1) and (2). Substituting (1) into
(2) and solving for T gives:

_ w, T, +w,T,
W, + W,

T Q)

Since w does not appear in (5), it has no steady-state effect on T.
Consequently, the proposed multiloop control strategy is not
feasible.

Model degrees of freedom, Nr

NE=Nv - Ne (13-1)

NV = 11 (XF, TF, F1 WL1 L1 WV1 V! T! P1 h1 VT)

where Tk is the feed temperature and V7 is the volume of the
flash separator.

Ny =7:
Mass balance
Component balance
Energy balance
Vapor-liquid equilibrium relation
Valve relations (2)
Ideal gas law

Thus, Ne=11-7=4

Control degrees of freedom, Nrc

NF=Nrc+ Np (13-2)

Typically, some knowledge of the feed conditions would be
available. We consider two cases:

Case 1: xr and Tr are disturbance variables

Here Np =2 and:
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Nec =Nk - ND:4—2:

The two degrees of freedom can be utilized by manipulating two of
the three flow rates, for example, V and L, or F and V.

Case 2: xg, Tr, and F are disturbance variables

Here Np =3 and:
Nec= Ne- Np=4-3=[1]

The single degree of freedom could be utilized by manipulating one
of the exit flow rates, either V or L.

13-7



Chapter 14

141

14.2

3G, (jo)|
G, (i0)]G; (jo)|

(e +1 3o’ +1

CoJ(20)? 11 oo +1

AR =|G(jow)| =

From the statement, we know the period P of the input sinusoid is 0.5 min
and, thus,

m:@ = E =47 rad/min
P 05

Substituting the numerical value of the frequency:

. 3v16n% +1

A=ARx A=
4n 6412 +1

Thus the amplitude of the resulting temperature oscillation is 0.24 degrees.

x2=012x2=0.24

First approximate the exponential term as the first two terms in a truncated
Taylor series

e ® ~1-0s

Then G(jo) =1- jo
and AR, ur =1+ (-00)? =1+ 020’

Do term = faN ~(-00) = —tan ™ (w6)

Solution Manual for Process Dynamics and Control, 4th edition

Copyright © 2016 by Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp,

and Francis J. Doyle 11
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For a first-order Pade approximation

1.9
05 2

1+§
2

from which we obtain

(¢]

AR Pade — 1

(I)Pade =—2tan —1(%9j

Both approximations represent the original function well in the low
frequency region. At higher frequencies, the Padé&approximation matches
the amplitude ratio of the time delay element exactly (ARpage = 1), while
the two-term approximation introduces amplification (ARwo term >1). For
the phase angle, the high-frequency representations are:

(I)two orm > —90°
(I)Pade — —180°

Since the angle of e **“is negative and becomes unbounded as @ — oo,
we see that the Pade representation also provides the better approximation
to the time delay element's phase angle, matching ¢ of the pure time delay

element to a higher frequency than the two-term representation.

Nominal temperature T = w =124°F

A:%(lZB ‘F-120 ‘F)=4°F
7 =5sec., o = 271(1.8/60sec) = 0.189 rad/s

Using Eq. 13-2 with K=1,

A= A(szrz +1) ~4,/(0.189)*(5)° +1=5.50 °F

Actual maximum air temperature = T + A=129.5 °F
Actual minimum air temperature = T — A=118.5 F
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14.4

145

14.6

Ta(s) 1
T'(s) 0.1s+1

T'(s)=(0.1s+1)T, (s)

amplitude of T'=3.464 /(0.10)? +1 =3.465
phase angle of T'= ¢ + tan™}(0.10) = ¢ + 0.02

Since only the maximum error is required, set ¢ = 0 for the comparison of T' and
T. . Then

Error = T, — T'=3.464 sin (0.2t) — 3.465sin(0.2t + 0.02)

= 3.464 sin(0.2t) —3.465[sin(0.2t) cos 0.02 + cos(0.2t)sin 0.02]
=0.000 sin(0.2t) — 0.0693 cos(0.2t)

Since the maximum absolute value of cos(0.2t) is 1,

maximum absolute error = 0.0693

(a) No, cannot make 1% order closed-loop system unstable.
(b) No, cannot make 2" order overdamped system unstable for closed-loop.
(c) Yes, 3" order system can be made unstable.

(d) Yes, anything with time delay can be made unstable.

Engineer A is correct.

Second order overdamped process cannot become unstable with a proportional
controller.

FOPTD model can become unstable with a large K. due to the time delay.
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14.7

14.8

Using MATLAB

Bode Diagram
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Figure S14.7. Bode diagram of the third-order transfer function.

The value of » that yields a -180° phase angle and the value of AR at that
frequency are:

o = 0.807 rad/sec
AR =0.202

Using MATLAB,
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Bode Diagram
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Figure S14.8. Bode diagram for G(s) and G(s) with Pade approximation.
As we can see from the figures, the accuracy of Pade approximation does not
change as frequency increases in magnitude plot, but it will be compromised in
the phase plot as frequency goes higher.

14.9

o=2nf  where fis in cycles/min
For the standard thermocouple, using Eq. 14-13b

91 = -tan™(o11) = tan™(0.150)
Phase difference Ap = @1 — @2
Thus, the phase angle for the unknown unit is
92 = 01— Ap

and the time constant for the unknown unit is

1
T, = —tan(—o,)
o)
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using Eq. 14-13b . The results are tabulated below

f ® Q1 Ap 02 T2
0.05 0.31 2.7 45 -7.2 0.4023
0.1 0.63 -5.4 8.7 -14.1 0.4000
0.2 1.26 -10.7 16 -26.7 0.4004
0.4 2.51 -26.6 24.5 -45.1 0.3995
0.8 6.03 -37 26.5 -63.5 0.3992

1 6.28 -43.3 25 -68.3 0.4001

2 12.57 -62 16.7 -78.7 0.3984

4 25.13 -75.1 9.2 -84.3 0.3988

That the unknown unit is first order is indicated by the fact that A¢p—0 as ov— o,
so that @2—@1—-90° and @,—-90° for m—oo implies a first-order system. This is
confirmed by the similar values of 1, calculated for different values of w,
implying that a graph of tan(-¢,) versus o is linear as expected for a first-order
system. Then using linear regression or taking the average of above values, 1, =
0.40 min.

14.10

From the solution to Exercise 5-19, for the two-tank system

H{(s)/h, 001 K
Q.(s)  1.32s+1 15+1

Hy(s)/ e 001 K
Q.(s)  (1.32s+1)? (15+1)?

Qi(s) 01337  0.1337
Qi(s) (1.325+1)? (ts5+1)2

and for the one-tank system

H'(s)/h,,, 001 K
Qi(s)  264s+1 215+1

Q'(s) ~ 0.1337  0.1337

Qi(s) 264s+1 215+1
For a sinusoidal input g;; (t) = Asinot, the amplitudes of the heights and flow
rates are
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Alh'/h | = KA/VAw?t? +1 (1)

Alq']=0.1337A/ V4w t? +1 @)
for the one-tank system, and

Al by ]= KA/t +1 3)

Alhy 1hy = KA/ (@2t? +1)? (4)

Alg,]=0.1337A7/(0?1? +1)? (5)

for the two-tank system.

Comparing (1) and (3), for all
Al 10 1> Al /1, ]

Hence, for all @, the first tank of the two-tank system will overflow for a smaller
value of A than will the one-tank system. Thus, from the overflow consideration,
the one-tank system is better for all . However, if A is small enough so that
overflow is not a concern, the two-tank system will provide a smaller amplitude in
the output flow for those values of @ that satisfy

Alg;]< Alg’ ]

0.1337A _ 0.1337A
\/(03212 +1)? Ve’ +1

or w>+2/1=1.07

Therefore, the two-tank system provides better damping of a sinusoidal
disturbance for @ > 1.07 if and only if

V1.32°w* +1

Alh//h ]<1 | thatis, A<
0.01

Lmax
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14.11

Using Egs. 14-28 , 14-13, and 14-17,

AR

2ot +1

10002 +11/40? +1

¢ = tan"(ot.) — tan(10w) — tan*(2w)

The Bode plots shown below indicate that

i) AR does not depend on the sign of the zero.

i) AR exhibits resonance for zeros close to origin.

iii)  All zeros lead to ultimate slope of —1 for AR.

iv) A left-plane zero yields an ultimate ¢ of -90°.

v)  Arright-plane zero yields an ultimate ¢ of -270°.

vi) Left-plane zeros close to origin can give phase lead at low o.

vii) Left-plane zeros far from the origin lead to a greater lag (i.e.,
smaller phase angle) than the ultimate value. ¢,= —90 “with a left-
plane zero present.

. Bode Diagram
10" g c v R S c -
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& 0 --"-.‘"."ln~_~ ..... Case ||(b)
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Figure S14.11. Bode plot for each of the four cases of numerator dynamics.
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14.12

b)

AR/K

From Eq. 8-14 with 1= 41p

(41,5 +1+41,°5%) _ g (2rps +1)?

G.(s) =K, ¢
41,8 41,8
2
(\/4‘CD2(02+1) 2 2
. 4 1
|GC(J®)|:KC :KC TD o +
41,0 41,0

From Eq. 8-15 with 1= 41p and . = 0.1
(415 +1)(tps+1)
° 41,5(0.1t,5 +1)
(\/161,32032 "‘1)(\/%2@2 +1)
4t0,/0.01t, 0% +1

The differences are significant for 0.25 < wtp < 1 by a maximum of 0.5 K
at otp = 0.5, and for otp >10 by an amount increasing with otp .

G.(s)=K

|Gc ( J(D)| = Kc

10 N — N S ——

Series controller with filter (asymptote)

T 7 T 17T

7

10"

T 1 T 17170
A Y

\‘?\~- ,a"
0 ~_" g
10 - = __
r Parallel controller (asymptote)
- —— Parallel controller (actual)
=== Series controller (actual)
10'1 - F r r rrreF - r r rrrrrf - r r r rrerf - F r rrrrg
-2 -1 0 1 2
10 10 10 10 10
®Tp

Figure S14.12. Nominal amplitude ratio for parallel and series controllers
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14.13

1+Go =1+G,G,G.G, =1+ 2 06 4 .
5+150s+12s+1
Characteristic equation:
(zs+1)(50s +1)(2s +1) + K. (4)(2)(0.6) =0 (1)

For a third order process, a K. can always be chosen to make the process unstable.
A stability analysis would verify this but was not required.

Substitute s = jw into Eq. (1), we have:
(jor+)(B0jo+1)(2jo+1)+ K, (4)(2)(0.6) =0
For T=1, we have:
(—=100w3 + 53w)j + (1 + 4.8K, — 152w?) = 0 (2)
Thus, we have w. = 0.53 and K¢, = 16.58.

For t= 0.4, we have:

(—40w3 + 52.4w)j + (1 + 4.8K, — 120.8w?) = 0 ©))
So we have:

we=1.31 and K, =41.28

The second measurement is preferred because of a larger stability region of Kc.

14.14

(a) Always true. Increasing the gain does speed up the response for a set point
change. Care must be taken to not increase the gain too much or oscillations will
result.

(b) False. If the open loop system is first order, increasing K. cannot result in
oscillation.

(c) Generally true. Increasing the controller gain can cause real part of the roots of
the characteristic polynomial to turn positive. However, for first or second order
processes, increasing K. will not cause instability.

(d) Always true. Increasing the controller gain will decrease offset. However, if

the gain is increased too much, oscillations may occur. Even with the oscillations
the offset will continue to decrease until the system becomes unstable.
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14.15

(a)
Figure S14.15a Bode plot of Go,. (K. = 10)
GOL = Gc = ; Kc
(4s+1)(2s+1)
Cannot become unstable — max phase angle 2™ order overdamped process
(GoL) is -180 degree.
(b)

Figure S14.15b Bode plot of Go.. (K. = 10)

14-11



(©)

s __Lyuss o (Bs+DK,
o ° (4s+D(2s+1) ° 5s(4s+1)(2s+1)

Cannot become unstable — max phase angle (Go.) is -180 degree while at
low frequency the integrator has -90 degree phase angle.

Bode Disgram
g0 T

IMagnitude (dB)

-100 -

-0

Phase (deq)

120

130 Ll Ll L )
107 107 10" 10' 10°
Freguency (radisec)

Figure S14.15c¢ Bode plot of Go. (K¢ = 10)

B s+1 K 2s+1 (s+DK,
¢ (4s+D(@2s+1) ° s s(4s+1)

G, =GG

Cannot become unstable — lead lag unit has phase lag larger than -90,
integrator contributes -90 degree; the total phase angel is larger than -180.
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(d)

Figure S14.15d Bode plot of Goy. (K¢ = 10)

1-s K = (1-9)K,

GOL = GGc = c
(4s+1)(2s+1) (4s+D)(2s+1)

Can become unstable — max phase angle (GoL) is -270 degree.

(€)

Figure S14.15e Bode plot of Go.. (K¢ = 10)
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14.16

Magnitude (abs)

Phase (deg)

2
10

1
10

0
10

-1
10

-2
10
O . ey . e

-90 -
-135 -
-180 1~
-225 |-

-270 £ I I r I

-S

Gy =GG, =K,
(4s+1)

Can become unstable due to time delay at high frequency.

By using MATLAB,

Bode Diagram

TE T T T L T

L] LR LKL LKL i

- - - P - c - r rF

= Parallel
=== Series with filter

-2 -1 0
10 10 10
Frequency (rad/sec)

Figure S14.16 Bode plot for Exercise 13.8 Transfer Function multiplied by

PID Controller Transfer Function. Two cases: a)Parallel b) Series with Deriv.

Filter (e=0.2).
Amplitude ratios:

Ideal PID controller: AR=0.246 at » =0.80
Series PID controller;: AR=0.294 at v =0.74

There is 19.5% difference in the AR between the two controllers.
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14.17

a) Method discussed in Section 6.3:

12e—0.3s

él(s) =
(Bs+1)(2.2s+1)

Method discussed in Section 7.2.1:

Step response of G(s)

v ///_,
/

10

Value
S [}
—

X: 4.034 > .
Y:24 Inflection
point
2 /]

0
Of 10 20 30 40 50 60 70 80 90 100

Time

Figure S14.17a Step response of G(s)
Based on Figure S14.17, we can obtain the time stamps corresponding to

20% and 60% response: t,, = 4.034; ts, = 10.09; tzo/t60 = 0.4. Based

on Figure 7.7, we have téT" = 2.0; { = 1.15, so we have t = 5.045.Using

the slope of the inflection point we can estimate the time delay to be 0.8.
So we have:

R 129—0.85
Gz (S) =

25.45s* +11.60s +1

b) Based on Figure S14.17a, we can obtain 6 = 0.8; Tt = 15 — 0.8 = 14.2

Comparison of three estimated models and the exact model in the
frequency domain using Bode plots:
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Bode Diagram
50 = tiug o T T T s

o)
)

-100

Magnitude (dB)

» o ]
Gy(s)

-200 r r rrreeef r rrrrrerf r r rrrreerf r r rrreerf
X 10

-1.152

-2.304

Phase (deg)

-3.456

S4608E- r r crreerf r rorrreeeef r rorrreecf r rorrreeef P rrrreeeef P ororrrchef

-3 -2 -1 0 1 2 3

10 10 10 10 10 10 10
Frequency (rad/s)

Figure S14.17b Bode plots for the exact and approximate models.

14.18

The original transfer function is

_10(2s+1)e*
(205 +1)(4s +1)(s +1)

G(s)

The approximate transfer function obtained using Section 6.3 is:

. 10(2s+1)e™
G (s)= (225 +1)
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Bode Diagram

1
10

——
-~
-
i o o o o o B

0
10

10™
— G(s)

== G(9)

Magnitude (abs)

-2
10

K EL L T R A E T R B AT

-360
-720
-1080 —
-1440
-1800 —
-2160 —
-2520
'2880" r r r r rrrekf r r r r rrrekf
10° 10" 10° 10"
Frequency (rad/sec)

Figure S14.18 Bode plots for the exact and approximate models.

Phase (deg)

As seen in Fig.S14.18, the approximation is good at low frequencies, but
not that good at higher frequencies.

14.19

(a)

-1.5s -0.3s -0.2s -2s
G GpGVG 2e 0.5e 3e 3e

" (60s+1)(55+1) 3s+1 25+1  (60s+1)(5s+1)(3s+1)(25+1)

o occurs where ¢ = -180:
o, =0.152 AR(w,) =0.227

KCU = 1
AR(e,)

=441

14-17



Bode Diagram

-

45}
(=]

System: G
Frequency (radizec). 0152
af Magnitude (dBY): -13
o ]
=
k=
El S0 =
C
[=7]
[
= qm .
50 Ll Ll Ll Ll L
i} _.JJJ_.________‘.H ———rrr ———
.
_360 System: G T
Frequency (radizec) 0157
a0 - Phase (deg) -163 N

L
[=]
{5}
(=1

Phasze (deg)

1440 - \

1800 & Ll Ll Ll Lol L
107 107 107 107" 10° 10

Frequency (rad/sec)

Figure S14.19a Bode plot of to find .

Simulation results with different Kc are shown in Fig. S14.19b. Kc > Kcu, the
system becomes unstable as expected.

8 ' '
— K =6

ol K =44
— K =2

0 10 20 30 40 50 B0 70 80 90 100
Tirme

Figure S14.19b Step response of closed loop system with different K.

(b)
Use Skogestad’s half rule
7=60+0.5x5=625

0=25+3+2+2=95

The approximated FOPTD model:
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G _ 3e—9.5s
62.55+1

= 0916 jo _
Using Table 12.3, K. =0.586(9.5/62.5) /3=1.10 ;

o 62.5 ~
' _0.165(9.5/62.5)+1.03
Then,

62.19

1
G, =1.10(L+—>—
’ U+ 62 195), GoL = GG,

o¢ occurs where ¢ = -180:
o, =0.153 AR(@,) =0.249

K, = = 4.02
AR(@,)
Bode Diagram
10 T T ™ —‘
—_ or System: G
% Fregquency (radfzec) 0179
iy Magnitude (dB): -11.5
g 0+
=
c
o
L]
= ot J
-30
1}
-180 | 4
b System: G
E’ _360 - Frequency (radizec) 0177
[ Phase (deg): -181
&
-540 4
TA0 R L L ||||||Iﬂ L L M R A | L L M R
107 107" 10" 10"

Freguency (radizec)

Figure S14.19c Bode plot of FOPTD model.

14.20

Using the Bode plot, at a phase angle of -180< we require that K K, K K <1

G,(s)=e® G, =05 G, =1.0

m
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The gain of G, = 1.0 for all w.
At the critical frequency (), a sine wave is formed with period

P —10mins= 22 s0 , =219 _(g28r20
1) 10 min min

@ The critical gain is easily found from
KKV KK =1at o=aw,
K, (05®@)=10r K, =20

(b) The phase angle of GG =G_, = phase angle of e *, or ® = - @ (rad)
(Eq. 14-33)

when @ =-180°=-n=- & 0

Because w, :i—”ﬂ then 9:%:5min.

0 min
14.21

a) Using Eqgs. 14-56 and 14-57

1 5 1
AR =| K |=——+1 1.0
[ 2507 j[x/lOOm2+1J[\/m2+lJ( )

¢ =tan™(-1/50) + 0 + (-20 — tan(10w)) + (- tan™())
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b)

d)

4

AR/K

Phase (deg)

Bode Diagram

2
10
1
10
0
10

10

LR O L L L R KL

-2
10

-100

-150

-200 —

-250

-300 [~

rrrF P r - rrrrcf P r o rorreck

-350 %
10

-1 0 1
10 10 10

Frequency (rad/sec)

Figure S14.21a Bode plot

Set ¢ = 180° and solve for » to obtain o, = 0.4695

Then AR, | . =1=Ke(1.025)

Therefore, K, = 1/1.025 = 0.976

System is stable for K; < 0.976

For K= 0.2, set ARo. = 1 and solve for o to obtain oy = 0.1404

Then @q = (P|m=m

-133.6°

From Eq. 14-61, PM = 180° + @4 = 46.4°

From Eq. 14-60

GM=1.7=

L
A

-
AR o |wzmc

14-21
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From part b), AR 0L|w=m =1.025 K,

Therefore 1.025K.=1/1.7 or K:=0.574

Bode Diagram

2
10 5 TR TTTE 3
F
10 E E
x° of
T 10 E E
< N
10 é J
10'2; 1 r r reeeek el r rrereeE e r e ™Nrrf
-150 R R T T roreeeE T o
-180 -
>
S -200~ -
(o]
8 01 ;
o
-300 —~ -
350 r r rorrrreck el v v rrreck r r rororreck c
-2 -1 0 1 2
10 10 10 10 10
Frequency (rad/sec)
Figure S14.21b Solution for part b) using Bode plot
) Bode Diagram
10 5 T —TTE E
F
10 E 4
x’ of
z 0= :
< £
10 é 4
10'2i r r r rrrrrf r r r rrrrrf r r v r Norrf
-150 = b
-180 — N
=)
£ -200- 1
b
8 250 A
o
-300 [~ N
-350 r r rrrrecf F r r rerreE Fr r e cereck F r rrrreec
2 -1 0 1 2
10 10 10 10 10

Frequency (rad/sec)

Figure S14.21c Solution for part c) using Bode plot

14.22

From modifying the solution to the two tanks in Section 6.4, which have a
slightly different configurations,
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R1
(ARAR,)s* + (AR, + AR + AR, )s +1

Gp(s) =

For R1=0.5,R, =2, A1 =10, A, =0.8

0.5
Gy(s) = ——M— 1
o(o) 8s?+7s+1 @
ForR,=0.5 G(s):L 2
2T P 252 +5.85+1
For Ry=2
£LGp= tan'l[ _70302:| , |G| = 0.5
1-8w, JA-80.2) + (To,)’

K and o are obtained using Eqgs. 14-7 and 14-8:

-180°=0+0 +tan™ 7"°°2 —tan™(0.50.)
1-8o,

Solving, o =1.369 rad/min

1= (K., )(25) 2 Lo
JA-80.%)? +(To,)? )| {(0.50,)% +1

Substituting o = 1.369 rad/min, K., =10.96, oKy =15.0

For R,=0.5

Somr] 2380 | gy- 0.5
P 2 P 242 2
1-20, Ja-20.2)" +(5.80,)

ForG,=K,=25 =0, |G|=25

FOrGn= —2  on=-tan’(050) , [Gu|=

0.5s+1 J(050,)% +1
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b)

—-5.8m,

2

-180°=0+0+ tan'{ } ~ tan™(0.50)

1-2m,
Solving, o =2.51 rad/min

Substituting . = 2.51 rad/min, K¢, =15.93, oK, =40.0

From part a), for R,=2,

oc = 1.369 rad/min, K¢, =10.96

P, = 2n =4.59 min

®¢

Using Table 12.4, the Ziegler-Nichols PI settings are
Kc = 045Ky = 4932 |, 1=Py/1.2=3.825min
Using Egs. 13.63 and 13-62 ,

o= -tan’(-1/3.825w)

2
IGd| = 4.932 ( 1 j+1

3.825m

Then, from Eq. 14-56

-180° = tan'{s 8;;0 } +0 +tan'{ _7m°2}—tan'1(0.5wc)

¢ 1-8o,

Solving, . =1.086 rad/min
Using Eq. 14-57

Ac = AROL|m=u)C =

1Y 05 15
=| 4.932 125
\/(38250%} " ( ){\/(18(1)(:2)2 + (70)[:)2 ] (\/(OSO)C)Z +1

=0.7362

14-24
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Therefore, gain margin GM =1/A; = 1.358

Solving Eq.(14-16) for ey

ARoLlo=oc =1 at g =0.925

Substituting into Eq. 14-57 gives ¢g=¢|y=og = —172.7°

Therefore, phase margin PM = 180+ ¢4 = 7.3°

14.23

a) K=2, t=1,6=02, 1=0.3
Using Eq. 12-11, the PI settings are

1 =

= — =1 71=1=1min,
Ko+,

Using Eq. 14-58 ,

-180° = tan'{_—lj —0.20 — tan"(wc) =-90° — 0.2a;
(O]

c

or W = ﬂ = 7.85 rad/min
0.2

Using Eq. 14-57,

A :AROLL,J:(D - 12 +1{ 2 ]=£=0.255

2
1/030 +1 O,

From Eq. 14-60, GM = 1/A. = 3.93

b) Using Eq. 14-61,
@y = PM — 180° = — 140 ° = tan™(-1/0.5cq) — 0.2, — tan™(ey)

Solving, ®g = 3.04 rad/min

14-25



2
S N

2
'50)9 o, +1

Substituting for mg gives K¢ = 1.34. Then from Eq. 14-8

~180° = tan'l[ J ~0.20 — tan™ (o¢)

0.5m,

Solving, o:=7.19 rad/min
From Eq. 14-56,

2
A =AR.| :1.34[ ! j+1 2 |_0383
o 0.5m o2 +1

¢ c

From Eq. 14-60, GM = 1/A. = 2.61

By using Simulink-MATLAB, these two control systems are compared for
a unit step change in the set point.

14 T T T T T T T T T
— parta)
=== part b)

1.2

0.8

Output

0.6

0.4

Eool
02 !

0

r r i i r r i i r
0 0.5 1 15 2 25 3 3.5 4 4.5 5

time

Figure S14.23 Close-loop response for a unit step change in set point.

The controller designed in part a) (Direct Synthesis) provides better
performance giving a first-order response. Part b) controller yields a large
overshoot.
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14.24

a)

AR/K

Phase (deg)

b)

Using Egs. 14-56 and 14-57

. Yo [ \/4w2+1[ 2 J{ 0.4 J(lo)
oy, © J0.010% +1 \ V0.250% +1 | an/2502 +1

o= tan*(20) — tan(0.10) — tan™(0.50) — (1/2) — tan*(5w)

Bode Diagram

2
10 &

0
10

-2
10

TTE

rrrrcE

-4
10 *

-90

-135|~

-180

-225 1~

-270¢

1

rrf

0 1
10 10
Frequency (rad/sec)

Figure S14.24a Bode plot

-2 -1
0 10
Using Eq.14-61
¢y = PM —180° = 30°- 180° = -150°

From the plot of ¢ vs. o, ¢g = -150° at g = 1.72 rad/min
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AR
From the plot of K—OL VS , oL =0.144
c ¢ lo=o,
. 1
Since ARy | =1, K¢=——=6094
=% 0.144
From the plot of o vs. o, ¢ =-180° at w. = 4.05 rad/min
AR AR
From the plot of K—OL vso, —2£ =0.0326
Ac= AR, |  =0.326
From Eq. 14-60, GM = 1/A; = 3.07
5 Bode Diagram
10 T T E EEITE T T T T rrrLE T T F E EEELE
10° |- 8
10"+ A
lO- E E r E
-90 T TE 7
-135— -
% -180 A
& 225~ A
270 k= I r r rrrrck r _r r rrrrck r r rrreck .
10° 10" 10° 10"

Frequency (rad/sec)

Figure S14.24b Solution for part b) using Bode plot
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14.25

a)

Bode Diagram

2
10

c

TE Tt oo

AR/K

-4
10

-90

-135—

-180

Phase (deg)

-225

-270 &

ek f r e orcrrcE

ek

-2
10

-1 0
10 10
Frequency (rad/sec)

Figure S14.24c¢ Solution for part ¢) using Bode plot

Schematic diagram:

Hot fluid

Cold fluid

_____®__

y

10

1

>

Mixing Point

14-29
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b)

Block diagram:

Mixing Transfer
Controller Valve Process line
Tq T
>+ > Gc > Gv > GP > GTL g

G\GpGm = K = 6 ma/ma
Gr=¢®

GoL = G\GpGGr = 6™

If GoL = 6
| GoL(jo) =6
Z GoL (jo) =-8w [rad]

Find wc: The critical frequency corresponds to an open-loop phase angle
of —180° phase angle = — = radians

8w, =-t or =mn/8radls

Find Py Py= X =% _16s
w, /8
|G, (jo,)| 6

[ Note that for this unusual process, the process AR is independent of frequency]
Ziegler-Nichols % decay ratio settings:
PI controller:

Ke = 0.45 Ky = (0.45)(0.167) = 0.075
1 =Py/1.2=165/1.2=1333s

PID controller:

Kc = 0.6 Koy = (0.6)(0.167) = 0.100
1 =PJ/2=16/2=85
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1p=P/8=16/8=25s

1.4 : : : 0

T

1.2

———————
—-_—
——
____
-
-
-
-
-
-
-
-
-

0.8

T

—— PID control
----- PI control i

0.6

T

T

0.4

0.2

T

O r [ [ [
0 30 60 90 120 150

t
Figure S14.25 Set-point responses for Pl and PID control.

Note: The MATLAB version of PID control uses the following controller
settings: ki=K¢/7 and kd= K zp.

d) Derivative control action improves the closed-loop response by reducing the

settling time, at the expense of a more oscillatory response.
14.26

Kce and o are obtained using Eqgs. 14-56 and 14-57. Including the filter Gg into
these equations gives

-180° = 0 + [-0.2e¢ — tan™(w¢) ] +[-tan ™ (troc)]

Solving,
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o: = 8.443 for =0
o = 5.985 for ==0.1

Then, from Eq. 14-57,

) 2 1
- (Kcu{\/wcz +1}[\/1F2mcz +1J

Solving for K¢, gives,

Ko =4.251 for =0

Ko = 3.536 for ==0.1
Therefore,

(,OcKcu = 35.9 fOf TE = 0

(,Oc Kcu: 21.2 fOf TF = 0.1

Since Ky is lower for tg = 0.1, filtering the measurement results in
worse control performance.

14.27

2) G, (s) 0.047 112 5.264

T 0083+l T 0.083s+1

2

G (s)=
P (0.432s +1)(0.017s +1)

0.12

Gp(s) = —
(0.024s +1)
Using Eq. 14-61

-180°= 0 — tan™(0.083w¢) — tan™(0.432w) — tan™(0.017 )
— tan™(0.024 )

Solving , o, = 18.19 rad/min

Using Eq. 14-60
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1 (k)| 5624 . 2

J(0.0830,)2 +1 | | 1/(0.4320,)? +1,/(0.0170,)? +1
0.12

' J(0.0240_)? +1

Substituting ©.=18.19 , K, =12.97

Pu=21/ow: = 0.345 min
Using Table 12.4, the Ziegler-Nichols PI settings are

¢c=045K, =584 , 1=P,/1.2=0.288 min

b) Using Eqgs.14-39 and 14-40

9.= Z Ge= tan™(-1/0.288w)= -(n/2) + tan™(0.288w)

1 2
G| = 5.84 +1
0.2880

Then, from Eq. 14-57,

-1 = — (n/2) + tan™(0.288c) — tan™(0.083 ) — tan™(0.432w)

— tan™(0.017 ) — tan™(0.024 )

Solving, oc= 15.11 rad/min.

Using Eq. 14-56

2
A =AR,| = 5.84\/( L j +11- 5264
- 0.2880, J(0.0830,)% +1

. 2 _ 0.12
J(0.4320,)% +1,/(0.0170,)% +1 | | {/(0.0240,)? +1

=0.651

14-33



Using Eq. 14-60, GM =1/A, =1.54

Solving Eq. 14-56 for oy gives

AR, | =1 at wy=11.78 rad/min
Substituting into Eq. 14-57 gives

0g= @ . =—(n/2) +tan™(0.288cg) — tan(0.083w,) — tan™(0.432wy)

—tan™(0.017wg) — tan™(0.0240,) = -166.8°
Using Eq. 14-61

PM =180° + ¢4 =13.2 °

14.28

a) From Exercise 14.28,

_ 5.264
0.083s+1

G, (s) = 2
P (0.432s +1)(0.017s +1)

012
(0.024s +1)

The Pl controlleris  G_(s) = 5(1+ 1
0.3s
Hence the closed-loop transfer function is

G, (s)

G, (s)

Go. =G.G,G,G,,
Rearranging,

~ 6.317s +21.06
1.46x10°s° +0.00168s* +0.05738s% +0.5565% +

oL

14-34



b)

Imaginary Axis

Imaginary Axis

By using MATLAB, the Nyquist diagram for this open-loop system is

Nyquist Diagram

w
o
(6]
N

-1.5 -1 -0.5 0
Real Axis

Figure S14.28a The Nyquist diagram for the open-loop system.
1

Gain margin=GM = —
AR,

where AR is the value of the open-loop amplitude ratio at the critical
frequency w.. By using the Nyquist plot

Nyquist Diagram
l T T T T T T 5

0.5~ -

-0.5~ -

15| -|

25+ -

-3.5~ -

-4 r r r r r
-3 -2.5 -2 -1.5 -1 -0.5 0
Real Axis

Figure S14.28b Graphical solution for part b)
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Therefore the gain marginis GM =1/0.5=2
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Chapter 15 °

15.1
For Ra=d/u
oR d
K =—2=——
P au u?
which can vary more than K in Eq. 15-2, because the new K, depends on both d
and u.
15.2
By definition, the ratio station sets
Um = Umo + Kr (dm - dmO)
u, —u K,u? K ?
Thus Kg =—"——n0 = 2 Z_Z[E) (1)
d,—-d, K.d K, \d
For constant gain Kg, the values of u and d in Eq. 1 are the desired steady-state
values so that u/d = Rg, the desired ratio. Moreover, the transmitter gains are
(15-3)mA (15-3)mA
K, = 7 , K, = 7
d u
Substituting for K1, K2 and u/d into (1) gives,
s.2 s, Y
Kg = Sd2 R, =(Rd i}
[Type here] 15-1

[Type here]



153

(@) Block diagram of the feedforward control system

Disturbance
Sensor/Transmitter Q

Gf — Gt

FF Controller

Effect of QF

Gd c
onC.

Q
——» o [ Gp —»@—bccoz
Per

Effect of QA
on CC

0,

0,
(b) Feedforward design based on a steady-state analysis

The starting point in feedforward controller design is Eq. 15-21. For a design based
on a steady-state analysis, the transfer functions in (15-21) are replaced by their
corresponding steady-state gains:

Kd
KK, K O

voop

GF (S) ==

From the given information,

K, =0.08—1A
L/min

K, =4gal/mln
mA
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Next, calculate Ky and Kq from the given data. Linear regression gives:

K =-—21-PPM
P gal/min
K, =0.235 PP
L/min

Substitute these gains into (1) to get:

a)

b)

0.235 B
G (5)=— min

(0.08 mA j(4gallmin) _pq PPM
L/min mA gal/min

G, (s)=0.35

(TBA)

Using steady-state gains
Gp=1l, Gg=2, Gv=Gm=Gt=1
From Eq.15-21

__Gd__z_
T GGG, OOO)

Gt

Using Eq. 15-21

-2
=G, (s+1)(4s+1) -2
Gr= - 1\ 4s+1
G,GG, O (1)(J S+
s+1
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C) Using Eq. 12-19

where G. =1, G =

For tc=3, and r=1, Eq. 12-21 gives,

f= 1
3s+1

From Eq. 12-20,

* g 1 S+l
G =G *f =(s+1 =
¢ B ( )(35+1) 3s+1

From Eq. 12-16,

s+1
Gc* 3s+1 s+1
GC= *~= =
1-GG , 1 = 3s
3s+1

d) For feedforward control only, G¢ = 0 for a unit step change in disturbance,
D(s) = 1/s

Substituting into Eq. 15-20 gives
1
Y(S) = (Gd+GthGva)g

For the controller of part (a)

_ 2 1 \]1
0= |y O020( 5

Y(s) = -8 _8/3 32/3_8/3 8/3
(s+D(4s+1) | s+1 4s+1 s+1 s+1/4

Taking inverse Laplace transforms,

y(t) = g (et e

15-4



For the controller of part (b)

Y(s){(s+1)(4s+l) ()(45 J()(“lﬂ -

or yt)=10
The step responses are shown in Fig. S15.5 (left panel).

Using Eq. 15-20

For the controller of parts (a) and (c),
2 1
(siD@s+p TP (1) 1
S

Y(s) =
[Sﬂm( j(l)

—24s 36 N 32 N 4
(s+D)(4s+1)(Bs+1) 3s+1 4s+1 s+1
-12 8 4
= + +
s+1/3 s+1/4 s+1

or Y(s) =

Thus,
y(t)=—12e" +8e7"* +4e™

and for controllers of parts (b) and (c)

2 1
(s+1)(4s+1) ()(4s+1)()(s+1j 1,
S

Y(s) =
[“1)(1)( j()

Thus, y()=0

The closed-loop responses are shown in Fig. S15.5 (right panel).
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D _____
Y 05
’ FFC(a) 1 FFC(a)+FBC
) = = =FFC(b) ) = = =FFC(b)}+FBC
-1.5 ' ' -1.5
0 10 20 30 0 10 20 30
0 | 0
1 FFCia) % FFC{a)+FBC
1 = = =FFC(b) 1| = = =FFC(b}+FBC
u T u
b
*
- b
-2 —
0 10 20 30
t t

Figure S15.5. Closed-loop responses for feedforward-only control (FFC, left
panel) and feedforward-feedback control (FFC+FBC, right panel).

15.6

a) The steady-state energy balance for both tanks takes the form
O0=wi1CTi+w2CTo—wCTs+Q

where:
Q is the power input of the heater.

C is the specific heat of the fluid.

Solving for Q and replacing unmeasured temperatures and flow rates by
their nominal values,

Q=C (V_VlT1 +V_V2-F2 —W-|_-4) Q)
Neglecting heater and transmitter dynamics,

Q=Knp 2
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Tim = T1m® + K3(T1-T19) (3

Wi = Wm® + Kuw(w-w°) (4)

Substituting into (1) for Q,T1, and w from (2),(3), and (4), gives

P = S W (T, (T =T )+ W, T, =Ty (0 + (W, —w, )]
K, K+ K.
b) Dynamic compensation is desirable because the process transfer function

Gp= T4(s)/P(s) is different from each of the disturbance transfer functions
Ga1= T4(s)/T1(s), and Gao= Ta(s)/w(s); especially for Gq1 which has a higher
order.

Q1

Ho
K, 2] e,

b) A steady-state material balance for both tanks gives,
0=01+02+0sa—Gs
Because q, = g, =0, the above equation in deviation variables is:
0=1gq - as @
From the block diagram (which uses deviation variables),
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Qs(s) = Kv Gt Kt Qa(s)
Substituting for Qs(s) into (1) gives

0 = Qu(s) —Kv G#(s) Kt Q1(Ss) or
Thus

Gt = L

K,K,

\

To find Gqand Gp, the mass balance on tank 1 is

dh
Ald_tlqu"'qz _Cl\/h_l

where A1 is the cross-sectional area of tank 1.
Linearizing and setting g, = 0 leads to

dh,’
—1 _ |_—h 1
Ai dt ql 2 Hl 1

Taking Laplace transform,

Hi(s) R where Rlzz i

Q(s) ARs+1 C,
Linearizing q3:C1\/E gives

’ 1 ’

s =Elhl
Thus

Qys) _ 1

Hi(s) R,

Mass balance on tank 2 is

dh
%d—f=q3+q4—q5

)

(3)

Using deviation variables, setting g, = 0, and taking the Laplace

transforms gives:

Az sHa(s) = Qa(s) Qs(s)
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15.8

a)

Ho(s) 1

Qs (s) - As )
and

Ha®) 1 o

Q(s) As °
Substitution from (2), (3), and (4) yields,

G,(5)= He® MO QGO () 1
TR T Q) Hi(9) Qu(s)  AS(ARs+Y)

Using Eq. 15-21
1

o __~Gi __ As(ARs+])
' GGG, KK, (-1/A)

11
K,K, ARs+1

Gt

Feedforward controller design
A dynamic model will be developed based on the following assumptions:

1. Perfect mixing
2. Isothermal operation
3. Constant volume

Component balances:

dc
\Y d_tA = q(CAi - CA) -V (kch - kZCB)
v dditB =—0Cg +V (KC, —K,Cp)

Linearize,

dC’A ! ’ ' !

\ E =a,Cp +3,,C + b1q + dCAi (1)
dc, ! ! !

V d_tB =a,,C) +a,,C; +b,q 2)
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a11__\%_k1’ a12:k2
—k S 3
Ay =Ky, ay, Vv 2 (3)
C_I (_:Ai_CA EB
d:—, = ) b =— 7,
Vv . Y S/

~

c, =C, —C, and C, denotes the nominal steady-state value

Take Laplace transforms and solve, after substituting the first equation for
C,(s) into the second equation. The result is:

C5(s)=G,(s)Q'(s) +G,(s)CLi(s) (4)
where:
_ a21b1 + bz (S - aﬂ)
G,(s)= AGS) )
a21dl
G, (s) = m

A(s)=(s— azz)(s - au) — a8,
c, =C, —C, and C, denotes the nominal steady-state value

Feedforward controller design equation (based on Eq. 5-21):

G, (8)

Gf (S) o KtKva(s)

(6)

Substitute for Gq(s) and Gp(s):

a,,d 1
Gi5)= _Lﬂbﬁbz(s—au)MKtva 0

Rearrange and substitute from (3):

K

Gi(8)= 7s+1
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b)

where:

K — 1 k.qv
KK, )| kV(C,—C,)+0C; +CikV

Reverse or direct acting controller?

From Ch. 11, we know that in order for the closed-loop system to be
stable,

KcKvKpKm > 0

The available information indicates that K, > 0 and Kn > 0, assuming that
q is still the manipulated variable. Thus K¢ should have the same sign as
Kp and we need to determine the sign of K.

From (5) K, can be calculated as:

K, =limG, (s) = b —bay,
0 ailazz - a21a12

Substitute from (3) and simplify to get:

K - 1 K,V (Cy —C,) +C,V 2(G +Vk,)
' Kt Kv qz +V (kl + kz)

(8)

Because both the numerator and denominator terms of (8) are positive,
Kp > 0. Thus K¢ should be positive.
Conclusion: The feedback controller should be reverse acting.

The advantages of using a steady-state controller are that the calculations
are quite simple and a detailed process model is not required. The
disadvantage is that the control system may not perform well during
transient conditions.

To decide whether or not to add dynamic compensation, we would need to
know whether controlled variable cg is affected more rapidly, or more
slowly, by the disturbance variable cai than it is by the manipulated variable,
g. If the response times are quite different, then dynamic compensation
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15.9

could be beneficial. An unsteady-state model (or experimental data) would
be required to resolve this issue. Even then, if tight control of cg is not
essential, it might be decided to use the simpler design method based on the
steady-state analysis.

The block diagram for the feedforward-feedback control system is shown in Fig.

15.12.

(a)
(b)

Not required

Feedforward controllers
From Example 15.5,
G =K, =0.75 psi/mA,
K 250

G() =——=
) r,s+1  0.0833s+1

Since the measurement time delay is now 0.1 min, it follows that:
G,(s) = G, (s) = Ke® = 32"
The process and disturbance transfer functions are:

X'(s) ~ 2.6x10°* X'(s) 065
W, (s) 4.71s+1 X/(s)  471s+1

The ideal dynamic feedforward controller is given by Eq. 15-21:

G = — S (15-21)
K,+GG,G,

Substituting the individual transfer functions into Eq. 15-21 gives,
G, (s) = —0.417(0.0833s+1)e*** (1)
The static (or steady-state) version of the controller is simply a gain, Ks:

Ki =-0.417 )
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Note that G¢(s) in (1) is physically unrealizable. In order to derive a
physically realizable dynamic controller, the unrealizable controller in (1)
is approximated by a lead-lag unit, in analogy with Example 15.5:

0.1833s+1

G,(s) = — 0417 ———>T—
0.01833s +1

)

Equation 3 was derived from (1) by: (i) omitting the time delay term, (ii)
adding the time delay of 0.1 min to the lead time constant, and (iii)
introducing a small time constant of « x 0.1833=0.01833 for « =0.1.

(© Feedback controller
Define G as,
—4
G=G,G,G,Gm= (0.75) — 2> 264107 ) gpg-0n)
P 0.0833s+1 )| 4.71s+1

First, approximate G as a FOPTD model, G using Skogestad’s half-rule
method in Section 6.3:

t=4.71 + 0.5(0.0833) = 4.75 min
6=0.1+0.5(0.0833) =0.14 min
Thus,

0.208e %'
4.755+1

G=
The ITAE controller settings are calculated as:

~0.977 ~0.977
KK, =0.859 o =0.859 014 = K, =134
T 4,752

—0.680 —-0.680
L= 0.874(9] = 0.674(Hj = 7, =0.642 min
T, T 4.752

(d) Combined feedforward-feedback control

This control system consists of the dynamic feedforward controller of part
(b) and the PI controller of part (c).

The closed-loop responses to a +0.2 step change in x1 for the two feedforward controllers
are shown in Fig. S15.9a. The dynamic feedforward controller is superior to the static
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feedforward controller because both the maximum deviation from the set point and the
settling time are smaller. Figure S15.9b shows that the combined feedforward-feedback
control system provides the best control and is superior to the PI controller. A comparison
of Figs. S15.9a and S15.9b shows that the addition of feedback control significantly
reduces the settling time due to the very large value of K. that can be employed because
the time delay is very small. (Note that 6/t = 0.14/4.75 = 0.0029.)

5x10
4r — static FF 7
----- dynamic FF

3 L 4
X 5 i

1 L 4

0 _

A \ l \ \ l

0 5 10 15 20 25 30

Fig. S15.9a. Comparison of static and dynamic feedforward controllers for a step
disturbance of +0.2 in x; at t =2 min.

2 L r r L L r
0 1 2 3 4 5 6 7

t (min)

Fig. S15.9b. Comparison of feedback and feedforward-feedback controllers for a step
disturbance of +0.2 in x¢ at t =2 min.
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15.10

a)  For steady-state conditions,
Gp:Kp, Gd:KL, Gv: Gm: Gt =1

Using Eq. 15-21

G=——2s _ =05 _ o5
GGG, MDA
b)  From Eq. 15-21,
~0.5e7%
Gr = G_GGE; = 6052 1l 025 Egg“ge‘m
v e S+
00
95s +1
c)  Using Table 12.1, a PI controller is obtained from item G,
K=t ® 1 9% 445
K, t.+0 2(30+20)
T.=1=95

d) As shown in Fig.S15.10a, the dynamic controller provides significant
improvement.
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0.08 T T T T T T T T T
—— Controller of part a)
=== Controller of part b
0.06 - !
0.04 1
y()
0.02 ~ b
0 - - - - - - - —————
-0.02 - !
-0.04 r r r r r r r r r
0 50 100 150 200 250 300 350 400 450 500

time

Figure S15.10a. Closed-loop response using feedforward control only.

T T T T T T
— Controller of part a) and c)
-== Controller of part b) and c)

-0.06 r r r r r r r r r
0 50 100 150 200 250 300 350 400 450 500

time

Figure S15.10b. Closed-loop response for the feedforward-feedback control.

f) As shown in Fig. S15.10b, the feedforward-feedback configuration with
the dynamic controller provides the best control.
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15.11

Energy Balance:

pVC S = WC(T, ~T)~U@+q)AT -T)-U,A (T -T,)

Expanding the RHS,
dT
pVCE =wC(T, -T)-UA(T -T,)
_UchT +UchTc _ULAL(T _Ta)

Linearizing the nonlinear term,

q.T =q.T +q.T'+Tq,

1)

)

©)

Substituting (3) into (2), subtracting the steady-state equation, and introducing

deviation variables,

dT’

VC
PV~

=wWC(T/-T')-UAT'-UATq. ~UAG.T'

+UAT.q. -U AT’

Taking the Laplace transform and assuming steady-state at t = 0 gives,

pVCST'(s) = WCT;(s) + UA(T, —T')q.(s)
—(WC+UA+UAg, +U A )T'(s)
Rearranging,

T'(8) =GL(s)Ti(s) + G, (s)qc (s)

where:
K
G, (s)=—¢
d() 7s+1
G, (5) =
S)=
P 1S+1

15-17
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Ke=— (7)

T:pVC
K
K=wC+UA+UAq, +U A

The ideal FF controller design equation is given by,

G, = G, (15-21)

But, G, =K.e™® and G,=Ky (8)

Substituting (7) and (8) gives,

_ WCe+9$
F= = 9)
KKWUA(T, -T)
In order to have a physically realizable controller, ignore the e*% term,
G = C (10)
K. KWUA(T, -T)

15.12

Note: The disturbance transfer function is incorrect in the first printing. It should
be:

C, 282"

FG 4.3s+1

€)) The feedforward controller design equation is (15-21):

—2.82e7*
T R (T Rk s
S gy 2 oS
4.2s+1

G, ~20.1 m*/min
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b)

Using Item G in Table 12.1, a PI controller is obtained from for
G= GyGpGm, Assume that tc=1/2 = 2.1 min.

K 1, +0/2 0.142.1+2)

K 1 +0/2 1 42+2 _108

T, =1+0/2 =4.24+2 = 6.2 min

Tp = W __¢29® =1.35min
21+0 2(42)+4
T,=1=95

As shown in Fig.S15.12a, the FF-FB controller provides the best control
with a small maximum deviation and no offset. The oscillation due to the
feedback controller can be damped by using a larger value of design
parameter, tc.

3 T T T

- 8]
— w \S] 3,
T T T

Oxgen concentration (mo\/ma)

(=)
w
T

0 20 40 60 80 100

t (min)
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098

096

=

[{a}

B
T

————

092

Q
©

0.88

0.86

Oxgen concentration (mol!ma)

0.84

082}

0'80 20 40 60 80 100
f(min)

Figure S15.12a: Controller Comparison for step change in fuel gas purity
from 1.0t0 0.9 att = 0. Top: full scale; Bottom: expanded scale.

15.13

Steady-state balances:

o:q5+ql_q3 (1)

0:q3+q2__4 (2)
0

O:)_(s_s + X — X303 (3)

0=X,0; +X,0, —X,0, 4)

0 =X;05 + X0, —X,0, ®)

Rearrange,
g, = _; (6)
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In order to derive the feedforward control law, let

X, =X X, >X,({t) X, —>x(t) and g, —>0q,(t)

4sp
Thus,
Xa5p0a — X5 (1)ds5 (1)
g, () === 7
2
Substitute numerical values:
(3400)X4sp —Xs (t)qs (t)
t) = 8
q, () 0.990 (8)
or
d, (t) = 3434x,,, —1.01x, ()0 (t) )

Note: If the transmitter and control valve gains are available, then an expression
relating the feedforward controller output signal, p(t), to the measurements , Xsm(t)
and gsm(t), can be developed.

Dynamic compensation: It will be required because of the extra dynamic lag
introduced by the tank on the left hand side. The stream 5 disturbance affects xs
while gz does not.

15.14

The three xp control strategies are compared in Figs. S15.14a-b for the step
disturbance in feed composition. The FF-FB controller is slightly superior because
it minimizes the maximum deviation from set point. Note that the PCM feedforward
controller design ignores the two time delays, which are quite different. Thus, the
feedforward controller overcorrects and is not effective as it could be.
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0.89 ”'"""""."'.'_;;.;-'-'-'—%-'-'—'—'i_"-'_'-"'*
-
.”, N .

0881 - S : FB .

i : | =———— no control

x r : | ————set-point
D o887 ---- ',' ,,,,,, A i - P a

i

o 50 100 150 200
t (rmin)

Fig. S15.14a. Comparison of feedback control and no control for a step change in feed
composition from 0.5t0 0.55 att = 0.

0.85 B
X FF
08astf - i FF-FB
—-———set-point
0-847 - - [ ,i,, P R ,,:,, oo ,,,,:,,,, R PR
(0] 100 150 200
t(min)

Fig. S15.14b. Comparison of feedforward and feedforward-feedback control for a step
change in feed composition from 0.5to 0.55 att = 0.
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Chapter 16

The difference between systems A and B lies in the dynamic lag in the
measurement elements G,y (primary loop) and Gnz(secondary loop). With a faster
measurement device in A, better control action is achieved. In addition, for a
cascade control system to function properly, the response of the secondary control
loop should be faster than the primary loop. Hence System A should be faster and
yield better closed-loop performance than B.

Because Gn; in system B has an appreciable lag, cascade control has the potential
to improve the overall closed-loop performance more than for system A. Little
improvement in system A can be achieved by cascade control versus conventional
feedback.

Comparisons are shown in Figs. S16.1a/b. Pl controllers are used in the outer
loop. The PI controllers for both System A and System B are designed based on
Table 12.1 (z,=3 ). P controllers are used in the inner loops. Because of

different dynamics the proportional controller gain of System B is about one-
fourth as large as the controller gain of System A

System A Kp=1 K01:0.5 71=15
System B: K =0.25 Ke=2.5 7=15
|

06
i\
[
i

i
04|
i

Output

i
i

03t
i

r Al r r f
0 10 20 30 40 50 60 70 80 90 100

time

Figure S16.1a System A. Comparison of D, responses (D,=1/s) for cascade control and
conventional PI control.

Solution Manual for Process Dynamics and Control, 4th edition
Copyright © 2016 by Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp,
and Francis J. Doyle Il
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In comparing the two figures, it appears that the standard feedback results are
essentially the same, but the cascade response for system A is much faster and has
much less absolute error than for the cascade control of B

0.7 T

T T T T
—— Cascade
-== Standard feedback

0.6

Output

Figure S16.1b System B .Comparison of D, responses (D,=1/s) for cascade control and
conventional PI control.

System A

Cascade control system

n n - =D
FID Gontrollerz Scoped
1
— &
s+
Transfer Fend
Conventional P1 Stepiz
N . 2 ]
1 3 10s+1
Stepll FID Contreller3 Transfer Fenid Transfer Fon10 Seoped
1
-+
Gl

Transfer Fon12

Figure S16.1c Block diagram for System A
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16.2

a)

System B

Cascade control system

=

05+

PID: Contraller? Transfer Fons
. ot
s+
Transfer Feng
Conventional PI
Step13
z

1031

StepT FID Contraller1d Transfer Fen15 Transfer Fen11

Szt
Transfer Fen2

Soope?

Figure S16.1d Block diagram for System B

The transfer function between Y; and D1 is

Y, Gy
D
ST BNC ST e
14G,,GG,, ) P

and that between Y; and D5 is

Yl Gde2

D2 B 1+ GCZGmaZ + GcZGma1GCIGp

] 5 1
using G =— | G, =1 G —
g > s+1 a2 43541
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Yl

Yl

b)

G- % G =005, G,,=02
P (2s+1)(4s+1)

For G.1 = K¢1 and G, = K¢, we obtain

8s® + (14 +8K ,)s* + (7 +6K_,)s+ K , +1

D, T 245+ (50+24K,)s’ +[10+ K, (9+3K_,)Is +(35+ 26K ,)s* + K, 1+ K ) +1

4(s+1)

D, 85T+ (14+8K_,)s* +(7+6K_,)s+ K ,(1+K,)+1

The figures below show the step load responses for K.;=43.3 and for
K:2=25. Note that both responses are stable. You should recall that the
critical gain for K,=5 is K¢;=43.3. Increasing K¢, stabilizes the controller,
as is predicted.

‘‘‘‘‘ i

Figure S16.2a Responses for unit load change in D, (left) and D, (right)

The characteristic equation for this system is
1+Gc2Gma2+GCZGmaIGchp =0 (1)

Let G¢1=K, and G=K,. Then, substituting all the transfer functions into
(1), we obtain

8s® +(14+8K_,)s” +(7+6K_,)s+K_,(1+K_ ) +1=0 2)

Now we can use the direct substitution:
[-80° +(7T+6K,,) 0] j—(14+8K ;)" + K, (1+K,)+1=0  (3)

ji—8w’+(7+6K,)w=0

—(14+8K,, )0 + K, (1+ K, )+1=0
Hence, for normal (positive) values of K¢; and Ky,
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_ 24K,,* +66K_, +45

K
clu 4K02

The results are shown in the table and figure below. Note the nearly linear
variation of K¢ ultimate with K. This is because the right hand side is
very nearly 6 K+16.5. For larger values of K, the stability margin on
Kc11s higher. There don’t appear to be any nonlinear effects of Ke, on K,

especially at high K.

There is no theoretical upper limit for K,, except that large values may
cause the valve to saturate for small set-point or load changes.

KCZ KClrLI
1 33.75
2 34.13
3 38.25
4 43.31
5 48.75 160.00
6 54.38 140.00 - L
7 60.11 120.00 4
s En g
. £
10 77.63 £ 80007
11 83.52 g 000
12 89.44 40.00 -
13 95.37 20.00 1
14 101.30 0.00 ; ; .
15 107.25 0 5 10 15 20
16 113.20 K.,
17 119.16
18 125.13
19 131.09
20 137.06

Figure S16.2b Effect of K., on the critical gain of K4
With integral action in the inner loop,

Gcl = Kcl

G, = 5[1 + ij
5s

Substitution of all the transfer functions into the characteristic equation
yields

1+ 5{1+ iji(O.Z) + 5(1+ iji(O.OS)KCl
5s)s+1 55 )s+1

S S,
(4s+1)(2s+1)

Rearrangement gives
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8s* +54s° +45s” + (12+5K,)s+ K, +1=0

Now we can use the direct substitution:

[-540° +(12+5K, )0 | j+80" —450° + K, +1=0
ji-540° +(12+5K,)w=0
80" —450° + K +1=0

Solve the equations above, and we obtain:
Ko, =442

The ultimate K, is 44.2, which is close to the result as for proportional
only control of the secondary loop.

With integral action in the outer loop only,

1
G, = Kcl(lJr gj

G,, =5

C

Substituting the transfer functions into the characteristic equation.

145> (0.2) +5i(o.o5)|<01(1+ ij; 0
s+1 s+1 55 ) (4s+1)(2s+1)

. 8s* +54s° +37s” +(6+5K)s+ K, =0

Now we can use the direct substitution:
[-540° +(6+5K, )0 | j +80* ~370" + K, =0
j:—-540° +(6+5K )@ =0
8w' -37w’ +K, =0

Solve the equations above, and we obtain:
K., =34.66

Hence, K<34.66 is the limiting constraint. Note that due to integral
action in the primary loop, the ultimate controller gain is reduced.

Calculation of offset:

For G, =Ky £1+ ij , G, =K, , (t,=x)
’EllS
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o=
Y1+ K GG, + K,,G,G,, K, (1+1JGp

v —ml
TS

Y Gd1(1+ KCZG\/GmZ)

Yl
L (s=0)=0
o =0

1

Since Gg; contains integral action, a step-change in D; does not produce an
offset in Y.

A ST
D2

Ty

1+ K_,G,G,, +K,G,G, K, (1+ lSij

Y,
D( )

2

Thus, for the same reason as before, a step-change in D, does not produce
an offset in Y;.

For G, =K, (ie. T,, =) , G, =K, [1+ ! J
T|23

G,(1+K 1+i G,G,,)

Y__ di c2 T|25 v—m2

D

o1+ KCZ[H1 JGVszJFKchVGlecl[“ 1 ij
T2 TS

Yl

—(s=0)=0

2 (5=0)

1

Therefore, when there is no integral action in the outer loop, a primary
disturbance produces an offset.

Thus, there is no offset for a step-change in the secondary disturbance.

GGy,

21+ K, (1+1J GG, +K,GG,, K, (1+1JGp

T,,S T,,S

O |;<
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Yl
—L(s=0)=0
o (5=0)

2

Thus, there is no offset for a step-change in the secondary disturbance.

For the inner controller (Slave controller), IMC tuning rules are used

G *_ 1 (2s+1)(5s+1)(s+1)
¢ G, (1,5 +1)°

Closed-loop responses for different values of 1., are shown below. A t, value of
3 yields a good response.

For the Master controller,

_ (2s+1(5s+1)(s+1) 1

G, *= % where G, 3
(t,S+1) (10s+1)

cl
1

This higher-order transfer function is approximated by first order plus time delay
using a step test:

09r

0.8

07f /

0.6~ /
/

Output
o
(52

0.4

0.3

0.2

01 /

I I I I r
0 10 20 30 40 50 60
time

Figure S16.3a Reaction curve for the higher order transfer function
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—-0.38s

Hence G, = _&
' (15.325+1)

From Table 12.1: (Pl controller, Case G): K, =ﬂ and T, =15.32
1, +0.38

Closed-loop responses are shown for different values of tc;. A 11 value of 7
yields a good response.

30 20 50 60 0 10 20 30 40

ER
8
8
8
8

Figure S16.3b Closed-loop response for 7, Figure S16.3c Closed-loop response for 7z
Hence for the master controller, K. =2.07 and 1, =15.32

16.4

(&) The single control loop configuration is shown as in Figure S16.4a:

D D
P T
— Gda —_— Gdl
T . P W T
P K| L) s G — G —
\ s ) v P

GT

Figure S16.4a Single control loop configuration

Assuming T, =0, the closed-loop transfer function for temperature output is shown as

follows:
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1
K.|1+— |GG
T ( T|Sj P _— Gy, G, D+ G,,

Sp Pin
1+K, {1+ 1]GTGVGp 1+K, (1+ 1J<3T(3Vc-;p 1+K, [1+ 1)GTGVGp
7,S 7,S 7,S

DT

in

The characteristic equation of above equation is:

1+ K, [1+ i)GTGVGp =0

7,S
Or:
155" +23s° +9s” + (K, +1)s+5K =0
Sets= jo :
(—230° +(K, +1)w) j +150" — 90’ +5K, =0
Re: 150" —90° +5K_ =0
Im: —230° + (K, +1) =0
K., =0.08
To have a stable system, we have:
0<K,<0.08
(b). The cascade control loop configuration is shown as in Figure S16.4b:
el i,
Master Slave =
T controller controller l

s . I
> & Gcl E’GCE_) Gv " ” GP@+

.
Ca

G

T

Figure S16.4b Cascade control loop configuration

(c) From (a) we can derive the closed-loop transfer function with the standard Pl
controller for a disturbance in steam pressure:
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T(S) GdZGP

Be, (9) 1.k, (1+1JGTGVGp

7,8
Assuming T, =D, =0, based on Figure S16.4b, we can derive the closed-loop
transfer function with the cascade controller for a disturbance in steam pressure:
T(s) _ Gy, G,
D, (s) 1+G,G,,G;G,G, +G,G,,G,
SetK,, =K, =3K,, =2;7, =5in a Simulink diagram, and we obtain results

shown in Figure S16.4c: the cascade control system improves stability
characteristics by dampening aggressive control responses.

Comparison of controller performance
0035 L L |8 |8 L L L |5 |5

Pl controller
------ Cascade controller ||

0.03

0.025

0.02

0.015

0.01

0.005

_0. 005 r r L L r r r L L
0 20 40 60 80 100 120 140 160 180 200

Figure S16.4c Comparison of closed-loop response with PI controller and cascade
controller
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16.5

a) The T, controller (TC-2) adjusts the set-point, Tisp, of the Ty controller (TC-
1). Its output signal is added to the output of the feedforward controller.

Oom Feedforward

controller

TOW

Figure S16.5a Schematic diagram for the control system

b) This is a cascade control system with a feedforward controller being used
to help control T;. Note that Ty is an intermediate variable rather than a
disturbance variable since it is affected by V;.

C) Block diagram:
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T l le
Oom
i G ol G,
Gd2
Gre
Tasp K Tisp Q
=1 “m2 A Gcl Gc2 Gv > Gpl sz
A
Tlm Tl
Gml
T2m G
m2
UTZ

Figure S16.5b Block diagram for the control system in Exercise 16.5.

16.6

(a)

FF control can be more beneficial in treating D,. D, can be compensated by
feedback loop right after the sensor G, detected. D, needs to go through Gp; first
where significant time delay may exist before being measured and corrected.
Thus, FF control on D, can cancel out the disturbance much faster.

(b)
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‘_Gle

Grr

Yilb Km »@—p GCl
A

|

Ga2

&

Gy

Gp]_

Gm

Fig. S16.6. Block diagram of a feedforward control system.

(©)

Cold oil temperature sensor is required.

Using MATLAB-Simulink, the block diagram for the closed-loop system is

shown below.

16-14
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Sat-point crange

Disturbance change

Clock

¥

Figure S16.7a Block diagram for Smith predictor

where the block {“%/

represents the time-delay term e™®.

The closed-loop response for unit set-point and disturbance changes are

shown below. Consider

a PI controller designed by using Table 12.1(Case

A) with tc = 3 and set G4 = Gp. Note that no offset occurs,

1 T T

0.9

0.8~

0.7

0.6

0.5

0.4

0.3

0.2

0.1

T T L C I

Set-pont change
Disturbance change |

r r r r r r I

O — L
0 5 10

15 20 25 30 35 40 45 50

Figure S16.7b Closed-loop response for setpoint and disturbance changes.
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16.8

The block diagram for the closed-loop system is

Ysp Y

—»i ————» G ——» G

&

Figure S16.8 Block diagram for the closed-loop system

K e™
where G, =K, 1+—T'8795 and G, =—°
1+t,s-¢€ 1+71s
a)
—0s
KK l+r|87e e
Y GG, _ "ll+1,5-€ J1+1s
Y, 1+GG, 0s
5 0 14KK, 1+r,s_es e
1+t,s—€" J1+1s
Since Kc=i and T1=1
KP
e—es
Y 1+t,s-€® e
v —0s = —0s —0s
Y, 1. e® : 1+t,s-e " +e
1+1,5-€"

Hence dead-time is eliminated from characteristic equation:

Y e—es

Y, 1+1s

b) The closed-loop response will not exhibit overshoot, because it is a first
order plus dead-time transfer function.
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16.9

16.10

a) Analyzing the block diagram of the Smith predictor

b)

For a first-order process with time delay, use of a Smith predictor and
proportional control should make the process behave like a first-order
system, i.e., no oscillation. In fact, if the model parameters are accurately
known, the controller gain can be as large as we want, and no oscillations
will occur.

Appelpolscher has verified that the process is linear, however it may not
be truly first-order. If it were second-order (plus time delay), proportional
control would yield oscillations for a well-tuned system. Similarly, if there
are errors in the model parameters used to design the controller even when
the actual process is first-order, oscillations can occur.

Y G.G,e™”

Y, 1+GG,(1-e*)+GGe™

sp

~ G.G,e™
1+G,G, +GGle " -G Gle™®

Note that the last two terms of the denominator can when G;, = G; and
0=0

The characteristic equation is

=1+G,G, +G,GLe * -G,Gle ® =0

The closed-loop responses to step set-point changes are shown below for
the various cases.
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Step3

Base case

F Y

Szt
Transfer Fond

2
= o
Sz+1
Transfer Fen Tranzport

Crelayd

2
e |-
i |
Transport  Transfer Fond Seoped
Crelayz

Figure S16.10a Simulink diagram block; base case

Figure S16.10b Base case

Figure §16.10d K,=1.6

16-18
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y
0.6
y
0 T a5 w0 2 % @ a0 4 0
Figure S16.10c K,=24
: p=2.
»
A
;
s
”
D R e . T R )

Figure S16.10e =6




Jzﬂ/\ﬁ
1

2
5
2o
3

Figure S16.10f 7 =4 Figure S16.10g 6=2.4

Output

|

|
,5
|
|
|

Figure S16.10h 6#=1.6

It is immediately evident that errors in time-delay estimation are the most
serious. This is because the terms in the characteristic equation which
contain dead-time do not cancel, and cause instability at high controller
gains.

When the actual process time constant is smaller than the model time
constant, the closed—loop system may become unstable. In our case, the
error is not large enough to cause instability, but the response is more
oscillatory than for the base (perfect model) case. The same is true if the
actual process gain is larger than that of the model. If the actual process
has a larger time constant, or smaller gain than the model, there is no
significant degradation in closed loop performance (for the magnitude of
the error, = 20% considered here). Note that in all the above simulations,
the model is considered to be ;efzsl and the actual process parameters
S+
have been assumed to vary by + 20% of the model parameter values.

The proportional controller was tuned so as to obtain a gain margin of 2.0.
This resulted in K; = 2.3. The responses for the various cases are shown
below
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6=1
Nyquist plots were prepared for different values of K, t and 6, and

checked to see if the stability criterion was satisfied. The stability regions
when the three parameters are varied one to time are.

Ke<4l (1=5 , 0=2)

T 224 (K=2, 0=2)

0 <01 and18<0<22 (K,=2 , 1=5)
16.11

From Eq. 16-24,

Y G (1+6,6" (1-¢™))

D 1+G.G"

that is,
oS )
D 1 Ke+Kers 2

T,S S
Using the final value theorem for a step change in D:
!im y(t) = IirszY (s)

then
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25 1+7K°+K°T'Sg(l—e‘3s)
limsY (s) = lim s = NS S 1
s—0 T 550 1+ Kc + KCT,S g S

TS S

2gs (T|S+(KC + Kcr,s)g(l—e‘35 )j
s s
=lim

s—0

7,5+ (K, + Kcr,s)i

Multiplying both numerator and denominator by s,

. 2 (r,s2 + (K + Kcr,s)z(l—e‘“))

550 1,8° + (K, +K_1,5)2s

Applying L'Hopital's rule:

66> (1,5° + (K, +K.1,5)2(1-¢ ™))
=lim
550 3t,8° +2(K, + 2K, 1,S)
26 (21,5 +6Ke ™ +2K 1, —2K 16" +6K 156 ) _ o
3t,87 +2(K, +2K 1,5)

+

Therefore
!im y(t) = Iirrole (s) =6
and the PI control will not eliminate offset.

16.12

For a Smith predictor, we have the following system
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Figure S16.12. Smith Predictor diagram block

=£%(—h Gp

¥

G

F
S U o S |

where the process model is Gy(s) = Q(S) e
For this system,

Y | G.G,

Y, 1+G.G,

sp

where G’ is the transfer function for the system in the dotted box.

G/ = G, —
1+G,Q-e ™)

G.G,

Y 1+GCQ(1—e_es)

- G.G

1+ T
1+G,Ql-e ™)

Simplification gives

—06s
Y _GQe P(s)e™
Yo 1+GQ
where P(s) = GQ_
1+G.Q

If P(s) is the desired system performance (after the time delay has elapsed)
under feedback control, then we can solve for G in terms of P(s).

6 - PO
Qs)1-P(s))
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16.13

Referring to Example 4.8, if flow rate g and inlet temperature T; are constant, then

The IMC controller requires that we define

G =e®
G = Q(s) (the invertible part of Gp)
Let the filter for the controller be f(s) = !
T-S+1

Therefore, the controller is

< f(s)
G, =G f(s)=—2
«=6-10) Q(s)

The closed-loop transfer function is

—0s
Y _66,--2 =61
5 1+7.s

+

Note that this is the same closed-loop form as analyzed in part (a), which
led to a Smith Predictor type of controller. Hence, the IMC design also

provides time-delay compensation.

(4-88) is the starting point for the derivation:

(s—ap )T'(s)=anCa(s)+b,T(s) (4-88)

Rearranging gives,

' S—a ' b '
Ca(s)="—22T'(s)-—2T{(s)
ay ay
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Replacing C,(s) by its estimate, é'A(s), provides an inferential estimate of exit

composition from T and T.. However, the first term on the right hand side is not
realizable, consequently, a small time constant 7 is added to the denominator to
provide a lead-lag unit that is physically realable:

é;\(s)=i[ﬂjr(s>—b—2n'(s)

a21 75+1 a21

Thus, inferential control of concentration based on T and T. temperature is
feasible. If q and T; measurements were available, these variables could be
included in the linearized model of Example 4.8. Then, in an analogous manner,
Ca can be inferred from the available measurements: T, T, g and T;.

16.14

One possible solution would be to use a split range valve to handle the 100< p<
200 and higher pressure ranges. Moreover, a high-gain controller with set-point =
200 psi can be used for the vent valve. This valve would not open while the
pressure is less than 200 psi, which is similar to how a selector operates.

Stephanopoulos (Chemical Process Control, Prentice-Hall, 1989) has described
many applications for this so-called split-range control. A typical configuration
consists of 1 controller and 2 final control elements or valves.
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16.15

16.16

VENT

SPLIT RANGE
TR R EE CONTROLLER

INLET %

REACTOR

\ 4

é OUTLET

Figure S16.14. Process instrumentation diagram

The amounts of air and fuel are changed

lags in the set-point response.

in response to the steam pressure.
If the steam pressure is too low, a signal is sent to increase both air and
fuel flowrates, which in turn increases the heat transfer to the steam.
Selectors are used to prevent the possibility of explosions (low air-fuel
ratio). If the air flowrate is too low, the low selector uses that
measurement as the set-point for the fuel flow rate controller. If the fuel
flowrate is too high, its measurement is selected by the high selector as the
set-point for the air flow controller. This also protects against dynamic

|
CONDENSATE

l

COOLING @
WATER > <

Figure S16.16. Control condensate temperature in a reflux drum

16-26




16.17

Supposing a first-order plus dead time process, the closed-loop transfer

function is
[1+13+TDSJ9_65
G.G ek T(I 1)
7,5+
G S S G S) = p
o (8) 116G o (8) . -
P 1+—S+rDs e
1+ KK, >

(t,5+1)

Notice that K¢ and K, always appear together as a product. Hence, if we
want the process to maintain a specified performance (stability, decay
ratio specification, etc.), we should adjust K. such that it changes inversely
with Kp; as a result, the product K¢K, is kept constant. Also note, that since
there is a time delay, we should adjust K. based upon the future estimate
of Kp:

K.K,

K K
K. (t) == F_ -
K,(t+06)

a+————
M (t+0)

where Kp(t +0) is an estimate of K, 8 time units into the future.

16.18

This is an application where self-tuning control would be beneficial. In order to
regulate the exit composition, the manipulated variable (flowrate) must be
adjusted. Therefore, a transfer function model relating flowrate to exit
composition is needed. The model parameters will change as the catalyst
deactivates, so some method of updating the model (e.g., periodic step tests) will
have to be derived. The average temperature can be monitored to determine a
significant change in activation has occurred, thus indicating the need to update
the model.
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16.19

b)

1
GG, 1 G s+l 11
1+G.G, 15+l ¢ ol 1 G, TS
P T.5+1
Substituting for G,
2
Gc(s):imzs +(n+)s+l 1 [(1:1+1:2)+1:l1:28+l}
.S K, KT S

Thus, the PID controller tuning constants are

K _(T1+T2)
© K
pTc
T|:T1+T2
_ Ul
5 =—2
T, +7T,

(See Eq. 12-14 for verification)
Fort;=3 and 1 =5 and t.=1.5, we have

Kc=5.333 1 =80 andtp=1.875

Using this PID controller, the closed-loop response will be first order
when the process model is known accurately. The closed-loop response to
a unit step-change in the set-point when the model is known exactly is
shown above. It is assumed that z. was chosen such that the closed loop
response is reasonable, and the manipulated variable does not violate any
bounds that are imposed. An approximate derivative action is used by

0% \vhen p=0.01
1+PBs

Simulink-MATLAB, namely
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Perfect modef

w1
—+_ FID - 1_ - 1_ - |:|
e | Szt
Step2 FIl Canfraller
(nith Approximale
Cerivative)

Figure S16.19a. Simulink block diagram.

““““

Figure S16.19b. Output (no model error) Figure S16.19¢c. Manipulated variable (no
model error)

vvvvvvvvv

Figure $16.19d. Output (K, = 2) Figure S16.19e. Manipulated variable
Kp=2)
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Figure S16.19f. Output (K, = 0.5) Figure S16.19g. Manipulated variable

(K, =0.5)
Figure S16.19h. Output (7> = 10) Figure S16.19i. Manipulated variable
(n=10)
o
Figure S16.9 j. Output (» = 1) Figure S16.9 k. Manipulated variable
(n=1)

(1)

The closed-loop response when the actual K, is 2.0 is shown above. The
controlled variable reaches its set-point much faster than for the base case
(exact model), but the manipulated variable assumes values that are more
negative (for some period of time) than the base case. This may violate
some bounds.
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@) When K, = 0.5, the response is much slower. In fact, the closed-loop time
constant seems to be about 3.0 instead of 1.5. There do not seem to be any
problems with the manipulated variable.

3) If (12 = 10), the closed-loop response is no longer first-order. The settling
time is much longer than for the base case. The manipulated variable does
not seem to violate any bounds.

4) Both the drawbacks seen above are observed when t, = 1. The settling
time is much longer than for the base case. Also the rapid initial increase
in the controlled variable means that the manipulated variable drops off
sharply, and is in danger of violating a lower bound.

16.20

Based on discussions in Chapter 12, increasing the gain of a controller makes it
more oscillatory, increasing the overshoot (peak error) as well as the decay ratio.
Therefore, if the quarter-decay ratio is a goal for the closed-loop response (e.g.,
Ziegler-Nichols tuning), then the rule proposed by Appelpolscher should be
satisfactory from a qualitative point of view. However, if the controller gain is
increased, the settling time is also decreased, as is the period of oscillation.
Integral action influences the response characteristics as well. In general, a
decrease in T, gives comparable results to an increase in K. So, K can be used to
influence the peak error or decay ratio, while 7, can be used to speed up the
settling time (a decrease in T, decreases the settling time). See Chapter 8 for
typical response for varying K¢ and T;.

16.21

SELECTIVE CONTROL

Selectors are quite often used in forced draft combustion control system to
prevent an imbalance between air flow and fuel flow, which could result in unsafe
operating conditions.

For this case, a flow controller adjusts the air flowrate in the heater. Its set-point is
determined by the High Selector, which chooses the higher of the two input
signals:

.- Signal from the fuel gas flowrate transmitter (when this is too high)
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.- Signal from the outlet temperature control system.

Similarly, if the air flow rate is too low, its measurement is selected by the low
selector as the set-point for the fuel-flow rate.

CASCADE CONTROLLER

The outlet temperature control system can be considered the master controller that
adjusts the set-point of the fuel/air control system (slave controller). If a
disturbance in fuel or air flow rate exists, the slave control system will act very
quickly to hold them at their set-points.

FEED-FORWARD CONTROL

The feedforward control scheme in the heater provides better control of the heater
outlet temperature. The feed flowrate and temperature are measured and sent to
the feedback control system in the outflow. Hence corrective action is taken
before they upset the process. The outputs of the feedforward and feedback
controller are added together and the combined signal is sent to the fuel/air
control system.

16.22

ALTERNATIVE A.

Since the control valves are "air to close"”, each K, is positive (cf. Chapter
9). Consequently, each controller must be reverse acting (K.>0) for the
flow control loop to function properly.

Two alternative control strategies are considered:

Method 1: use a default feed flowrate when P.. > 80%

Let: Pc = output signal from the composition controller (%)
F,, = (internal) set point for the feed flow controller (%)

Control strategy:
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~

If Pec>80% , F,, = F

sp ! low

where IESp,IOW is a specified default flow rate that is lower than the normal

~

value, Fg, -
Method 2: Reduce the feed flow when P > 80%

Control strategy:

~

If Pec<80%, Fo = Fypom — K(Poc—80%)

where K is a tuning parameter (K > 0)

Implementation:

m

80 % nom
PCC

sp

80 %

Note: A check should be made to ensure that 0 < IESp <100%

ALTERNATIVE B.-

A selective control system is proposed:
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Figure S16.22. Proposed selective control system

Both control valves are A-O and transmitters are “direct acting”, so the controller
have to be “reverse acting”.

When the output concentration decreases, the controller output increases. Hence
this signal cannot be sent directly to the feed valve (it would open the valve).
Using a high selector that chooses the higher of these signals can solve the
problem

.- Flow transmitter
.- Output concentration controller

Therefore when the signal from the output controller exceeds 80%, the selector
holds it and sends it to the flow controller, so that feed flow rate is reduced.
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16.23

ALTERNATIVE A.-
Time delay.- Use time delay compensation, e.g., Smith Predictor

Variable waste concentration.- Tank pH changes occurs due to this
unpredictable changes. Process gain changes also (c,f. literature curve for strong
acid-strong base)

Variable waste flow rate.- Use FF control or ratio Qpase t0 Quaste-

Measure Qpase .- This suggests you may want to use cascade control to
compensate for upstream pressure changes, etc

ALTERNATIVE B.-

Several advanced control strategies could provide improved process control. A
selective control system is commonly used to control pH in wastewater treatment
.The proposed system is shown below (pH T = pH sensor; pH C = pH controller)

Figure S16.23. Proposed selective control system.

T e T

where S represents a selector (< or >, to be determined)

In this scheme, several manipulated variables are used to control a single process
variable. When the pH is too high or too low, a signal is sent to the selectors in
either the waste stream or the base stream flowrate controllers. The exactly
configuration of the system depends on the transmitter, controller and valve gains.

In addition, a Smith Predictor for the pH controller is proposed due to the large
time delay. There would be other possibilities for this process such as an adaptive
control system or a cascade control system. However the scheme above may be
good enough

Necessary information:
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.- Descriptions of measurement devices, valves and controllers; direct
action or reverse action.

.- Model of the process in order to implement the Smith Predictor

16.24

For setpoint change, the closed-loop transfer function with an integral controller
and steady state process (G, = Kp) is:

y _ GG, _ %,SKP Ky 1
Ys 1+G.G, 1+%ISKP s+Kp T'/<PS+1

Hence a first order response is obtained and satisfactory control can be achieved.

For disturbance change (Gq = Gy):

K _ Ko(ts) T,S

Y-S 5 -
D 1+G.Gp l+%ISKP 5+Kp T'/<F’S+1

Therefore a first order response is also obtained for disturbance change.

16.25

MV: insulin pump flow rate
CV: body sugar level
DV: food intake (sugar or glucose)

The standard PID control algorithm could be used to provide a basic control level.
However, it may be subject to saturation in order to keep the blood glucose within
the stated bounds. Feedforward control could be used if the effect of the meal
intake (disturbance) can be quantified according to its glucose level. Then the
insulin injection can anticipate the effect of the meal by taking preventative
actions before the change in blood glucose is sensed. A pitfall of a FF/FB control
could be that high insulin pump flow rates may be required in order to keep the
blood glucose within the desired range, and the pump flow rate may saturate.
Another enhancement would be adaptive control, which would allow the
controller to be automatically tuned for a given human in order to obtain a better
response (every person’s body chemistry is different). A drawback of adaptive
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control is that it may be too aggressive and cause rapid changes in blood glucose.
A less aggressive adaptive controller could employ gain scheduling, where a
higher controller gain is used when the blood glucose level goes too high or too
low.

16.26

In the event that the feed temperature is too high, the slave controller will sense
the increase in temperature and increase the signal to the coolant valve, which will
increase the flow of coolant to reduce the temperature of the feed. The master
controller will sense a slight increase in temperature in the reactor and will
increase the set point of the slave controller, which will in turn increase the flow
rate of the coolant a second time. In this case, both the slave and the master
controller work together to counteract the disturbance. As a result, the
disturbance is dealt with quickly and the reactor temperature is only affected
slightly.

In the event that the feed flow rate is too high, the temperature of the feed exiting
the heat exchanger will increase. The slave controller will sense this and will act
as above by increasing the coolant flow rate. The increased flow rate of higher
temperature feed in the reactor will most likely increase the reactor temperature,
and the master controller will alter the set point of the slave controller
accordingly. Again the master controller and slave controller work together
to counteract the disturbance.

16.27
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Figure S16.7a Cascade control of an exothermic chemical reactor
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Figure S16.7b Block diagram of Cascade control of an exothermic chemical reactor

D1 . Reactor temperature
D, : Cooling water

Ds . Temperature of the reactor wall

The control system measures the temperature of the reactor wall to gather information on
the temperature gradients in the tank contents, compares to a set point, and adjusts the
cooling water makeup. The principal advantage of the new cascade control strategy is
that the reactor wall temperature is located close to a potential disturbance of temperature

16-38



gradients in the tank contents and its associated feedback loop can react quickly, thus
improving the closed-loop response.

16.28

For a one-input-two-output linear algebraic model shown in Egs. (1)~(2):
Y, =Kpu, + bl 1)
Y, =Kyu, + bz (2)

The output y, can reach the set-point y;” by tuning u, based on Eqg. (3):

— ylsp _bl (3)

u1
K12

But for output v, , it is determined by combining Egs. (2) and (3), and cannot be
specified arbitrarily leading to offset.
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Chapter 17

17.1

Using Eq. 17-9, the filtered values of xp are shown in Table S17.1

time(min) a=1 a=0.8 a=0.5
0 0 0 0
1 0.495 0.396 0.248
2 0.815 0.731 0.531
3 1.374 1.245 0.953
4 0.681 0.794 0.817
5 1.889 1.670 1.353
6 2.078 1.996 1.715
7 2.668 2.534 2.192
8 2.533 2.533 2.362
9 2.908 2.833 2.635
10 3.351 3.247 2.993
11 3.336 3.318 3.165
12 3.564 3.515 3.364
13 3.419 3.438 3.392
14 3.917 3.821 3.654
15 3.884 3.871 3.769
16 3.871 3.871 3.820
17 3.924 3.913 3.872
18 4.300 4.223 4.086
19 4,252 4.246 4,169
20 4.409 4.376 4,289

Table S17.1. Unfiltered and filtered data.
To obtain the analytical solution for xp, set F(s) = 1 in the given transfer
S

function, so that
Xo(8) =2 F(8) == =5 T~
10s +1 s(10s+1) s s+1/10
Taking inverse Laplace transform

xo(t) =5 (1 — ™9

A graphical comparison is shown in Fig. S17.1

Solution Manual for Process Dynamics and Control, 4th edition
Copyright © 2016 by Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp,
and Francis J. Doyle Il
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17.2
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.
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.’,:,/ ...... alpha = 0.5
05r fr --=- alpha = 0.8 I
£ — analytical solution
0 r r r r r r r r r
0 2 4 6 8 10 12 14 16 18 20
time (min)

Fig S17.1. Graphical comparison for noisy data, filtered data and analytical
solution.

As o decreases, the filtered data give a smoother curve compared to the
no-filter (a=1) case, but this noise reduction is traded off with an increase
in the deviation of the curve from the analytical solution.

The exponential filter output in Eq. 17-9 is

Y (K) = oy (K) + A—a)ye (k1) 1)
Replacing k by k-1 in Eq. 1 gives

Ve (k=D =ay,(k-D+@A-a)y.(k-2) )
Substituting for y. (k—1) from (2) into (1) gives

Y (K) = i (k) + (L 0ty (kD) + (L) (k—2)

Successive substitution of y. (k—-2),y. (k—-3) ,... gives the final form
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17.3

Table S17.3 lists the unfiltered output and, from Eq. 17-9, the filtered data for
sampling periods of 1.0 and 0.1. Notice that for sampling period of 0.1, the
unfiltered and filtered outputs were obtained at 0.1 time increments, but they are
reported only at intervals of 1.0 to preserve conciseness and facilitate comparison.

The results show that for each value of At, the data become smoother as o
decreases, but at the expense of lagging behind the mean output y(t)=t. Moreover,
lower sampling period improves filtering by giving smoother data and less lagg

ye (k) = i(l—ot)iotym(k —i)+(1-a)" y:(0)

i=0

for the same value of a.

At=1 At=0.1

t a=1 a=0.8 a=0.5 o=0.2 a=0.8 a=0.5 a=0.2
0 0 0 0 0 0 0 0

1 1.421 1.137 0.710 0.284 1.381 1.261 0.877
2 1.622 1.525 1.166 0.552 1.636 1.678 1.647
3 3.206 2.870 2.186 1.083 3.227 3.200 2.779
4 3.856 3.659 3.021 1.637 3.916 3973 3.684
5 4,934 4.679 3.977 2.297 4836 4.716 4.503
6 5.504 5.339 4,741 2.938 5574 5.688 5.544
7 6.523 6.286 5.632 3.655 6.571 6.664 6.523
8 8.460 8.025 7.046  4.616 8.297 8.044 7.637
9 8.685 8.553 7.866 5.430 8.688 8.717 8.533
10 9.747 9.508 8.806 6.293 9.741 9.749 9.544
11  11.499 11.101 10.153 7.334 11.328 11.078 10.658
12 11.754 11.624 10.954 8.218 11.770 11.778 11.556
13  12.699 12.484 11.826 9.115 12.747 12.773 12.555
14 14.470 14.073 13.148 10.186 14.284 14.051 13.649
15 14.535 14.442 13.841 11.055 14.662 14.742 14.547
16 15.500 15.289 14.671 11.944 15.642 15.773 15.544
17 16.987 16.647 15.829 12.953 16.980 16.910 16.605
18 17.798 17.568 16.813 13.922 17.816 17.808 17.567
19 19.140 18.825 17.977 14.965 19.036 18.912 18.600
20 19.575 19.425 18.776 15.887 19.655 19.726 19.540

Table S17.3. Unfiltered and filtered output for sampling periods of 1.0 and 0.1
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Graphical comparison:
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Figure S17.3a. Graphical comparison for At = 1.0
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Figure S17.3b. Graphical comparison for At = 0.1
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Using Eq. 17-9 for a = 0.2 and o = 0.5, Eq. 17-18 for N* = 4, and Eq. 17-19 for
Ay=0.5, the results are tabulated and plotted below.

(@) (@) (b) (©)
t o=1 0=0.2 a=05  N*=4 Ay=0.5
0 0 0 0 0 0
1 1.50 0.30 0.75 0.38 050
2 0.30 0.30 0.53 045  0.30
3 1.60 0.56 1.06 0.85  0.80
4 0.40 0.53 0.73 0.95 0.0
5 1.70 0.76 1.22 1.00  0.90
6 1.50 0.91 1.36 1.30  1.40
7 2.00 1.13 1.68 140  1.90
8 1.50 1.20 1.59 1.68  1.50

Table S17.4. Unfiltered and filtered data.

2.5 T T T T T T T

y(t)

time, t

Figure S17.4. Graphical comparison for filtered data and the raw data.
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175

Parameter setting:

!
P oos+1

;d(t) =1+ 0.2sin(t) ; Tz = 0 (no filtering) or 3

To do this problem, build the Simulink diagrams below. Note that the filter is
represented by a first order transfer function with time constant of tr minutes.
This can be shown by performing the Laplace transform of equation 17.4 in the

book.

o

o

To Workspacez2

Sine Wave

Ly

1
28+1

Process

3z+1

Fitter

' filter

To Workspace

N

Scope

Figure S17.5a. Block diagram when a filter is used on the output with time
constant of 3 minutes. A sine wave of frequency 1 and amplitude 0.2 is the input.

I&/

Sine Wave1

1
25+1

Process1

# no_fiter

To Workzspace

=

Ly

Scopel

Figure S17.5b. Block diagram when no filter is used on the output. A sine wave of
frequency 1 and amplitude 0.2 is the input.

Simulating the diagram for 50 mins:
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Figure S17.5c. First-order process response to a disturbance, d(t)=1+0.2sin(t),
with and without an exponential filter.

From Figure S17.5c, we can see that the filter will significantly dampen the
oscillation at the cost of inducing a time lag in the first 10 minutes.

17.6

Y(s):iX(s):il ,  then y{t)=1-¢"

s+1 s+1s
For noise level of + 0.05 units, several different values of o are tried in Eq. 17-9
as shown in Fig. S17.6a. While the filtered output for o = 0.7 is still quite noisy,
that for o = 0.3 is too sluggish. Thus o = 0.4 seems to offer a good compromise
between noise reduction and lag addition. Therefore, the designed first-order filter
for noise level + 0.05 units is o = 0.4, which corresponds to tr = 1.5 according to

Eq. 17-8a.
Noise level =+ 0.05
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y(t)

r r r r r
0 2 4 6 8 10 12 14 16 18 20
t

Figure S17.6a. Digital filters for noise level = #0.05
Noise level =+ 0.1

1.4 3 3 T

12 b

y(t)

r r

0 5 10 15 20
t

Figure S17.6b. Digital filters for noise level = #0.1
Noise level =+ 0.01
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14 T T T

1.2 b

y(®)

0 r r r
0 5 10 15 20

t

Figure S17.6¢c. Response for noise level = #0.01; no filter needed.

Similarly, for noise level of + 0.1 units, a good compromise is o =0.2 or
== 4.0 as shown in Fig. S17.6b. However, for noise level of £0.01 units,
no filter is necessary as shown in Fig. S17.6¢. thus =1.0, tr =0

y(K) = y(k-1) — 0.21 y(k-2) + u(k-2)

k u(k) u(k-1) u(k-2) y(K)
0 1 0 0 0

1 0 1 0 0

2 0 0 1 1.00
3 0 0 0 1.00
4 0 0 0 0.79
5 0 0 0 0.58
6 0 0 0 0.41
7 0 0 0 0.29
8 0 0 0 0.21
9 0 0 0 0.14
10 0 0 0 0.10
11 0 0 0 0.07
12 0 0 0 0.05
13 0 0 0 0.03
14 0 0 0 0.02
15 0 0 0 0.02
16 0 0 0 0.01
17 0 0 0 0.01
18 0 0 0 0.01
19 0 0 0 0.00

Plotting this results
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Figure S17.7. Graphical simulation of the difference equation

The steady state value of y is zero.

17.8

a) By using Simulink and STEM routine to convert the continuous signal to a
series of pulses,

12 T 3 T 3 T 3 T 3 T

10~ b

Tm'(t)
[«2]
T
1

: : : 2|0||r||3|0|I3r511;01m.

0 5 10 15 25 45 50
time

Figure S17.8. Discrete time response for the temperature change.

Hence the maximum value of the logged temperature is 80.7° C.
This maximum point is reached at t = 12 min.
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Y(z)  27z7%(z+3)  27+81z"
U(z) z°-05z+0.06 z*-0.52+0.06

Dividing both numerator and denominator by 72

Y(z)  27z°+8.1z°
U(z) 1-05z"+0.06z7

Then Y(2)1-0.5z"+0.062%)=U(z)(2.72°+8.1z%)

or y(k) = 0.5y(k-1) — 0.06y(k-2) + 2.7u(k-2) + 8.1u(k-3)

The simulation of the difference equation yields

k u(k) u(k-2) u(k-3) y(K)
0 1 0 0 0

1 1 0 0 0

2 1 1 0 2.70
3 1 1 1 12.15
4 1 1 1 16.71
5 1 1 1 18.43
6 1 1 1 19.01
7 1 1 1 19.20
8 1 1 1 19.26
9 1 1 1 19.28
10 1 1 1 19.28
11 1 1 1 19.28
12 1 1 1 19.29
13 1 1 1 19.29
14 1 1 1 19.29
15 1 1 1 19.29
16 1 1 1 19.29
17 1 1 1 19.29
18 1 1 1 19.29
19 1 1 1 19.29
20 1 1 1 19.29
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b)

17.10

20 T T T T T T T T T

18 Ny

16~ y

14~ -

12~ y

10~ Ny

2r —— Difference equation |7

=== Simulink
O r r r r r r r r r

0 2 4 6 8 10 12 14 16 18 20
kAt

Figure S17.9. Simulink response to a unit step change in u

The steady state value of y can be found be setting z =1. In doing so,
y =19.29

This result is in agreement with data above.

1
G,(s) = 2(“5)

Substituting s = (1-z)/At and accounting for At=1

_ -1
Gc(z)=2(1+ 1 Jzz.zs 27

8(l-z") (1-zh

By using Simulink-MATLAB, the simulation for a unit step change in the
controller error signal e(t) is shown in Fig. S17.10
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17.11

b)

70 T T T T T

60 - N

50 - N
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b(k)
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l: IILIH‘UH |

15 20 25 30
k

T

Figure S17.10. Open-loop response for a unit step change

Y(z)  5(z+0.6)
U(z) z%-2+041

Dividing both numerator and denominator by z*

Y(z)  57'+3z7
U() 1-z'+0.41z7

Then Y(z2)A-z"+0.41z%)=U(2)(5z2"+3z7)
or y(k) = y(k-1) — 0.41y(k-2) + 5u(k-1) + 3u(k-2)

The simulation of the difference equation yields
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k u(k) u(k-1) u(k-2) y(K)
1 1 1 0 5

2 1 1 1 13.00
3 1 1 1 18.95
4 1 1 1 21.62
5 1 1 1 21.85
6 1 1 1 20.99
7 1 1 1 20.03
8 1 1 1 19.42
9 1 1 1 19.21
10 1 1 1 19.25
11 1 1 1 19.37
12 1 1 1 19.48
13 1 1 1 19.54
14 1 1 1 19.55
15 1 1 1 19.54
16 1 1 1 19.52
17 1 1 1 19.51
18 1 1 1 19.51
19 1 1 1 19.51

C) By using Simulink-MATLAB, the simulation for a unit step change in u
yields

25 T T T T T T T 15 T
— Difference equation
=== Simulink

15+~ -

O r r r r r r r r r

0 2 4 6 8 10 12 14 16 18 20
kAt
Figure S17.11. Simulink response to a unit step change in u
d) The steady state value of y can be found be setting z =1. In doing so,
y =19.51

This result is in agreement with data above.
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c)

b)
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d)

1
(1+0.7z7H(1-0.3z7)

0.8

Output

0.4

0.2

1-0.5z7"

(1+0.72)(1-0.3z7)

0.8

Output

0.4

1-0.2z7"

(1+0.627")(1-0.3z7")

0.8

0.6

0.4

0.2
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Conclusions:

.- A pole at z = 1 causes instability.

.- Poles only on positive real axis give oscillation free response.
.- Poles on the negative real axis give oscillatory response.

.- Poles on the positive real axis dampen oscillatory responses.
..- Zeroes on the positive real axis increase oscillations.

.- Zeroes closer to z = 0 contribute less to the increase in oscillations.

17.13

By using Simulink, the response to a unit set-point change is shown in Fig.
S17.13a

1.8 T T T T T T T

16 A

1.4 '

121 by

0 r r r r r r r
0 5 10 15 20 25 30 35 40
Time

Figure S17.13a. Closed-loop response to a unit set-point change (K. = 1)

Therefore the controlled system is stable.

The ultimate controller gain for this process is found by trial and error
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Time

Figure S17.13b. Closed-loop response to a unit set-point change (K. =21.3)

Then Ky, =21.3

17.14

By using Simulink-MATLAB, these ultimate gains are found:

At=0.01

2
l.8<n

1.6

1.4

1.2

1H

Output

0.8

0.6

0.4

sARRARARRANNR!

0 1 2 3 4 5 6
Time

Figure S17.14a. Closed-loop response to a unit set-point change (K. =1202)

At=0.1
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Figure S17.14b. Closed-loop response to a unit set-point change (K. =122.5)

At=05

2

1.8

16

14
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Output
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0.4

0.2

0 r r
0 5 10 15
Time

Figure S17.14c. Closed-loop response to a unit set-point change (K. =26.7)

Hence
At=0.01 Koy = 1202
At=0.1 Koy =122.5
At=0.5 Koy =26.7

As noted above, decreasing the sampling time makes the allowable
controller gain increases. For small values of At, the ultimate gain is large
enough to guarantee wide stability range.

17-19



17.15

By using Simulink-MATLAB

Ke=1

1.4 3 3 3 T 3 T 3 3 3

121 -

0.8 -

Output

0.2~ -

O r r r r r r r r r
0 5 10 15 20 25 30 35 40 45 50
time

Figure S17.15a. Closed-loop response to a unit set-point change (K, =1)

K:.=10

1.8 T 3 T 3 T 3 T 3 T

1.6 -

1.2p r

Output

0 5 10 15 20 25 30 35 40 45 50
time

Figure S17.15b. Closed-loop response to a unit set-point change (K. =10)
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Figure S17.15c. Closed-loop response to a unit set-point change (K. =17)

Thus the maximum controller gain is

Kem =17

17.16

Gu(s) = K, = 0.1 ft*/ (min)(ma)

4
0.55s+1

Gm(s) =
In order to obtain Gp(s), write the mass balance for the tank as

dh
AE:%*‘%_%

Using deviation variables and taking Laplace transform
AsH'(s) = Q[(s) +Q;(s) —Q;(s)

Therefore,
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_HG)_-1_ -1

G, (s)= =—=—
P Qi(s) As 12.6s

By using Simulink-MATLAB,

K¢ =-10

1.4 3 3 3 3 3 3 3 3 3

121 b

y(®)

0.6 '

0.4 '

0 5 10 15 20 25 30 35 40 45 50
time

Figure S17.16a. Closed-loop response to a unit set-point change (K, = -10)

KC = '50

1.8 T T T T T T T T T

i |

y(t)

0.6 '

0.4} '

0.2 '

0 5 10 15 20 25 30 35 40 45 50
time

Figure S17.16b. Closed-loop response to a unit set-point change (K. = -50)
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KC = '92

35

1.5(

y(®)

0.5 '

-0.51

'l. 5 r r r r r r r r r
5 10 15 20 25 30 35 40 45 50
time

Figure S17.16¢c. Closed-loop response to a unit set-point change (K, =-92)

Hence the closed loop system is stable for
-92<K:<0

As noted above, offset occurs after a change in the setpoint.

17.17

a) The closed-loop response for set-point changes is
Y/Y,
Y6) __GCO) ey g -t )
Yo (s) 1+G.G(s) G1-(Y/Y,)
We want the closed-loop system exhibits a first order plus dead time
response,
e " a-nz" .
IY )=—— or IY,)=——7—7— where A=e
(V7¥s) AS+1 V7¥s) 1- Az
Moreover,
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b)

d)

-2s -3
e o G(2)= 0.284z .
3s+1 1-0.716z

G(s) =

Thus, the resulting digital controller is the Dahlin's controller Eq. 17-66.

_ _ -1
G.(2) = _1(1 A) _ 1-0.7162 1)
1-Az7 - (1-A)z 0.284
If a value of A=1 is considered, then A = 0.368 and Eq. 1 is
0.632 1-0.716z"
G.(2) )

T1-03682'-0632z° 0.284

(1-z%) is a factor of the denominator in Eq. 2, indicating the presence of
integral action. Then no offset occurs.

From Eq. 2, the denominator of G¢(z) contains a non-zero z° term. Hence
the controller is physically realizable.

First adjust the process time delay for the zero-order hold by adding At/2
to obtain a time delay of 2 + 0.5 = 2.5 min. Then obtain the continuos PID
controller tuning based on the ITAE (setpoint) tuning relation in Table
12.3 with K=1, t=3, 0 = 2.5. Thus

KK, = 0.965(2.5/3) ~°% , Kc=1.13
/v = 0.796 + (-0.1465)(2.5/3) , , T =4.45
o/t = 0.308(2.5/3)>% , 10 =0.78

Using the position form of the PID control law (Eq. 8-26 or 17-55)

G, (2) =1.13{1+ 0.225(1 L lj+0.78(1— z—l):|

227-2.8927"+0.88z27°
1-z7"

By using Simulink-MATLAB, the controller performance is examined:
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17.18

Yep(S)

At7< Yep(@ Yoo (2), E(z)
> Knm

1.4 T T

1.2

0.8+

y()

0.6~

0.2+

0 r r

r

r r r r r r

0 5 10

15

20 25 30 35 40 45
Time

50

Figure S17.17. Closed-loop response for a unit step change in set point.

Hence performance shows 21% overshoot and also oscillates.

.
Z—(S)b G,(s)

C,(s) 7< C@

The transfer functions in the various blocks are as follows.

P@) M) 7Q,()
D(z) —> H(s) >G, (S)—*Gp(S)
AN Y
5 Gy (S)]=

Km = 2.5 ma / (mol solute/ft®)

Gm(s) = 2.5¢*
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b)

17.19

1-e°°
S

H(s)=

Gu(s) = Ky = 0.1 ft¥/min.ma
To obtain Gp(s) and Gq(s), write the solute balance for the tank as

dc
\ d_: = qlcl + qz (t)02 (t) - q3C3 (t)

Linearizing and using deviation variables

dC, = A = A/ i
Vd_:: g,C; +C,Q;, —Q,C,4

Taking Laplace transform and substituting numerical values

30sC;(s) =1.5Q,(s) +0.1C,(s) —3C;(s)

Therefore,
Ci(s 15 0.5
Q,(s) 30s+3 10s+1
G, (s) = C?(s) _ 0.1 _ 0.033
C,(s) 30s+3 10s+1
C.(2) 0.05
Gp(z) =32

Q,(z) 1-0.9z7

A proportional-integral controller gives a first order exponential response
to a unit step change in the disturbance C,. This controller will also give a
first order response to setpoint changes. Therefore, the desired response
could be specified as

1
AS+1

(Y /Y)
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Y  HG,(9)K,G.(2)

Yo 1+HG,G,(2)G.(2)

sp

Solving for G¢(z)

Y

Y
G.(2) = . . &)
HG, (2)K, ~HG,G, (2) -

sp

Since the process has no time delay, N = 0. Hence

Y] @Az
Y, ) 1-AZt
d

Moreover

Zfl

1-z7

HGp(z) =

772
1

HG G _(2) =
pm() 1-7

Kn=1

Substituting into (1) gives
(1-A)z!

G,(2) = 1-Az”

7 77 (-A7
1-z% 1-z7' 1-Az!

Rearranging,

1-A)-1-Az"
1-A27 - (1-A)z7?

G.(2) =

By using Simulink-MATLAB, the closed-loop response is shown for
different values of A (actually different values of 1) :
A=3 A=0.716
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17.20

A=1 A =0.368
A=05 A=0.135

4.5~ b

o i o o

255 [, .

y(t)

.......................................................................................................

15~ o

0.5 --- =l

1

r r r r r r r r
0 5 10 15 20 25 30 35 40 45 50
Time

o

Figure S17.19. Closed-loop response for a unit step change in disturbance.

The closed-loop response for a setpoint change is

Y _ HG(®)K,G(2)
Y, 1+HG(2)KK, (2)G,(2)

sp

Hence

sp

The process transfer function is

-1
_ 2.5 or HG(2) = 0.453z .
10s +1 1-0.819z

G(s) (6=0 soN=0)
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Minimal prototype controller implies A =0 (i.e., A— 0). Then, S =z

sp

Therefore the controller is

1-0.819z7* 2t
G.(2) = . -
0.453z 0.2-(0.2)(0.25)z
Simplifying,
-1 -2 _ -1
G, (2) Z 0.819z 1-0.819z

T 0.0912-0023z° 0.091-0.023z"

17.21

a) From Eq. 17-71, the Vogel-Edgar controller is

(Q+a,z" +a,z7)1-A)
G = ] Iy, N1
(b, +b,)A— Az )~ (1— A)(b, +b,z )z

where A = e =¢ 5 =0.819

Using z-transforms, the discrete-time version of the second-order transfer
function yields

a; =-1.625
az =0.659

b1 =0.0182
b, = 0.0158

Therefore

o _ (1-1.625z2* +0.659z 2)0.181
"®(0.0182+0.0158)(1—0.819z ) — 0.181(0.0182+0.0158z )z *

~0.181-0.294z7" +0.1192°
0.034-0.031z™ —0.003z 2

By using Simulink-MATLAB, the controlled variable y(k) and the
controller output p(k) are shown for a unit step change in ysp.

17-29



Controlled variable y(k):

1 : : : :
0.9 i
0.8 i
0.7 i
0.6 i

o5 y
0.4 .
0.3 .
0.2f i

0.1r b

0 r r r r
0 5 10 15 20 25

k

Figure S17.21a. Controlled variable y(k) for a unit step change in ysp.

Controller output p(k):

5.5 3 3 3 3

5r -

45 .

4+ 4

35 4

3r -

p(k)

25r b

2r i

151 b

1F

05 r r r r
0 5 10 15 20 25

k

Figure S17.21b. Controlled output p(k) for a unit step change in ysp.
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17.22

Dahlin's controller

From Eq. 17-66 with a; = e1°=0.9, N=1, and A=e’* = 0.37, the Dahlin

controller is
1-0.37 1-0.9z"
GDC (Z) = (—l ) 2
1-037z27 -(1-0.37)z° 2(1-0.9)
3.15-2.84z7" 3.15-2.84z7"

T1-0372'-0632% (1-z1)(1+06327Y)

By using Simulink, controller output and controlled variable are shown
below:

3.5

3H
251

2k

p(t)

1.5

1k

0.5

0

r r r r r r r r r
0 5 10 15 20 25 30 35 40 45 50
time

Figure S17.22a. Controller output for Dahlin controller.

14

12

1h

0.8

Output

0.6~

0.4r

0.2

0

r r r r r r r r r
0 5 10 15 20 25 30 35 40 45 50
time

Figure S17.22b. Closed-loop response for Dahlin controller.
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Thus, there is no ringing (this is expected for a first-order system) and no
adjustment for ringing is required.

PID (ITAE setpoint)

For this controller, adjust the process time delay for the zero-order hold by adding
At/2, and K=2, t=10, 6=1.5 obtain the continuous PID controller tunings from
Table 12.4 as

KK¢ = 0.965(1.5/10) ~%% , Ko=2.42
t/t = 0.796 + (-0.1465)(1.5/10) , 1, =12.92
o/t = 0.308(1.5/10)%9%° , 1 = 0.529

Using the position form of the PID control law (Eq. 8-25 or 17-55)

1 1
G.(2)=242|1 0.529(1-z7
:(2) { +12.92(1—zl)+ ( )}

- 3.89-4.9827"+1.28z7°
1-z

By using Simulink,

r r r r r r r r r
0 5 10 15 20 25 30 35 40 45 50
time

Figure S17.22c. Controller output for PID (ITAE) controller
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1.4 T T T T T T T T T

1.2

0.8

Output

0.6

0.4

0.2

O r r r r r r r r r
0 5 10 15 20 25 30 35 40 45 50
Time

Figure S17.22d. Closed-loop response for PID (ITAE) controller.

Dahlin's controller gives better closed-loop performance than PID because it
includes time-delay compensation.

17.23

From Eg. 17-66 with a; = ¢°=0.819, N=5, and A=e’¥* = 0.37, the Dahlin
controller is

(1-0.37) 1-0.819z7"

G,.(2) =
oc (2) 1-0.37z1 - (1-0.37)z ° 1.25(1- 0.819)

_ 2.78-22877
(1-0.372*-0.632°)

By using Simulink-MATLAB, the controller output is shown in Fig. S17.23
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25r '

p(k)

151 b

05 r r r r
0 5 10 15 20 25

Figure S17.23. Controller output for Dahlin controller.

As noted in Fig.S17.23, ringing does not occur. This is expected for a first-order
system.

17.24

Dahlin controller

Using Table 17.1 with K=0.5, r =1.0, p =0.5,

_0.1548z7*+0.0939z
1-0.9744z7" +0.2231z

G(2)

From Eq. 17-64, with A = At = 1, Dahlin's controller is

(1-0.9744z7" +0.2231z7%) 0.632z*
0.1548z'+0.0939z2 1-z*

Gpe (2) =

_ 0.632-0.6162"+0.14127°
(1-z7)(0.1548+0.0939z ")

From Eq. 17-63,
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Y(z)  0.632z"
Y,(z) 1-0.368z"

y(K) = 0.368 y(k-1) + 0.632 ysp(k-1)
Since this is first order, no overshoot occurs.

By using Simulink-MATLAB, the controller output is shown:

5 3 3 3 3

1 r r r r
0 5 10 15 20 25

Figure S17.24a. Controller output for Dahlin controller.

As noted in Fig. S17.24 a, ringing occurs for Dahlin's controller.

Vogel-Edgar controller

From Eq. 17-71, the Vogel-Edgar controller is

2.541-2.47627 +0.567z2
1-0.761z* —0.239z2

GVE (Z) =

Using Eq. 17-70 and simplifying,

Y(2) (0.393z+0.2392%)
Y, (2) 1-0.3687"

y(k) =0.368 y(k-1) + 0.393 ysp(k-1) + 0.239 yg, (k-2)
Again no overshoot occurs since y(z)/ysy(z) is first order.

By using Simulink-MATLAB, the controller output is shown below:
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2.6

24r '

2.2 b

1.8 '

p(k)

16 '

1.4 .

1.2 r

08 r r r r
0 5 10 15 20 25

Figure S17.24b. Controller output for Vogel-Edgar controller.

As noted in Fig. S17.24 b, the V-E controller does not ring.

17.25

a)

Material Balance for the tanks,

A ‘1'} ~6-= ()

A= (1)

where A; = A; = 1/4(2.5)?=4.91 ft?

Using deviation variables and taking Laplace transform

AsH;(s) = Q;(s) ~QUO -+ HiO)
ASHI(9) = = HI(s) - Hi(9)
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From (2)

Hy(s) =

ARs e

Substituting into (1) and simplifying

[(AAR)S* +(A +A)s |H/(s) =[ ARs +1][Q/(s) - Q;(5)]

_HIs)_ —(ARs+) ~ —0.204(s +0.102)

G, (s)= =
P Qi(s) (AAR)S*+(A+A)s s(s +0.204)

H(s) ARs+1 ~0.204(s+0.102)

Gy(s)= = 5 =
Q(s) (AAR)S“+(A+A)s s(s+0.204)

Using Eq. 17-64, with N =0, A=e™"* and HG(z) = KiKvHGp(z), Dahlin's
controller is

G (Z):i(l—A)z‘l
o HG (1-z7")

Using z-transforms,

-0.202z71+0.192z*
(1-z1(1-0.9z"

HG(2)=KKHGy(z)=

Then,

(1-z)@-09z7") (1-Az"
(-0.202z1+0.192z2) (1-z7)

Gpe(2) =

_ (1-A)(1-097Y)
~0.202+0.1927°"

(1-A)(1-0.9z7)
GDC = -1
—0.202+0.192z

By using Simulink-MATLAB,
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d)

17.26

pk)

) 5 10 15 20 25 30 35 40 45 50
time

Figure S17.25. Controller output for Dahlin's controller.
As noted in Fig. S17.25, the controller output doesn't oscillate.

This controller is physically realizable since the z° coefficient in the
denominator is non-zero. Thus, controller is physically realizable for all
values of A.

A is the time constant of the desired closed-loop transfer function. From
the expression for Gy(s) the open-loop dominant time constant is 1/0.204 =
4.9 min.

A conservative initial guess for A would be equal to the open-loop time
constant, i.e., A = 4.9 min. If the model accuracy is reliable, a more bold
guess would involve a smaller 2, say 1/3 ™ of the open-loop time constant.
In that case, the initial guess would be A = (1/3)x 4.9 =1.5 min.

K(ts+1) P(s)

Gi(9)= ,5+1  E(S)

Substituting s= (1—-z") / At into equation above:

u(1-z7)/At+1 K n(-z7")+At K (v, +At) -1,z

Gi(2)=K 1 = 1 = 1
T,(1-27)/At+1 T,(1-z27) +At (T, +At) —1,2
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Then,
b +b,z"  P(2)

G, (2)= =
@ 1+az' E(2)
where b = K +A4H b, = KU ang a=—2
T, + At T, + At T, + At
Therefore,

(1+a,z27)P(2) = (b +b,z )E(2)

Converting the controller transfer function into a difference equation form:

p(k) =—a,p(k —1) +be(k) +be(k —1)

Using Simulink-MATLAB, discrete and continuous responses are

compared : ( Note that b;=0.5, b, =-0.333 and a;=-0.833)

== Continuous response
— Discrete response

0.4

0 5 10 15 20 25 30 35 40 45 50
Time

Figure S17.26. Comparison between discrete and continuous controllers.
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Chapter 18

McAvoy has reported the PI controller settings shown in Table S18.1 and the set-
point responses of Fig. S18.1a and S18.1b. When both controllers are in automatic
with Z-N settings, undesirable damped oscillations result due to the control loop
interactions. The multiloop tuning method results in more conservative settings
and more sluggish responses.

Controller Pairing Tuning Method K¢ 7(min)
T7—R Single loop/Z-N -2.92 3.18
T4- S Single loop/Z-N 431 1.15
T17—R Multiloop -2.59 2.58
T4- S Multiloop 4.39 2.58

Table S18.1. Controller Settings for Exercise 18.1

1.6 T T
1.4 -
-~
/N
II .-E\ I~
1.2 ;- \\ l,' \\ -
I..'\"{.“ ll \\ ’,I \\\ ......... " Pl N
1 . \"‘. ,L \\-’ P, }s-\.....
[ d . 3 =
L A
; \ 7
0.8 : NS .
4
0.6~ -
— Single loop tuning
0.4 (one loop in manual) N
=== Single loop tuning
(both loops in automatic)
L ] Multiloop tuning 7
0 r r
0 5 10 15
Time(min)

Figure S18.1a. Set point responses for Exercise 18.1. Analysis for Ty

Solution Manual for Process Dynamics and Control, 4th edition
Copyright © 2016 by Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp,
and Francis J. Doyle Il
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18.2

1.8 T T
1.6 A
1.4 A
1.2 A
-El "'_.r
1 PO L IS T
0.8+~ -
0.6- _ _ |
—— Single loop tuning
(one loop in manual)
04y e Single loop tuning b
(both loops in automatic)
0.2~ —-== Multiloop tuning A
0 r r
0 5 10 15

Time(min)

Figure S18.1b. Set point responses for Exercise 18.1. Analysis for T,

The characteristic equation is found by determining any one of the four transfer
functions Y1(S)/Ysp1(S), Y1(S)/Ysp2(S), Y2(S)/Ysp1(S) and Ya(s)/Ysp2(S), and setting its
denominator equal to zero.

In order to determine, say, Y1(S)/Yspa(S), set Ysp2 = 0 in Fig 18.3b and use
block diagram algebra to obtain

C,(s) =Gg, G [Ri(S) —C,(8)] + Gy M, (5) 1)

M, (s) = G, (-{Gp M, (s) + G, G, [Ri(s) = C,(s)ID) (2)

Simplifying (2),

M C2GP22 C C 3
(s )—W[Fﬂ(s) 1(5)] 3)

Substituting (3) into (1) and simplifying gives
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Cl(s) = (GC1GP12)(1+GCzGPu)_GQGCZGPMGPzz
R(s) (1+G. Gy, )1+G,Gp, ) —Gc GGy G,

Therefore characteristic equations is

(1 +Gc1 Gp2) (1 + G2 Gp21) — Ger Geo Gp11 Gpaz = 0

If either Gp11 or Gy is zero, this reduces to

(1+Ge1 Gp2) =0 or (1 +G2Gpa1) =0

So that the stability of the overall system merely depends on the stability

of the two individual feedback control loops in Fig. 18.3b since the third
loop containing Gp11 and Gy, is broken.

18.3

Consider the block diagram for the 1-1/2-2 control scheme in Fig.18.3a but
including a sensor and valve transfer function (G1,G.2) ,(Gm1,Gm2) for each output
(y1,y2). The following expressions are easily derived,

Y(8) = Gy(s) U(s)

Y(5)] [Gu(®) Gpual®)][ULS) .
V)| 7| Gon®) Gon()||Us(s) @
U(s) = Ge(s) Gu(s) ECS)
U,9)] [Gu(s)Gu(s) 0 E,(5)
d {uz(s)H 0 Gcz(s)evz(s)MEst @
E(S)= Y(8)Gr(9)Y(S)
E©] [Yu®] [Gu® 0 TV
or {Ez(s)}_{YspZ(s)}_{ O sz(s):| |:Y2(S):| (3)

If Egs. 1 through 3 are solved for the response of the output to variations of set
points, the result is
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18.4

Y(5) = Gy(S)Ge(S) Gu(s) [I + Gp(8)Ge()Gm(S)] ™ Yo (5) =
where | is the identity matrix.

In terms of the component transfer function the matrix

1+h,(s)  hy,(s)
V =1 + Gy(s)Ge(s Gv(S))Gm(s) = h,,(s) 1+h,,(s)

where

h11(8)= Gp11(8) Ge1(S) Gva(s) Gma(S)
h12(8)= Gpi2(S) Gea(S) Gva(S) Gma(S)
h21(8)= Gp21(S) Ge1(S) Gua(S) Gma(S)
h22(8)= Gp22(S) Gea(S) Gva(S) Gma(S)

£|:1+ h22 (S) - h12 (S) :|

The inverse of V, if it exists, is V=
Al - h21 (S) 1+ h11 (S)

where A = (1+h11(S))(1+h22(s))-h12(S)h21(S)
By accounting for Y(s) = [Gp(S)Gc(s) Gu(s) V1(s)] Vs (s), the closed-loop transfer

functions are (see book notation):

1

Tu(s) = m[hn(s)(n hy, (5)) =y, ()N, ()]
)= 5o
Tals) = Tl(sm[hzz (9)L+ iy (8)) — iy (), (5)]

From Egs. 6-91 and 6-92 and from physical reasoning, it is evident that although
h is affected by both the manipulated variables, T is affected only by wy and is
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independent of w. Hence, T can be paired only with wy. Thus, the pairing based on

this reasoning for the control scheme is T-wy, h-w.

18.5

System transfer function matrix:

e Kn=1K;,=

4

2 15
10s+1 s+1
G (s)=
"( ) 15 2
s+1 10s+1

—1: the pairing is unstable

Step response of Y|

()

35

3+

25

2+

15

1t

0.5

3 3 3 3 3 3 T T T

{ 1-1/2-2 pairing

r r r r r r r r r

10 20 30 40 50 60 70 80 90
Time

Figure S18.5a. Step response of Y;
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Step response of Y,
T T

1-1/2-2 pairing

6 3 3 3 3 3 3 T

0 r r
0 10 20 30 40 50 60 70 80 90 100
Time

Figure S18.5b Step response of Y,

e K. =1; K., = 0:the paring is stable
Step response of Y,

T

07 T T 15 T T T ’_ 1 T
/ \ 1-1/2-2 pairing %
/
0.6~ / b
0.5~ b
0.4 | g
03f| .
0.2 1
|
0.1H 1
|
0 | r r r r r r r r r
0 10 20 30 40 50 60 70 80 90 100
Time

Figure S18.5c. Step response of Y;
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1.4

1.2

Step response of Y,

r

3 3 3 3 3 T T T

1-1/2-2 pairing

r r r r r r r r

10

46

20 30 40 50 60
Time

100

Figure S18.5d. Step response of Y,

K.1 = 1; K., = 2: the pairing is unstable

Step response of Y,

x 10

T 15 T T T

1-1/2-2 pairing
L \
\

r r r r r '

0 50 100 150 200 250 300
Time

Figure S18.5e. Step response of Y;
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46 Step response of Y,

1.5 x 10 T T T T T
. 1-1/2-2 pairing {
1r- ‘\\'
0.5+ \“T
0 J
0.5~
1k
1.5 :‘[
2k _‘
2.5} W
3+ 4
3.5 ; r . r r
0 50 100 150 200 250 300
Time
Figure S18.5f. Step response of Y,
18.6
) Calculate the steady-state gains as
Ku:(AxDj ___0.97-093 — =-8x10*min/Ib
AR s (125-175) Ib/min
K, =[AXD) __096-094 o 10 min/ib
AS ), (24-20) Ib/min
Ku:(AXBj . 0.06-004 — =+4x10"*min/lb
AR )s  (175-125)Ib/min
=-5x10"°min/Ib

_(Axsj _0.04-0.06
2
R

AS

~ (24-20)Ib/min

Substituting into Eq. 18-34,
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18.7

b)

1

L (6*107)(4*107)
(-8*107)(-5*107°)

Thus the RGA is
R S
Xp (2 -1
Xg (-1 2
Pairing for positive relative gains requires Xp-R, Xg-S.
This pairing seems appropriate from dynamic considerations as well;

because of the lag in the column, R affects Xp sooner than Xg, and S
affects Xg sooner that Xp.

The corresponding steady-state gain matrix is
12.8 -18.9
K:
6.6 -19.4
Using the formula in Eqg. 18-34 , we obtain  X33;=2.0

Thus the RGA is

2 -1
A —
Pairing for positive relative gains requires Xp-R and Xg-S.

The same pairing is recommended based on dynamic considerations. The
transfer functions between Xp and R contains a smaller dead time and a
smaller time constant, so Xp will respond very fast to changes in R. For the
pair Xg-S, the time constant is not favorable but the dead time is
significantly smaller and the response will be fast as well.
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18.8

b)

From Eq. 6-105

T, -T)/w T -T)/w
G, (§)=—"—-—"— | G ==c 7
s (8) 15+1 p (9) s+1
1/ AP
Gp21 (S) = S ' szz (S) = 1/:\P
Thus Kn:TTCf, Ky, :ﬁ:f
w w

and since Gpa1, Gp22 contain integrating elements,

. 1
Ky = ISLII)] SGP21 (s) = E

: 1
Ky = Islﬂg $Gp, (8) = Ap

Substituting into Eq. 18-34,

W S 'l
1T T-T
=

Hence 0 <A <1, and the choice of pairing depends on whether A > 0.5 or
not. The RGA is

Wh We
T 7T
T T
h i_T: I_h‘i
T,-T, T,-T,|

Assume that A > 0.5 so that the pairing is T-wy, h-w.. Assume valve gains
to be unity. Then the ideal decoupling control system will be as in Fig.18.9
where Y1=T, Y,=h, Ui=w; , U=w, and using Egs. 18-78 and 18-80,
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18.9

1/ AP)s

T2l(S) = =
(1/ AP)s

T,(s) _ @ -D/wlies+) T-Te
[(T,-T)/w]/(zs+1) T,-T

The above decouplers are physically realizable.

OPTION A: Controlled variable: T17, Tos
Manipulated variables: ug, u,

The corresponding steady-state gain matrix is
15 05
K:
2 17

Using the formula in Eg.18-34, we obtain A3, =1.65
Thus the RGA is

1.65 —0.65
A =
{—0.65 1.65}

OPTION B: Controlled variable: T17, T3o
Manipulated variables: uy, u,

The corresponding steady-state gain matrix is
15 05
K=
34 29
Using the formula in Eq.18-34, we obtain  A;; = 1.64

Thus the RGA is

A 1.64 —0.64
|-064 1.64
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18.10

OPTION C: Controlled variable: T4, T3o
Manipulated variables: uy, u,

The corresponding steady-state gain matrix is
2 17
K=
{3.4 2.9}
Using the formula in Eq.18-34, we obtain  A3; = 290

Thus the RGA is
290 -289
A=
-289 290
Hence options A and B yield approximately the same results. Option C is

the least desirable to multi-loop control configuration because it will be
difficult to change the outputs without very large changes in the two inputs.

Material balance for each of the two tanks is

dh _ AN
/ﬂdt—ql+q6 R, K(h —hy) (1)
dhz_ _«/h2
Ay =% R +K(h +h,) )

where A;, A, are cross-sectional areas of tanks 1, 2, respectively.
Linearizing, putting in deviation variable form, and taking Laplace
transform,

AsH, (s)=Q, (s)+Q; (s) - (;) H,'(s) - K[H, () —H, ()]
2R \[h,

! ! 1 ’ !/ !

Hz =\ T = H2 K H1 _Hz
AssH, (s)=Q, (s) (2R2 \/E) (s)+K[H, (s) (s)]
1

2R\,

Let K, = and K, =

; and
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Solve the above equations simultaneously to get,

[(As+K, +K)(As+K, +K)—K?TH, (s)

©)
= (As+ K, + K)[Q/ (s) + Q5 ()] + KQ; (s)

[(As+K, +K)(As+K, +K)—K?H, (s)

(4)
= KIQ, (s) - Q¢ ()] + (As+ K, + K)Q, (s)

The four steady-state process gains are determined using Eqgs. 3 and 4 as

K, = il HL ) | _ K, +K

=0 Q'(s) | KK, +K(K; +K,)
Ky, i He©) | K

=0 Q' (8) ] KK, +K(K; +K,;)
K,, _|im_H2'(S)}= K

20 Q,'(s) KK, +K(K; +K,)
K., :”m'Hz'(s)} K, +K

01 Q,'(s) KK, +K(K; +K,)

Substituting into Eq. 18-34

- 1 _ (K +K)(K; +K)
1 K? KK, +K (K, +K,)
(K, + K)(K; +K)
Thus RGA is
01 d2
1 (K, + K)(K, +K) —K? h,
KK, +K(K, +K,) —K? (K, +K)(K,+K) | h,

Substituting the given numerical values, the RGA is

J1 02
h, 250 -1.50
h,| -1.50 2.50
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18.11

b)

18.12

For the relative gains to be positive, the preferred pairing is h1-qp, ho-0a.

Let

Y(s) {Hi(s)},u(s) {Qﬂ(s)} D(9) =0/ (5)
H, (5 Q)

Then by inspection of Egs. (3) and (4) in the solution to Exercise 18-10,

G _ 1 As+K,+K K
=P(S)_(Als+Kl+K)(Azs+K2+K)—K2{ K Als+K1+K}
and

SO S ST

— (As+K, +K)(As+K,+K)-K*|-K

where A;, Ay, Ky, K5 are as defined in the solution to Exercise 18.10.

The block diagram for h;-q; / hp-g2 pairing is identical to Fig.18.3a with
the addition of the load. Thus the signal D(s) passes through a block Gg;
whose output is added to the summer with output Y;. Similarly, the
summer leading to Y, is influenced by the signal D(s) that passes through
block Gy,

F=20u; (Po—Py) 1)
F=30 Us (P1 — Pz) (2)

Taking Py and P, to be constant, Eq. 1 gives
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(Ej =20(P, - P) - 20u1(?] (3)

u1 1

and

oF B B
[a—]% =20(R, - R) (4)

Uy

and Eq. 2 gives

oF =30M, R (5)
o, ), ou

1/u,

Substituting for (aal\jl from (5) into (3) and simplifying

1M2

oF 20(P, - P,)
[5} = o, ©
1y, 1+ S

30u,

Using Eq. 18-24,

(oF /éu, ), 1

t(OF/ou)s 4, 20U
30u,
At nominal conditions

(")

1+

F 1/2 F

Uy =— = LU, =—— =23
20(P, —P,) 30(P, - P,)

Substituting into (7), A11 = 2/3 > 0.5. Hence, the best controller pairing is
F-Ul, P]_-Uz.

18.13

a) Material balances for the tank,
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dh
A =% td, =0, (1)
d(Ahc
( d 3) =G0, +C,0, —C50, 2
t
Substituting for dh/dt from (1) into (2) and simplifying
dC
Ahd_ts = (Cl - Ca)ch + (Cz - C3)q2 (3)

Linearizing, using deviation variables, and taking the Laplace transform

AhSC,'(s) = (¢, —C;)Q/ () —a,C; (5) +(C, —€;)Q, (5) — 0,C5 ()

Since g, +q, =g, , this becomes

K%“Js +1} G, (s) =[C1qic3 )Ql’ (s) +[C2q103 ]Qz' (s) @
Similarly from (1),
AsH'(s) =Q/ (s)+Q, (s)—Q; (s) ®)
Therefore,

"H'G) H@e)] | L 1]

Q) Q)| | B
9(5) = ' , (Cl _Cs)/qs 0
= e O | (A

Q) Q). _(q:j“l

Substituting numerical values

0.1415 -0.1415
S S
G(s) =
=( ) 0.0075
1.06s+1

For the control valves
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0.15 0.15

«(5) (10) 01675 +1 ©)
— |s+1
60
Thus,
0.0212 -0.0212
5(0.167s+1) s(0.167s+1)
p(8)=G,(s)G(s) =
— 0.0011 0

(1.065 +1)(0.1675 +1)

b) Since C;(s)/Q;(s) =0, csis not affected by gz and must be paired with
g:. Thus, the pairing that should be used is h-g3, c3-Qs.

C) For the pairing determined above, Fig.18.9 can be used with Y;=H', Y,=
C;, Ui=Q,, Ux=Q/. Notice that this pairing requires Gy(s) above the
switch columns. Then using Egs. 18-78 and 18-80,

Ge, (s) 0

TZl(S) =- == =0
Gy, (5) 0.0011
{(1.063 +1)(0.167s +1)}
T.(5)= Ge, () - 0.0212/[s(0.167s+1)] 1

G, (s)  —0.0212/[5(0.1675+1)]

18.14

In this case, an RGA analysis is not needed. The manipulated and controlled
variables are:

Controlled variables: F¢, P;and |
Manipulated variables: my, mp, m3

Basically, the pairing could be done based on dynamic considerations, so that the
time constants and dead times in the response must be as low as possible.

The level of the interface “I” may be easily controlled with m3 so that any change
in the set-point is controlled by opening or closing the valve in the bottom of the
decanter.

The manipulated variable m; could be used to control the inflow rate Fy. If Fy is

moved away from its set-point, the valve will respond quickly to control this
change.
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The decanter overhead pressure P; is controlled by manipulating m,. That way,
pressure changes will be quickly treated. This control configuration is also used in
distillation columns.

18.15

OPTION A: Controlled variable: Y4, Y,
Manipulated variables: U;, U,

The corresponding steady-state gain matrix is

3 -05
K:
-10 2
Using the formula in Eq.18-34, we obtain  A;1=16

Thus the RGA is

6 -5
A =
)
OPTION B: Controlled variable: Y4, Y2

Manipulated variables: U, U

The corresponding steady-state gain matrix is
3 1/2
K=
-10 4
Using the formula in Eq.18-34, we obtain A3 =0.71

Thus the RGA is
0.71 0.29
A =
0.29 0.71
OPTION C: Controlled variable: Y4, Y,
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Manipulated variables: U, Uz

The corresponding steady-state gain matrix is
-05 1/2
K =l
2 4

Using the formula in Eq.18-34, we obtain  A;; = 0.67

Thus the RGA is
0.67 0.33
A =
{0.33 0.67}

By accounting for Bristol’s original recommendation, the controlled and
manipulated variables are paired so that the corresponding relative gains are

positive and as close to one as possible. Thus, OPTION B leads to the best control
configuration.

18.16

The process scheme is shown below

Q- o1
To=140F
0s Ts3=110F
Figure S18.16. Process scheme
a) Steady state material balance:
01t 02=0s 1)
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Steady state energy balance:
q1C(T1-Trer)+02C(T2-Trer) = 93C(T3-Trer) (2)
By substituting (1) in (2) and solving:

gy =9/7 gpm
gz = 12/7 gpm

The steady-state gain matrix K must be calculated :

i
0; Ky Kyplld:
From (1), it follows that K;;=K2=1. From (2),

dsT; =q,T; +0,T, (4)

Substitute (1) and rearrange,

T3 = % (Tl +T2) (5)
0, +0,
K, = % =T, +T,) (ql+q2)_2qﬂ: (T1+Tz)q22
o, % L (@, +0,) (0, +9,)
oT I q
K,=|—| =T +T,)|-—"— }
Polag, ), YL (@9’
RGA analysis:
1 1 g g
Ay = = =—>2 - Ap=1-A,=—2"
11 1 K, K, 1- g 9+ 12 11 0, + G,
KKz q,

Thus the RGA is,
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18.17

q, .

4, +0, 4, +0,

q, d,
\_ g, +0, q, +0, _/

s

Substitute numerical values for numerical conditions,

d, g,
N
(4 3
T, 2 2
7 7
A=
] 3 4
s 7 7
\_ )

Pairing: T,-0,/05-0,

Dynamic Model:

Mass Balance:

dh
pAE =1-f)w +w, —w,

Energy Balance: (Tt = 0)

d(hT.
pCpA% =C, (- f)wT, +C w,T, —C w,T, -UA (T, -T))
Mixing Point:

w, =w, + fw;

Energy Balance on Mixing Point:

18-21
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b)

d)

CpW4T4 = praT3 + Cp leT1
Control valves:
U=C,X,

w; = X;(C;h—C, fwy)

Degrees of freedom:

Variables: 14
h, Wi, Wy, W3, Wy , T1, T, T3, Ta, Te, X, X3, f, U
Equations: 6
Degrees of freedom = Ny—Ng = 8
Specified by the environment: 4 (T, wy, Ty, T>)
Manipulated variables: 4 (f, wz, Xc, X3)
Controlled variables:
h Guidelines #2 and 5 (i.e., G2 and G5)
T, G3and G5
ws G3and G5

w, (or T3) G4 and G5 (or G2 and G5)

RGA

At steady state, (1) and (2) become:

O0=(1-f)w, +w, —w,

0=C,(L-f)wT, +C w,T, —Cow,T; ~UA (T, -T,)

Rearrange (8) and substitute (5),

18-22
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T - Cp(l— f)w, +C,w,T, —Cox AT,

9
’ C W, +C,x A ®)
Rearrange (7)
w, =(1- f)w, +w, (10)
Substitute (10) into (9),
B Cp(l— f)w, + C, W, T, +CoXx AT, 11)
T C,(- f)w, +Cow, + Cx A,
Substitute (10), (3) and (11) into (4),
(Ws + le)T4 =W,T; + leTl (12)
or
[@- f)w, +w, + fw, [T, = fw,T, +
C.(1-f)w,+C w,T,-C,x AT
+ [(1—f)W1+W2] p( ) 1 p'i2'2 3 cAc c (13)
C,1- f)w, +C,w, +C,X A,
Rearrange,
T fw,T, . Q- f)w, +w, || C, Q- F)w, +C w,T, —C;x AT,
fow 4w, W, + W, C,(A- f)w, +C,w, + C.x A,
(14)
Rearrange (6),
hoWat X,C, fw, (15)
X,C,
Substitute (10) into (15),
he (- f)w, +w, +x,C, fw, (16)
X3Cl
Rewrite (14) as,
T, = fw, T, N E,+E;f+w, || E,f +E,w, +E, (17)
W, + W, W, + W, E.f +Ew, +E,
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where:

E.=w E,=-C,w, E,=C,T,
E, =C,X AT, +C w, E; =-C,w, (18)
E, =C, E, =C, X, A+C,w, E; =-w,

Can write (17) as,

fw,T
T, =—21 4
W, +W,

Fl
N E,E, f? +(E,E, +E,) fw, + (E,E, + E,)W, + (E,E, + E;E,) f + E,E,

EqW,” + (W,Eq + E,)w, +W,E f + Eqw, f +E,w,

F

(19)
Thus
@ K = w,T, N 2E,E, f +(E;E; + E,)w, + E,E, + E4E,
of Bow 4w, [F,]
F)w E. + E.w
_( 1)[ 1 52 5 2] (20)
I:2
Similarly
oT
Fa
From (16)
8_h _ _ X3C2W1 -W
=K, =
of X,C,
oh K - 1
ow, 7 xC
Then
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A 1-A
A:

{1—7» k}
where

1
1— K12 K21
K11K22

}\’:

e) It will be difficult to control T4 because neither x3 nor f has a large steady-

state effect on T,.
18.18

(a) Mass balance:

F=F+F,
Fw=F,w, =0.4F,

CV:w, F, MV: F; and F».

Linearize the process at operation point as described in Section 18.2.2.

K11 = i =1 K12 = ﬁ =1
ok, A, oF, K

=[] _ —0.42|:2 _ 0025 K, =( aw] _04F —20.4|:2 0.025
oF ). F 0F; ),
(b) RGA:
ﬂ,l = 1 = 1 = Fl = F- F2
b KoKy o -04R/F? FR+F, F

KiKy (0.4F —0.4F,)/ F?

Thus the RGA array is
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F
F, F-F
F F
(©)
1 1
& 1 KKy 1+0.025/0.025
K11K22

05 05| . . : S
Thus, the RGA array becomes: 05 05| in this case, either pairing is

recommended.

)] Static considerations:
Pairing according to RGA elements closest to +1:
Hi—Qsz, pH1-Q1, H2-Qa4, pH2— Qe

i) Dynamic considerations:
The some pairing results in the smallest time constants for tank 1.
It is also dynamically best for tank 2 because it avoids the large 6/t
ratio of 0.8.

iii) Physical considerations

The proposed pairing makes sense because the controlled variables
for each tank are paired with the inlet flows for that some tank.

Because pH is more important than level, we might use the pairing,
H; — Q1 / pH1-Qs , for the first tank to provide better pH control
due to the smaller time delay (0.5 vs. 1.0 min).

b) The new gain matrix for the 2x2 problem is
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18.20 I

‘_ 042 041
12032 0.32

From Eq. 18-34,

1
M= ,_(041)(=032) - 0506

(0.42)(0.32)

Thus

0.506 0.494
0.494 0.506

RGA pairing: H, — Q4 / pH2-Qs. The pairing also avoids the large

delay of 0.8 min.

Since level is tightly controlled, there is a no accumulation, and a material balance

yields:

Overall: wg—Ews—wp~0
Solute:  WpXg - wpxp =0

Controlled variable: x;,w
Manipulated variables: wg,w;

From (1):

WE = Ws E +wp

From (2):

X X
Xp =_FWF :_F(W5E+WP)
W, W,

Using deviation variables:
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I\ '
We =W, E +w,

Linearizing (3):

_ OXp OXp
X, = X, + (w,)+—— (w))
P P e lo P aws .
— X EW E
Xp Z[%JWE +[X_F jWQ (%)
W, W,

Then the steady-state gain matrix is

Wp W,
4 N
! — X EW, X E
P V_VPZ V_VP
W 1 E
- %

= lv_v B EWEVXSW =
1+ 7" s
Ew,
V_Vp
hip=hy =1-0y = m
So the RGA is
[ EW, W, |
EW, +W, EW, +W,
A=
W, EW,
EW, +W, EW, +W,

!
S

So, if Ew, > W, , the pairing should be X, -w, /' wg-w
So, if Ew, < W, , the pairing should be x;-w; / wg - w;
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18.21

a) The corresponding steady-state gain matrix is

_[-0.04 —0.0005
1022 -002

Using the formula in Eq. 18-34, we obtain X33 =1.16
Thus the RGA is

116 -0.16
A =
-0.16 1.16

b) Pairing for positive relative gains requires y;-u; and y,-U,.

18.22

For higher-dimension process (n>2) the RGA can be calculated from the
expression

Aij = Kij Hi
where Hjj is the (i,j) element of H = (K™")"

By using MATLAB,

62.23 -122.17 58.02
K'=|-84.47 170.83 -83.43
1.95 1485 13.09

62.23 -84.47 1.95
H=|-122.17 170.83 -14.85
58.02 —83.43 13.09

Thus the RGA is
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210.34 -211.18 1.89
A=|-390.95 40658 -14.642
181.60 -194.39 13.80

This RGA analysis shows the control difficulties for this process because of the
control loop interactions. For instance, if the pairings are 1-3, 2-2, 3-1, the third
loop will experience difficulties in closed-loop operation. But other options not be
better.

SVA analysis:

Determinant of K =| K| =0.0034
The condition number = CN = 1845

Since the determinant is small, the required adjustments in U will be very large,

resulting in excessive control actions. In addition, this example shows the K
matrix is poorly conditioned and very sensitive to small variations in its elements.

18.23 I

Applying SVA analysis:

Determinant of K =| K| =-6.76
The condition number = CN =542.93

The large condition number indicates poor conditioning. Therefore this process
will require large changes in the manipulated variables in order to influence the
controlled variables. Some outputs or inputs should be eliminated to achieve
better control, and singular value decomposition (SVD) can be used to select the
variables to be eliminated.

By using the MATLAB command SVD, singular values of matrix K are:
21.3682
z 6.9480

1.1576
0.0394
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Note that o3/c4 > 10, then the last singular value can be neglected. If we eliminate
one input and one output variable, there are sixteen possible pairing shown in
Table S18.23, along with the condition number CN.

Pairing number  Controlled variables =~ Manipulated variables CN
1 Y1.Y2,Y3 Ug,Up,U3 114.29
2 Y1,¥Y2,¥3 Uq,U2,Us 51.31
3 Y1.Y2,y3 Ug,U3,Ug 398.79
4 Y1,Y2,Y3 Up,Us,Us 315.29
5 Y1,Y2,Ya Uz, Uz, U3 42.46
6 Y1,Y2,Ya U1,U2,Us 30.27
7 Y1,¥Y2,Ya Ujp,Us,Us 393.20
8 Y1,¥Y2,Y4 Uo,Us,Us 317.15
9 Y1,Y3,Y4 uq,Uz2,U3 21.21
10 Y1,¥3,Y4 Uq,U2,Us 16.14
11 Y1,Y3,Y4 Ujp,Us,Us 3897.2
12 Y1,¥3,Y4 Uo,Us,Us 693.25
13 Y2,¥3,Y4 Ujp,Uo,U3 24.28
14 Y2,¥3:Y4 Ug,U2,Us 20.62
15 Y2,Y3,Y4 Ug,U3,Uq 1332.7
16 Y2,¥3,Ya Uo,Us,Us 868.34

Table S18.23. CN for different 3x3 pairings.

Based on having minimal condition number, pairing 10 (y1-Us,Y3-U2,Ya-Us)
is recommended. The RGA for the reduced variable set is

1.654 -0.880
A=|-0.785 3.742
0.1312 -1.8615
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18.24 I

1-2/2-1 controller pairing has a larger stability region compared with 1-1/2-2.

RGA:
1 1
= = =2.28
A 1- K, K, 1_1.5><1.5
K11K22 2X 2

228 -1.28
-1.28 228
Based on RGA, controller pairing should be 1-1/2-2 to avoid negative values.

Stability analysis is based on dynamic effects and employs the numerical region
of controller gain to get a stable closed-loop response. RGA is based on static
process gain (Kjj) analysis, which only show the open loop steady state behavior.

For this problem, 1-2/2-1 pairing has a larger stability region, which means choice
of K¢; and K, has a larger margin with guaranteed stability. However, around the
steady state, the negative RGA indicates control loop “fighting”, which may be
vulnerable to process noise. Thus, 1-2/2-1 pairing should be avoided in this case.
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Chapter 19

19.1

19.2

From definition of x;, 0 < x.<1
f(x) = 5.3 x e (36x*27)

Let three initial points in [0,1] be 0.25, 0.5 and 0.75. Calculate x4 using Eq. 19-
8,.

X1 fl X2 f2 X3 f3 X4

0.25 8.02 0.5 6.52 0.75 3.98 0.0167

For next iteration, select x4, and x; and x, since f; and f, are the largest among fi,
f,, f3. Thus successive iterations are

X1 fl X2 f2 X3 f3 Xa
0.25 8.02 0.5 6.52 0.017 1.24 0.334
0.25 8.02 0.5 6.52 0.334 7.92 0.271
0.25 8.02 0.334 7.92 0.271 8.06 0.280
0.25 8.02 0.271 8.06 0.280 8.06 not needed

x°Pt = 0.2799 7 function evaluations

As shown in the drawing, there is both a minimum and maximum value of the
air/fuel ratio such that the thermal efficiency is non- zero. If the ratio is too low,
there will not be sufficient air to sustain combustion. On the other hand, problems
in combustion will appear when too much air is used.

The maximum thermal efficiency is obtained when the air/fuel ratio is
stoichiometric. If the amount of air is in excess, relatively more heat will be
“absorbed” by the air (mostly nitrogen). However, if the air is not sufficient to
sustain the total combustion, the thermal efficiency will decrease as well.

Solution Manual for Process Dynamics and Control, 4th edition
Copyright © 2016 by Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp,
and Francis J. Doyle 11
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19.3

By using Excel-Solver, this optimization problem is quickly solved. The selected
starting point is (1,1):

X1 Xz
Initial values 1 1
Final values 0.776344 0.669679

max Y=| 0.55419

Constraints
0<X;£2
0<X, <2

Table S19.3. Excel solution
Hence the optimum point is ( X;*, Xo* ) =(0.776, 0.700)

and the maximum value of Y is Ymax = 0.554

194

Let N be the number of batches/year. Then NP > 300,000
Since the objective is to minimize the cost of annual production, only the required
amount should be produced annually and no more. That is,

NP = 300,000 1)

a) Minimize the total annual cost,

min TC = 400,000 ( $ j +2 POA( hr ] 5o(ij [ Dateh
batch batch hr yr

+800 P°-7(ij
yr

Substituting for N from (1) gives

min TC = 400,000 + 3x10” P%° + 800 P%’
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b)

There are three constraints on P

i) P>0
i) N is integer. That is,

(300,000/P) =0, 1, 2,...

iii) Total production time is 320 x 24 hr/yr

@ P°'4+14)( hr j « N[ 22 ) 7650
batch yr

Substituting for N from (1) and simplifying

6x10°P%% + 4.2x10°P* <7680

% =0=3x10"(-0.6)P*® +800(0.7)P**

oo _| 3x10'(-06) T _ o 1b
—800(0.7) batch

d?(TC)
dpP?

d?*(TC)
dpP?

=3x10"(-0.6)(-1.6)P*° +800(0.7)(-0.3)P™**

=2.26x107)0 hence minimum
P=p%®

N°P'= 300,000/P°"" = 102.35 not an integer.
Hence check for N°*' = 102 and N = 103

For N®'= 102, P® = 2941.2, and TC = 863207
For N = 103, P°*' = 2912.6, and TC = 863209
Hence optimum is 102 batches of 2941.2 Ib/batch.

Time constraint is

6x10°P°° +4.2x10° P~ =6405.8 < 7680, satisfied
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195

Let x; be the daily feed rate of Crude No.1 in bbl/day
X be the daily feed rate of Crude No.2 in bbl/day

Objective is to maximize profit
max P =3.00 x; + 2.0 X,
Subject to constraints

gasoline: 0.70x; +0.41x, <6000
kerosene:  0.06 x; +0.09x, <2400
fuel oil: 0.24 x; +0.50x, <12,000

By using Excel-Solver,

| X1 X2
Initial values 1 1
Final values 0 14634.15

max P= 29268.3

Constraints

0.70 x; + 0.31 %, 6000
0.06 x; + 0.09 x, 1317
0.24 x, + 0.60 %, 7317

Table S19.5. Excel solution

Hence the optimum point is (0, 14634.15)

Crude No.1 = 0 bbl/day Crude No.2 = 14634.15 bbl/day
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Obijective function is to maximize the revenue,
max R = -40x; +50x3 +70X4 +40X5 —2X1-2X2 (D)
*Balance on column 2
X2 = X4+ X5 2

* From column 1,

1.0
X1 = ﬁxz =1.667(X, + X;) (3)
_ 04
X3 = 0.60 X, =0.667(X, + X5) 4

Inequality constraints are

Xa > 200 ()
Xg < 400 (6)
x; < 2000 )
Xa=>0 X520 (8)

The restricted operating range for column 2 imposes additional inequality
constraints. Medium solvent is 50 to 70% of the bottoms; that is

05< <07 or 05<—2
X, X, + X

Rewriting in linear form,

05X <x4<0.7 or 0.5(Xg+X5)< X4 <0.7 (Xg + Xs)

Simplifying,
X4 —Xg >0 (9)
0.3x4-0.7xs <0 (10)

No additional constraint is needed for the heavy solvent. That the heavy solvent
will be 30 to 50% of the bottoms is ensured by the restriction on the medium
solvent and the overall balance on column 2.
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By using Excel-Solver,

| X1 X2 X3 Xa X5
Initial values 1 1 1 1 1
Final values 1333.6 800 533.6 400 400
max R = 13068.8
Constraints
Xo - X4 - X5 0
X1 - 1.667X, 7.467E-10
X3 - 0.667X, -1.402E-10
Xa 400
Xa 400
X1 - 1.667X, 1333.6
X4 - X5 0
0.3%4 - 0.7X5 -160

Table S19.6. Excel solution

Thus the optimum point is x; =1333.6, X, =800; x3=533.6, X4 =400 and
X5 = 400.

Substituting into (5), the maximum revenue is 13,068 $/day, and the
percentage of output streams in column 2 is 50 % for each stream.

The objective is to minimize the sum of the squares of the errors for the material
balance, that is,

min E = (Wa + 11.3 - 92.1)* + (Wa +10.9 —94.2)? + (wa + 11.6 —93.6)°
Subjecttowa >0

Solve analytically,

9E )2 (Wa+11.3— 92.1) + 2(wa +10.9-94.2)
dw,
+2(wp +11.6 —93.6)
Solving for wa_.. wa "' = 82.0 Kg/hr
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Check for minimum,

d’E .
> =2+2+2=6>0, hence minimum
dw,
19.8
The reactor equations are:
d
d_)f[i =-KX (1)
dx
d_t2 = k1X1 - kzxz 2)

Where kl —1.335*10% e775000/(8.31*T) . k2 —1.149*10" e7125000/(8.31*T)

By using MATLAB , this differential equation system can be solved using the
command “ode45”. Furthermore, we need to apply the command “fminsearch”
ino order to optimize the temperature. In doing so, the results are:

T, =360.92K; x =0.343

MATLAB code:

2,max

%% Exercise 19.8

function y = Exercise 19 8(T)
k10 = 1.335*10710; % min”(-1)
k20 = 1.149*10717; % min” (-1)
E1 = 75000; % J/(g.mol)

E2 = 125000; % J/(g.mol)
R =8.31; % J/(g.mol.K)
x10 = 0.7; % mol/L

x20 = 0; % mol/L

k1l =k1l0*exp (-E1/ (R*T));

k2 = k20*exp (-E2/ (R*T)) ;

time = [0,6]; % Time period;

initial val = [x10, x20];

options = odeset ('RelTol',le-4, "'AbsTol', [le-4 le-4]);

[~,X] = oded5(Rreactor, time,initial val, options);
y = -X(end, 2); % Because of fminsearch, has to be opposite
function dx = reactor(t,x)
dx = zeros(2,1); % A column vector
dx (1) = -kl*x(1);
dx (2) = kl*x(1)-k2*x(2);
end

end

%% Exercise 22.10 main

clear all;clc; close all;

T range = [200, 500];

T = fminsearch (@Exercise 19 8, 200);
x2 max =-Exercise 19 8(T);

19-7



19.9

By using Excel-Solver:

T T2

Initial values 1 0
Final values 2.907801325 1.992609
Time Equation Data Square Error
0 0 0 0
1 0.065457105 0.0583 5.12241E-05
2 0.200864506 0.2167 0.000250763
3 0.350748358 0.36 8.55929E-05
4 0.489635202 0.488 2.67388E-06
5 0.607853765 0.6 6.16816E-05
6 0.703626108 0.692 0.000135166
7 0.778766524 0.772 4.57858E-05
8 0.836422873 0.833 1.17161E-05
9 0.879953971 0.888 6.47386E-05
10 0.912423493 0.925 0.000158169
1 0.936416639 0.942 3.11739E-05

SUM= 0.000898685

Hence the optimal values are 7, =2.9;7, =1.99..

19.10

Let x; be gallons of suds blended
X2 be gallons of premium blended
X3 be gallons of water blended

Objective is to minimize cost

min C = 0.3x; + 0.40x; 1)

Subject to
X1 + X2 + X3 = 10,000 2
0.03 x; + 0.060 x, = 0.050x 10,000 (3)
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X, = 2000 (4)

x; < 9000 (5)
X, 20 (6)
X3 = 0 (7)

The problem given by Egs. 1, 2, 3, 4, 5, 6, and 7 is optimized using Excel-Solver,

x1 X2 x3
Initial values 1 0 0
Final values 2000 7333.333 666.6666667
Objective function 3533.333333
Constraints
X1+x2+x3 10000 = 10000
0.03x1+0.06x2 500 = 500
x1 2000 >= 2000
x1 2000 <= 9000
x2 7333.333333 >= 0
x3 666.6666667 >= 0

We obtain: suds = 2000 gallons; premium = 7333.3 gallons; water= 666.7 gallons,
with the minimum cost of $3533.3.

19.11

Let  Xa be bbl/day of A produced
Xg be bbl/day of B produced

Objective is to maximize profit

max P = 10xa + 14xg Q)
Subject to
Raw material constraint: 120xa+ 100xs <9,000 2
Warehouse space constraint: 0.5 x4 + 0.5 xg <40 3)
Production time constraint: (1/20)xa + (1/10)xg < 7 4
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Initial values 1 1
Final values 20 60

max P =[ 1040

Constraints

120X+ 100xg 8400
0.5 Xa + 0.5 Xg 40
(1/20)x + (1/10)Xg 7

Table S19.11. Excel solution

Thus the optimum point is xa =20 and xg = 60
The maximum profit = $1040/day

19.12

PID controller parameters are usually obtained by using either process model,
process data or computer simulation. These parameters are kept constant in many
cases, but when operating conditions vary, supervisory control could involve the
optimization of these tuning parameters. For instance, using process data, K¢ ,t
and tp can be automatically calculated so that they maximize profits. Overall
analysis of the process is needed in order to achieve this type of optimum control.

Supervisory and regulatory control are complementary. Of course, supervisory
control may be used to adjust the parameters of either an analog or digital
controller, but feedback control is needed to keep the controlled variable at or
near the set-point.

19.13

Assuming steady state behavior, the optimization problem is,

max f=De

Subject to
0.063c-De=0 1)
09se-09sc-0.7c-Dc=0 (2
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-09se+09sc+10D-Ds=0 )
D,e s,c2>0

where f=1(D, e, ¢, )

Excel-Solver is used to solve this problem,

| ¢ D e s
Initial values 1 1 1 1
Final values 0.479031 0.045063 0.669707 2.079784

max f = 0.030179
Constraints
0.063c-De 2.08E-09

09se-09sc-0.7c-Dc -3.1E-07
-09se+09sc+10D-Ds 2.88E-07

Table S19.13. Excel solution

Thus the optimum value of D is equal to 0.045 h™

19.14

Material balance:

Overall : FatFs=F

Component B:  Fg Cgr + VK1Ca — VK;Cg = F Cp

Component A:  Fa Car + VK,Cg— VK;1Ca = FCxp
Thus the optimization problem is:

max (150 + Fg) Cg
Subject to:

0.3 Fg +400C, —300Cg = (150 + Fg)Cpg

45 + 300 Cg — 400 Ca = (150 + Fg) Ca

Fg <200

Cap, Cg, Fg 20
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By using Excel- Solver, the optimum values are
Fg =200 I/hr
Ca =0.129 mol A/l

Cg=0.171 mol B/I

19.15 I

Material balance:
Overall : Fa+Fg=F
Component B:  Fg Cgr + VK;Cp— VK,Cg = F Cp
Component A:  Fa Car + VK;Cg— VK ;Cp = FCap
Thus the optimization problem is:
max (150 + Fg) Cg
Subject to:
0.3Fg + 3x10%%Nc, v —6x10%55NCg v = (150 + Fg)Cpg
45 + 6x10%55NCy v — 3x10%5%9 ¢, v = (150 + Fg) Ca
Fg <200
300 < T < 500
Ca, Cg, Fg =0
By using Excel- Solver, the optimum values are
Fg =200 I/hr
Ca =0.104 molA/I

Cg=0.177 mol B/I

T=3113K
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Chapter 20

20.1

b)

The unit step response is

Y(s)=G (s)U(s):( 3™ J(Enge-mF_ H 2 }
P (15s+1)(10s +1) )\ s s 15s+1 10s+1

Therefore,
y(t) =3S(t—2)[1+2e D10 g " ]
For At=1,
S, = y(iAt) = y(i) = {0, 0, 0.0095, 0.036, 0.076, 0.13...}
Evaluate the expression for y(t) in part (a)
y()=0.99 (3)=2.97at t=87.

Thus, N =87, for 99% complete response.

Note that G(s) =G, (s)G, (s)G,, (s). From Figure 12.2,

Yo(8) _ gy = _40-39)

2 =G5 = (1)
(s) (15s+1)(55+1)

For a unit step change, P(s) =1/s , and (1) becomes:

1 4(1-3s)

Yn(9)=5 (155 +1)(55 +1)

© Solution Manual for Process Dynamics and Control, 4th edition
Copyright © 2016 by Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp,
and Francis J. Doyle Il
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Partial Fraction Expansion:

A B 1 4(1-
Y,(5) =2+ po 14099 @
S (15s+1) (5s+1) s (@5s+1)(5s+1)
where:
o 41-3s) |
(155 +1)(5s +1)|_,
B 4(1-3s) __108
s(5s+1)|_ 1
15
C= M =16
s(15s+1)| _1
5
Substitute into (2) and take the inverse Laplace transform:
ym (t) — 4—%8“15 +Ee7t/5 (3)
b) The new steady-state value is obtained from (3) to be yn()=4.
Fort =1tg9, Ym(t)=0.99ym(0) =3.96. Substitute into (3)
396 =40 gwns 10w (4)
5 5
Solving (4) for tgg gives tgg ~ 77.9 min
Thus, we specify that At =77.9/30 ~ 3 min
Table S20.2. Step response coefficients
k t (min) S; k t (min) S; k t (min) S;
1 3 -0.139 11 33 3.207 21 63 3.892
2 6 0.138 12 36 3.349 22 66 3.912
3 9 0.578 13 39 3.467 23 69 3.928
4 12 1.055 14 42 3.563 24 72 3.941
5 15 1.511 15 45 3.642 25 75 3.951
6 18 1.919 16 48 3.707 26 78 3.960
7 21 2.272 17 51 3.760 27 81 3.967
8 24 2.573 18 54 3.803 28 84 3.973
9 27 2.824 19 57 3.839 29 87 3.978
10 30 3.034 20 60 3.868 30 90 3.982
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From the definition of matrix S, given in Eg. 20-28, for P=5, M=1, with §;
obtained from Exercise 20.1,

S, 0

s,| |o.01811
S=|S, |=|0.06572

S, | | 01344

'S, | | 02174 |

From Eq. 20-65:
K= (S'S)*s’
K.=[0 0.2589 0.9395 1.9206 3.1076] =Kc'

Because K" is defined as the first row of K., Using the given analytical
result,

1
|<ﬂT = [81 Sz S3 S4 Ss]
2
i=1
Ka' = — = [0 0.01811 0.06572 0.1344 0.2174]
0.06995
Ka' = [0 0.2589 0.9395 1.9206 3.1076]

which is the same as the answer that was obtained above using (20-65).

The step response is obtained from the analytical unit step response as in
Example 20.1. The feedback matrix K. is obtained using Eq. 20-65 as in
Example 20.5. These results are not reported here for sake of brevity. The
closed-loop response for set-point and disturbance changes are shown
below for each case. The MATLAB MPC Toolbox was used for the
simulations.
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For this model horizon, the step response is over 99% complete as in
Example 20.5; hence the model is good. The set-point and disturbance
responses shown below are non-oscillatory and have long settling times

Outputs
15 T T T T T T T T T
Wt
y
0.5F 4
00 10 20 30 40 50 60 70 80 90 100
Time
Manipulated Variables
2 T T T T T T T T T
15F 1
u 1f 4
0.5F
00 10 20 30 40 50 60 70 80 90 100
Time
Figure S20.4a. Controller i); set-point change.
Outputs
0.8 T T T T T T T T T
0.6 b
Yy 0.4fF o
0.2 1
00 10 20 30 40 50 60 70 80 90 100
Time
Manipulated Variables
0 T T T T T T T T T
0.5F T
u
AaF
_15 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Time
Figure S20.4b. Controller i); disturbance change.
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i) The set-point response shown below exhibits same overshoot, smaller
settling time and undesirable "ringing” in u compared to part i). The
disturbance response shows a smaller peak value, a lack of oscillations,
and faster settling of the manipulated input.

Outputs
15 T T T T T T T T T
1 -
y
0.5F T
0 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Time
Manipulated Variables
15 T T T T T T T T T
10F b
5 - -~
u
ol =
St u
_10 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Time
Figure S20.4c. Controller ii); set-point change.
Outputs
0.4 T T T T T T T T T
0.3fF T
y 02f ]
0.1F b
0 1 1 1 1 + i i L
0 10 20 30 40 50 60 70 80 90 100
Time
Manipulated Variables
0 T T T T T T T T T
-0.5F 1
u
_1 -
15 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time

Figure S20.4d. Controller ii); disturbance change.
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i) The set-point and disturbance responses shown below show the same
trends as in part i).

Outputs
1.5 T T T T T T T T T
1k
y
0.5F 1
0 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Time
Manipulated Variables
10 T T T T T T T T T
5| ]
u oF =
SF ~
-10 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Time
Figure S20.4e. Controller iii); set-point change.
Outputs
0.4 T T T T T T T T T
0.3fF T
y 0.2F 1
0.1F b
0 1 1 1 1 L L L
0 10 20 30 40 50 60 70 80 90 100
Time
Manipulated Variables
0 T T T T T T T T T
-0.5F 1
u
_1 -
_15 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Time

Figure S20.4f. Controller iii); disturbance change.
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The set-point and load responses shown below exhibit the same trends as
in parts (i) and (ii). In comparison to part (iii), this controller has a larger
penalty on the manipulated input and, as a result, leads to smaller and less
oscillatory input effort at the expense of larger overshoot and settling time
for the controlled variable.

Outputs

15 T T T T T T T T T

1k

y

0.5F -

0 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
Time

Manipulated Variables

T T T T T T T T

1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 920 100

Time

Figure S20.4g. Controller iv); set-point change.

Outputs
0.5 T T T T T T T T
0.4F 1
0.3F -
y
0.2F -
0.1 1
0 1 1 1 1 i L L
0 10 20 30 40 50 60 70 80 90 100
Time
Manipulated Variables
0 T T T T T T T T T
-0.5F 1
u
_1 -
15 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time

Figure S20.4h. Controller iv); disturbance change.
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20.6

There are many sets of values of M, P and R that satisfy the given
constraint for a unit load change. One such set is M=3, P=10, R=0.01 as
shown in Exercise 20.4(iii). Another set is M=3, P=10, R=0.1 as shown in
Exercise 20.4(iv). A third set of values is M=1, P=5, R=0 as shown in
Exercise 20.4(i).

(Use MATLAB Model Predictive Control Toolbox)

As shown below, controller a) gives a better disturbance response with a
smaller peak deviation in the output and less control effort. However,
controller (a) is poorer for a set-point change because it leads to
undesirable "ringing" in the manipulated input.

Outputs

15

0 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Time

Manipulated Variables
15

10F b

10 I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

Time

Figure S20.6a. Controller a); set-point change.
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15

0.5

15

0.4

0.3

0.2

0.1

-0.5

-1.5

Outputs

0 10 20 30 40 50 60 70 80 920 100
Time
Manipulated Variables
T T T T T T T T T
1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100
Time
Figure S20.6b. Controller a); disturbance change.
Outputs
T T T T T T T T T
1 1 1 1 L L L
10 20 30 40 50 60 70 80 90 100
Time
Manipulated Variables
T T T T T T T T T
1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100
Time

Figure S20.6¢. Controller b); set-point change.
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Outputs

0.4 T T T T T T T T T
0.3 .
y 02f 1
0.1 o
0 1 1 1 1 L L L
0 10 20 30 40 50 60 70 80 90 100
Time
Manipulated Variables
O T T T T T T T T T
0.5 .
u
-1F
15 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time

Figure S20.6d. Controller b); disturbance change.

The unconstrained MPC control law has the controller gain matrix:
Ke = (S'QS+R)7S'Q

For this exercise, the parameter values are:
m=r =1 (SISO), Q=I, R=1 and M=1

Thus (20-65) becomes
Ke = (S'QS+R)™S'Q
[S, S, S,...S; ]

P

ZSi2+1

i=1

Which reduces to a row vector: K. =
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20.8

a) M=5 vs. M=2

y()

u(t)

y(®)

u(t)

(Use MATLAB Model Predictive Control Toolbox)

I,\\\ — XD
15F / -\ -=- XB
1 S~o
! S~
b e e o ———————— s T s ————- -~
1 -
]
/
0.5F u
!
MM
0 -~
0.5 1 1 1 1 1 1
0 20 40 60 80 100 120 140
Time (min)
0.2 T T T T T
r -
J e S
0.1f - g
1
1
ot ! ]
1
1
1
Ol e | h
r
d
0.2 1 1 1 1 1 1
0 20 40 60 80 100 120 140
Time (min)
Figure S20.8al. Simulations for P=10, M=5 and R=0.11.
2 T T /{ T T T
[ — X
\
15r I’ —\\ - %
1 S~o
e U
S [ it i
1 -
1
/
0.5F o
!
&
0 -~
05 1 1 1 1 1 1
0 20 40 60 80 100 120 140
Time (min)
0.2 T T T T T T
.- — R
1 ..L.. _________ -= S
0.1F F T B
r
1
of L i
1
1
1
Ol i = 1 |
r
1
0.2 1 1 1 1 1 1
0 20 40 60 80 100 120 140
Time (min)

Figure S20.8a2. Simulations for P=10, M=2 and R=0.11.
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b) R=0.11 .vs

R=I

y(@)

u(t)

15

y(®)
0.5

-0.5
0

0.2

0.1

uw o

-0.1

-0.2

05 I I I I I
0

0.2 I I I I
0

~~
Se—aa

0.5F 1

140

0.2 T T T T T T

~———— ——

0.1

O [ ———— I

I I
100 120

Time (min)

Figure S20.8b1. Simulations for P=10, M=5 and R=0.1l.

~o
~—~e

140

e e e e e e —————————

- ———

100 120 140

Time (min)

Figure S20.8b2. Simulations for P=10, M=5 and R=I.

140

Notice that the larger control horizon M and the smaller input weighting
R, the more control effort is needed.
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20.9

20.10

The open-loop unit step response of Gy(s) is

=1 1 10
t)y= [1 € 2l e-es(__ j — S(t— @)l e--0)10
ye) [103+1sj ( s 10s+1 ( )[ ¢ ]

By trial and error, y(34) < 0.95, y(36) > 0.95.

Therefore NAt =36 or N = 18.

The coefficients {Si} are obtained from the expression for y(t) and the
predictive controller is obtained following the procedure of Example 20.5.
The closed-loop responses for a unit set-point change are shown below for
the three sets of controller design parameters.

Note: These results were generated using the PCM Furnace Module, MPC option

¢) Co, Set-point change

The set-point responses in Figs. S20.10a and . S20.10b demonstrate that
increasing the elements of the R matrix makes the controller more
conservative and results in more sluggish responses.
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0 100 200 300 0 100 200 300

——R=[0.10.1] = = =R=[0.50.5] " Set Point

”g 18 @ 30

s :

= =
- Z 16 25 - - -
O™ 5 8 -
L wh %

{‘E 1.4 < 20

= E

4 o

L 12 © 15

0 100 200 300 0 100 200 300

t (min) t (min)

Figure S20.10a. Co, Set-point change from 0.922 to 1.0143 for P=20, M=1, and

Q = diag [0.1, 1]. The two series represent R = diag [0.1, 0.1] and R = diag
[0.5, 0.5].
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d) Step disturbance in hydrocarbon flow rate

The disturbance responses in Fig. S20.10b are sluggish after an initial
oscillatory period, and the two MVs change very slowly. When the diagonal
elements of the R matrix are increased to 0.5, the disturbance responses are
even more sluggish.
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Figure S20.10b. The two series represent R = diag [0.1, 0.1] and R = diag [0.5,
0.5].

20.11

We repeat 20.10 for R [0.1 0.1], Q =[0.1 1] and (a) M=1 and (b) M=4

First we evaluate the controller response to a step change in the oxygen concentration setpoint
from 0.922 to 1.0143.
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Figure S20.11a. Step change in oxygen concentration setpoint for P=20, Q =
diag [0.1, 1], R =diag [0.1, 0.1], and M=1 or M=4.

Next we test a step change in the hydrocarbon flow rate from 0.035m*/min to 0.038m*/min.
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Figure S20.11b. Step change in fuel gas flow rate for P=20, Q =diag [0.1, 1], R
=diag [0.1, 0.1], and M=1 or M=4.

20.12

Note: These results were generated using the PCM Distillation Column Module,
MPC option

For parts (a) and (b), the step response for the models were generated in the
workspace. Then the PCM distillation column module was opened. The controller
parameters were entered into the MPC controller as specified in parts (a) and (b).
Then, the tests described in parts (c)-(e) were carried out for each controller. The
results are shown below.

(c) Step change in xD setpoint from 0.85 to 0.8
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Figure S20.12a. Step change in xD setpoint from 0.85 to 0.8 for Q=diag [0.1
0.1] and Q=diag [0.5 0.5].
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(d) Step change in xB setpoint from 0.15 to 0.20
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Figure S20.12b. Step change in xB setpoint from 0.15 to 0.2 for Q=diag [0.1
0.1] and Q=diag [0.5 0.5].
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(e) Step change in column feed flow rate from 0.025 to 0.03
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Figure S20.12a. Step change in column feed flow rate from 0.025 to 0.03 for
Q=diag [0.1 0.1] and Q=diag [0.5 0.5].

20.13

We repeat problem 20.12, but this time we look at the case where R = [0.1 1], Q = [0.1 0.1], and
M=1 or M=5. The same three tests are repeated from 20.12.

(c) Step change in xD from 0.85t0 0.8
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Figure S20.13a. Step change in xD setpoint from 0.85 to 0.8 for M=1 and M=5.
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(d) Step change in xB setpoint from 0.15 to 0.20
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Figure S20.13b. Step change in xB setpoint from 0.15 to 0.2 for M=1 and M=5.
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(e) Step change in column feed flow rate from 0.025 to 0.03
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Figure S20.13c. Step change in column feed flow rate from 0.025 to 0.03 for
M=1 and M=5.
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Chapter 21 ©

No. It is desirable that the minimum value of the output signal be greater
than zero, in order to readily detect instrument failures. Thus, for a
conventional electronic instrument, an output signal of 0 mA indicates that
a malfunction has occurred such as a power failure. If the instrument range
were 0-20 mA, instead of 4-20 mA, the output signal could be zero during
normal operation. Thus, instrument failures would be more difficult to
detect.

The difference between a measurement of 6.0 and the sample mean, 5.75,
is 0.25 pH units. Because the standard deviation is s = 0.05 pH units, this
measurement is five standard deviations from the mean. If the pH
measurement is normally distributed (an assumption), then Fig. 21.7
indicates that the probability that the measurement is less than or equal to
five standard deviations from the mean is 0.99999943. Thus, the probability
p of a measurement being greater than five standard deviations from the
mean is only p =1 - 0.99999943 = 5.7x10"". Consequently, the probability
that a measurement will be larger than five standard deviations from the
mean is half of this value, p/2, or 2.85x107. A very small value!

Make the usual SPC assumption that the temperature measurement is
normally distributed. According to Eqg. 21-6, the probability that the
measurement is within three standard deviations from the mean is 0.9973
Thus, the probability that a measurement is beyond these limits, during
routine operation is p = 1- 0.9973 = 0.0027. From Eq. 21-19, the average
run length ARL between false positives is,

ARL = L ~ 366 samples
p
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Thus for a sampling period of one minute, on average we would expect a
false positive every 366 min. Consequently, for an eight hour period, the
expected number of false alarms N is given by:

(8h)(60samples/h) 1.31~[1 falsealarm

- 366 samples/falsealarm

Let p denote the desired probability.

(@ p=1(0.95)%=0.857
(b) p=1(0.05°=1.25x 10"

(c) A much better approach is available. The median of the three
measurements is much less sensitive to a sensor failure. Thus, it
should be used instead of the average.

A plot of the data in Figure S21.5 does not indicate any abnormal
behavior.

0.85 ~
0.84 *
0.83

0.82

Impurity | g1 . ¢
% *
(%) 0.8 -
0.79 *

0.78 T T T T 1

Sample Number

Figure S21.5. Impurity data for Exercise 21.5.

The following statistics and chart limits can be calculated from the data:

UCL =T + 30 = 0.8 + 3(0.021) = 0.863 %
LCL =T-3c =0.8-3(0.021) =0.737 %
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(@)

Figure S21.5 indicates that all eight data points are within the Shewhart
chart limits.

A standard CUSUM chart (k=0.5, h=5) also does not exhibit any chart
violations since the CUSUM chart limit is h = 5c = 0.105 and neither C* or
C" calculated from Eq. 21-21 and 21-22 exceed this limit. The CUSUM
calculations are shown in Table S21.5.

Table S21.5. CUSUM calculations for Exercise 21.5

Deviation
Day Impurity (%) from Target CUSUM +CUSUM -

1 0.812 0.012 0.0015 0
2 0.791 -0.009 0.0015 0
3 0.841 0.041 0.0320 0
4 0.814 0.014 0.0355 0
5 0.799 -0.001 0.0355 0
6 0.833 0.033 0.0580 0
7 0.815 0.015 0.0625 0
8 0.807 0.007 0.0625 0

The Shewhart chart for the rainfall data is shown in Fig. S21.6a. The
following items were calculated from the data for 1870-1919:

s= 7.741in. UCL = 41.9in.
X =18.6in. LCL = -4.71in. (actually zero)

The rainfall exceeded a chart limit for only one year, 1941.
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Figure S21.6a. Shewhart chart for rainfall data.

The control chart for the standard deviation of the subgroup data (for each
decade) is shown in Fig. S21.6b. The following items were calculated for
the sub-group data prior to 1940:

S =6.87in.
UCL = B4S = (1.716)(6.87 in) = 11.8 in.
LCL = B3S = (0.284)(6.87 in) = 1.95 in.
The sub-group data does not violate the chart limits for 1940-1990.

121 UCL

Standard deviation (in)

LCL

O r r r i
1940 1950 1960 1970 1980 1990
Year (end of decade)

Figure S21.6b. Standard deviations for sub-groups.
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The CUSUM and EWMA control charts for the period 1900-1960 are
shown in Figure S21.7. The Shewhart chart and the data are also shown in
the top portion, for the sake of comparison. The following statistics and
chart limits were calculated from the data for 1900 through 1929:

s=7.02in. X =19.21in.
Control Chart UCL (in.) LCL (in.)

Shewhart 40.2 - 1.9 (actually zero)
CUSUM 35.1 0
EWMA 27.1 11.2

The rainfall exceeded a Shewhart chart limit for only one year, 1941 the
wettest year in the dataset. The CUSUM chart has both high (C*) and low
(C) chart violations during the initial period, 1900-1929. Two subsequent
low limit violations occurred after 1930. After each CUSUM violation, the
corresponding sum was reset to zero. No chart violations occur for the
EWMA chart and the entire dataset.

The CUSUM chart indicate that the period from 1930 to 1950 had two dry
spells while the Shewhart chart identifies one wet spell. The rainfall during
the 1950s was quite normal.
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21.8

CUSUM Rainfall (in)

EWMA

UCL A

30 LY LY L L L

25 UCL -

20k 7

15 7
LCL

10 L L L L L

1900 1910 1920 1930 1940 1950 1960

Year

Fig. S21.7. Control charts for Rainfall Data.

In general, it is preferable to plot unfiltered measurements because they
contain the most information. However, it is important to be consistent.
Thus, if the control chart limits were calculated based on unfiltered data,
unfiltered measurements should be plotted for subsequent monitoring.
Conversely, if the chart limit calculations were based on filtered data,
filtered measurements should be plotted.

The control charts in Fig. S21.9 do not exhibit any control chart violations.
Thus, the process performance is considered to be normal. The CUSUM
chart was designed using the default values of K=0.56=0.5s and
H =56 = 5swhere s is the sample standard deviation. The EWMA chart

was designed using A=0.25.
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21.10

N
o

BOD (mg/L)
N
o
I
%8

ki r r r r r
0 5 10 15 20 25 30
30 F L L L T T
UCL
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Sample Number
Figure S21.9. Control charts for the BOD data of Example 21.5.

By definition,
- USL - LSL

C
P 6o

(21-25)
Because the population standard deviation o is not known, it must be
replaced by an estimate, 6. Let 6= s where s is the sample standard
deviation. The standard deviation of the BOD data is s = 5.41 mg/L.
Substitution gives,

C =
P 6(5.41)
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21.11

Capability index Cpk is defined as:
min [X — LSL, USL —X]
3o

The sample mean for the BOD data is X = 20.6 mg/L. Substituting
numerical values into (21-26) gives:

C,, = min [20.6 -5, 35—20.6] _ 0887

3(5.41)

Cy

(21-26)

Because both capability indices are less than one, the product specifications
are not being met and process is considered to be performing poorly.

By definition,

3 USL - LSL

C
P 6o

(21-25)
Because the population standard deviation o is not known, it must be
replaced by an estimate, 6. Let 6= s where s is the sample standard
deviation. The standard deviation of the solids data is s = 56.3 mg/L.
Substitution gives,

1600-1200
c, - 100120 g

6(56.3)
Capability index Cyk is defined as:

. min [X — LSL, USL —X]

¢ P 3o

(21-26)

The sample mean for the solids data is X = 1413 mg/L. Substituting
numerical values into (21-26) gives:

_ min[1413-1200,1600-1413] m

C
P 3(56.3)

Because both capability indices are well below the acceptable value of 1.5,
the process is considered to be performing poorly.
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21.12

The new data are plotted on a T2 chart in Fig. S21.12. A chart violation
occurs for the second data point. Because one of the six measurements
is beyond the chart limit, it appears that the process behavior could be
abnormal. However, this measurement may be an “outlier” and thus
further investigation is advisable. Also, additional data should be
collected before concluding that the process operation is abnormal.

Note that the previous control chart limit of 11.63 from Example 21.6
is also used in this exercise.

14 3 3 T 3 3

I
1

13 x

12 UCL T
11

1
1

I
1

12 10

9~ X - y

a (o)} ~ oo
¥ T
X
1

r r r r r

0 1 2 3 4 5 6
Sample Number

Figure S21.12. T? Control chart and new wastewater data.
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Chapter 22

22.1
Microwave Operating States
- . . Rotating | Microwave | Door
Condition Fan | Light | Timer Base Generator | Switch
Open the door
Place the food inside OFF | ON | OFF OFF OFF ON
Close the door OFF | OFF | OFF OFF OFF OFF
Set the time OFF | OFF | OFF OFF OFF OFF
Heat up food ON | ON ON ON ON OFF
Cooking complete OFF | OFF | OFF OFF OFF OFF
Safety Issues:
o Door switch is always OFF before the microwave generator is turned ON.
o Fanalways ON when microwave generator is ON.
22.2
Input Variables:
ON
STOP
EMERGENCY
Output Variables:
START (1)
STOP 0)

Solution Manual for Process Dynamics and Control, 3rd edition
Copyright © 2011 by Dale E. Seborg, Thomas F. Edgar and Duncan A. Mellichamp,
and Francis J. Doyle Il
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Truth Table

ON STOP EMERGENCY START/STOP
1 1 1 0
0 1 1 0
1 0 1 0
0 0 1 0
1 1 0 0
0 1 0 0
1 0 0 1
0 0 0 0

The truth state table is used to find the logic law that relates inputs with
outputs:

ON e STOP « EMERGENCY

Applying Boolean Algebra we can obtain an equivalent expression:

ON e (STOP ¢« EMERGENCY ) =ON e (STOP + EMERGENCY )

Finally the binary logic and ladder logic diagrams are given in Figure
S22.2:

Binary Logic Diagram:

ON
STOP
EMERGENCY

Ladder Logic Diagram
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Figure S22.2.
22.3

A B Y
0 0 1
1 0 1
1 1 1

From the truth table it is possible to find the logic operation that gives the
desired result,

AeB

Since a NAND gate is equivalent to an OR gate with two negated inputs,

our expression reduces to: AeB=A+B

Finally the binary logic diagram is given in Figure S22.3.
—A

fBM}Yﬁ

Figure S22.3.
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Information Flow Diagram

Inlet valve
closed
Outlet valve
open
Stirrer OFF

Inlet valve
open
Outlet valve

Inlet valve
closed
Outlet valve
open
Stirrer OFF
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Ladder Logic Diagram

L, e
Start é L hd
CRl
H LH Tsetpoint
I
CRl
% M
\ N
CRZ CRZ
L~
)
i ] T sop e
Ml MZ
LH LL Tsetpoint

Sequential Function Chart
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— Fill the tank

Liquid Level = LH

la Open inlet valve 1b — Close exit valve
2 — Heat liquid
—_— Temperature = Tsemwl
3 — Empty tank
—— Liquid Level = LL
3a Close inlet valve 3b — Open exit valve

Figure S22.4.
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Information Flow Diagram

START

No

Temperature>T,,

Heat OFF
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Ladder Logic Diagram:

R1=Pump1l R2=Valve2 R3=Heater R4=Pump?2

L R )
Start g) -/ \
Cm Cm
L
|| 1
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Sequential Function Chart:

1 Initial Step
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—— 1 —_— L1
Full
-1
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1w
Figure S22.5.
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22.6

Information Flow Diagram:

START

Open V, /

No

\ §

OpenV,
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Sequential Function Chart:

Init —| Tank 1 |

Init —| Tank 2 |

B = 1"
2

—_L2 — L4
Empty [ Close V1 Empty [ Close V2
1 Open W1 Open W2
—_— L1 -3
Ladder Logic Diagram:
L Valve 1
e [ | |
Start l = ? I
CRl CR3 CRl
Il L, Ly I | Valve 2
I I A —0O—
CRl CRZ CR4 CR‘Z
]
\
CRZ Wl
T 0O~
CRS CRE CR3
=
Crs || | W
I A —0O—
CR4 CRG CR4
S
CR4
S
CRS
S
CRG
Figure S22.6.
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Information Diagram:

No
START

Yes Close V2

<
=
0 d

Stop M Open V2 Open V3

Stop M
Close v2 Close V3
A 4
Open V4
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Ladder Logic Diagram:

R1=V1 R2= M R3= V4 R4= V2 R5= V3
1 N
Start $ M ot

CR3 CRl
Il LS2
[
CRl
T T o
LSZ‘ | LS1
[l
CRZ
m
P o é/g
LSB‘ | LS2
[l
CR3
/t‘/ /P/ '
P Cu Car S
LS2 Ps
Hf—C0O—
? A ? CR3 CRS
LS2 Ps LS1

|

CRS

Seguential Function Chart:

——Ls2

- rte,

=

—T-L=Ls3 —Tr=p,

Full Closeva prain |- Closev2

Open V3

—-Ls1

Reduce —| Open V4
Stop Stop M

Level

Close V3

—1— Ls2

Figure S22.7.
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22.8

In batch processing, a sequence of one or more steps is performed in a defined
order, yielding a finished product of a specific quantity. Equipment must be
properly configured in unit operations in order to be operated and maintained in a
reasonable manner.
The discrete steps necessary to carry out this operation could be:

.- Open exit valve in tank car.

-~ Turnon pump 1

.- Empty the tank car by using the pump and transfer the chemical

to the storage tank (assume the storage tank has larger capacity

than the tank car)

.- Turn off pump 1

.- Close tank car valve (to prevent backup from storage tank)

.- Open exit valve in storage tank.

.- Transfer the chemical to the reactor by using the second pump

.- Close the storage tank exit valve and turn off pump 2.

.- Wait for the reaction to reach completion.

.- Open the exit valve in the reactor.

.- Discharge the resulting product

Safety concerns:

Because a hazardous chemical is to be handled, several safety issues must
be considered:

.- Careful and appropriate transportation of the chemical, based
on safety regulation for that type of product.

.- Appropriate instrumentation must also be used. Liquid level

indicators could be installed so that pumps are turned off based on
level.
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.- Chemical leak testing, detection, and emergency shut-down
.- Emergency escape plan.

Therefore, care should be exercised when transporting and operating hazardous
chemicals. First of all, tanks and units should be vented prior to charging.
Generally, materials should be stored in a cool dry, well-ventilated location with
low fire risk. In addition, outside storage tanks must be located at minimum
distances from property lines.

Pressure, level, flow and temperature control could be utilized in all units. Hence,
they must be equipped with instrumentation to monitor these variables. For
instance, tank levels can be measured accurately with a float-type device, and
storage temperatures could be maintained with external heating pads operated by
steam or electricity. It is possible for a leak to develop between the tank car and
storage tank, which could cause high flow rates, so a flow rate upper limit may be
desirable.

Valves and piping should have standard connections. Enough valves are required
to control flow under normal and emergency conditions. Centrifugal pumps are
often preferred for most hazardous chemicals. In any case, the material of
construction must take into account product chemical properties.

Don't forget that batch process control often requires a considerable amount of

logic and sequencing for their operation. Besides, interlocks and overrides are
usually considered to analyze and treat possible failure modes.

1.- Because there is no steady state for a batch reactor, a new linearization
point is selected at t = 0. Then,

*

Linearization point for batch reactor: t=0 =t

2.- Available information:

k =2.4%x10%e T (min ') where Tisin °R
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BTU

C =0.843 V =1336 ft*
Ib°F
Ib ft®
=52— =26
P fit? a min
kJ mol
—AH) =500—— C, =038
( ) mol Al ft®
T. =150°F T,=25°C
UA =142.03 F(J
min°F

For continuous reactor, T =150°F

Physical properties are assumed constant.

Problem solution:

A stirred batch reactor has the following material and energy balance
equations:

dC

-kC, =—2 1

A gt (1)

dT
(~AH)KVC, +UA(T, -T) =VpC m (2)
where k = ke ®'F

From Egs. 1 and 2, linearization gives:

o a, « _gmee E -, dC;
_[k C, +kC,+C, ke E/RT WT}: th (3)

P * *  —E/RT" E ’

(—AH)V |:k CA +k CA+CA koe FT:|
AUA(T/~T’) =V pC ddt @)

Rearranging, the following equations are obtained:
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dc,

bllC/’A + blZTI = dt (5)
bZlCA + bzzT "+ b23T5' = dl (6)
dt
where

~ (_AH )koefE/RT*

b =155.30
21 oC
1 -« E A
b,, =—(-AH )ko(:'rE/RT Ch [—*2) N U— =6.66
pC RT pVC
A
b,, = YA 5 43x10°
pVC

From Example 4.8, substituting values for continuous reactor

a,, =—13.636

a, =-8.35x10""

a,, =155.27
a,, = —0.0159
b, =2.43x10°°

(Note that , from material balance, C, =0.00114)

Hence the transfer functions relating the steam jacket temperature T/(s)
and the tank outlet concentration C/ (s) are:
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22.10

Continuous reactor:

Ci(s) ~ -203x10° -5.86x10"°
T/(s) s°+13.651s+0.3464 2.887s°+39.4s+1

then Tdom~ 35min

Batch reactor:

C,(s) ~ -1.424x10°  -547x10°
T/(s) s°+6.931s+0.26 3.84s”+26.65s5+1

then Tdom~ 25 min
As noted in transfer functions above, the time constant for the batch is

smaller than the time constant for the continuous reactor, but the gain is
much larger.

The reactor equations are:

dx,

E - _klxl (1)
dx
d_'[2 = klxl - k2X2 (2)

where k;= 1.335x 10'%e 729V XD and ko= 1.149x 10"e12000E XD

By using MATLAB, this differential equation system can be solved using
the command "ode45". Furthermore we need to apply the command
"fminsearch" in order to optimize the temperature. In doing so, the results
are:

a) Isothermal operation to maximize conversion (x»(8)):

Top = 357.8 K and X2max = 0.3627
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b) Cubic temperature profile: the values of the parameters in T=ao +
art + axt® + ast® that maximize x,(8) are:

ag=372.78

a; =-10.44 and Xomax = 0.3699
a, =2.0217

az; =-0.1316

The optimum temperature profile and the optimum isothermal operation
are shown in Fig. S22.10.

375 T T
—— Temperature profile

370

365~

T(K)

360 -
Isothermal operation

355~

350 r i r i i i i
] 1 2 3 4 5 6 7 8

time

Figure S22.10. Optimum temperature for the batch reactor.

MATLAB simulation:

a) Constant temperature (First declare Temp as global variable)

1.- Define the differential equation system in a file called batchreactor.

function dx dt=batchreactor (time_ row,x)

global Temp

dx dt(1,1)=-1.335el0*x (1) *exp(-75000/8.31/Temp) ;
dx dt(2,1)=1.335el0*x (1) *exp(-75000/8.31/Temp) -
1.149el17*x(2) *exp (-125000/8.31/Temp) ;

2.- Define a function called conversion that gives the final value of x, (given a
value of the temperature)

function x2=conversion (T)

global Temp

Temp=T;

x 0=[0.7,01;

[time row, x] = oded45('batchreactor', [0 8], x 0 );
x2=-(x(length(x),2));

3.- Find the optimum temperature by using the command fminsearch
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[T, negative x2max]=fminsearch('conversion', T,)

where T, is our initial value to find the optimum temperature.

b) Temperature profile (First declare a0 al a2 a3 as global variables)

1.- Define the differential equation system in a file called batchreactor2.

function dx dt=batchreactor2 (time row, x)

global a0 al a2 a3
Temp=al+al*time row+aZ*time row”2+a3*time row"3;
dx dt(1,1)=-1.335el0*x (1) *exp(-75000/8.31/Temp) ;
dx dt(2,1)=1.335el10*x (1) *exp (-75000/8.31/Temp) -
1.149%el17*x(2) *exp (-125000/8.31/Temp) ;

2.- Define a function called conversion2 that gives the final value of x, (given
the values of the temperature coefficients)

function x2b=conversion (a)

global a0 al a2 a3
al=a(l);al=a(2);a2=a(3);a3=a(4);x 0=[0.7,0];

[time row, x] = oded5 ('batchreactor2', [0 8], x 0 );
x2b=-x (length(x),2);

3.- Find the optimum temperature profile by using the command fminserach

[T,negative_x2max]:fminsearch('conversion2', as)

where a, is the vector of initial values to find the optimum temperature profile.

22.11 I

The intention is to run the reactor at the maximum feed rate of the gas to
minimize the time cycle, but the reactor is also cooling-limited. Therefore,
if the pressure controller calls for a gas flow that exceeds the cooling
capability of the reactor, the temperature will start to rise. The reaction
temperature is not critical, but it must not exceed some maximum
temperature. The temperature controller will then take over control of the
feed valve and reduce the feed rate. The output of the selector sets the
setpoint of a flow controller. The flow controller minimizes the effects of
supply pressure changes on the gas flow rate. So this is a cascade type
control system, with the primary controller being an override control
system.
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22.12

In an override control system, one of the controllers is always in a standby
condition, which will cause that controller to saturate. Reset windup can
be prevented by feeding back the selector relay output to the setpoint of
each controller. Because the reset actions of both controllers have the
same feedback signal, control will transfer when both controllers have no
error. Then the outputs of both controllers will be equal to the signal in the
reset sections. Because neither controller has any error, the outputs of both
controllers will be the same. Particular attention must be paid to make sure
that at least one controller in an override control system will always be in
control. If not, then one of the controllers can wind up, and reset windup
protection is necessary.
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Material balance:

(cr) =— d;’* _KC,, (1= X )(@, - 2X)
Since
CA = CAO(l— X)
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then

dX 1 .dc,
dt C, dt
Therefore
dXx
EZKCAO(]'_X)(@B —2X) )

Energy balance:

d_T_Qg_Qr (2)
dt  NC,

where  Q, =kC,,*(1— X)(©®, —2X)V (AH,)
Q. = UA(T — 298)

Egs. 1 and 2 constitute a differential equation system. By using MATLAB,
this system can be solved as long as the initial conditions are specified.
Command "ode45" is suggested.

A.- ISOTHERMAL OPERATION UP TO 45 MINUTES

We will first carry out the reaction isothermally at 175 °C up to the time
the cooling was turned off at 45 min.

Initial conditions : X(0) =0 and T(0)=448 K

Figure S22.12a shows the isothermal behavior for these first 45 minutes.
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Figure S22.12a. Isothermal behavior for the first 45 minutes
B.- ADIABATIC OPERATION FOR 10 MINUTES
The cooling is turned off for 45 to 55 min. We will now use the conditions
at the end of the period of isothermal operation as our initial conditions for

adiabatic operation period between 45 and 55 minutes.

t=45min X=0.033 T=448

0.045 T T T T T T T T T 470

0.04

Conversion
ainjesadwa ]

0.035

440
45 46 47 48 49 50 51 52 53 54 55

0.03 r r r r r r r r r

Time

Figure S22.12b. Adiabatic operation when the cooling is turned off.
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C.- BATCH OPERATION WITH HEAT EXCHANGE

Return of the cooling occurs at 55 min. The values at the end of the period
of adiabatic operation are:

t=55 T=468K X=0.0423

15 T T T T T T 1000

T
—— Temperature
=== Conwersion

1800

Conversion
ainjeladwa ]

0.5

1600

60 70 80 90 100 110 120 130

Figure S22.12c. Batch operation with Heat Exchange; temperature
runaway.

As shown in Fig. S22.12c, the temperature runaway is finally unavoidable
under new conditions:

. Feed composition = 9.044 kmol of ONCB, 33.0 kmol of NH3, and 103.7
kmol of H,0

. Shut off cooling to the reactor at 45 minutes and resume cooling reactor
at 55 minutes.

MATLAB simulation:
1.- Let's define the differential equation system in a file called reactor.

function dx dt=reactor (t, x)

dx dt(1l,1)=((17e-5*%exp(11273/1.987* (1/461~-
1/x(2))))*1.767* (1-x (1)) *(3.64-2*x(1)));

dx dt(2,1)=((-(17e-5%exp(11273/1.987* (1/461-

1/x(2))))* 122*% (1-x(1))*(3.64-2*x(1))*5.119* (-5.9eb)
- 35.85*(x(2)-298))/2504 );
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where dx_dt (2, 1) the must be equal to O for the isothermal operation

2.- By using the command "ode45", system above can be solved

[times row, x]=o0ded5 ('reactor', [ty, tel, [Xo,Tol);
plot (times row,x(:,1),times row,x(:,2));

where 1o, tr, Xo and To must be specified for each interval.

22.13

T, = Reactor temperature profile
Tisp = Jacket set-point temperature profile (manipulated variable)

a) PID controller:

K¢ = 26.5381
T = 2.8658
0= 0.4284
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Figure S22.13a. Numerical simulation for PID controller.
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b) Batch unit

K¢ =10.7574
T = 53.4882
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Figure S22.13b. Numerical simulation for batch unit.

C) Batch unit with preload

K¢ =10.7574
7= 53.4882
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Figure S22.13c. Numerical simulation for batch unit with preload.
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Dual mode controller

1.- Full heating is applied until the reactor temperature is within 5% of its
set point temperature.

2.- Full cooling is then applied for 2.8 min

3.- The jacket temperature set point Tjs of controller is then set to the
preload temperature (46 °C) for 2.4 min.
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Figure S22.13d. Numerical simulation for dual-mode controller.

MATLAB simulation:
1.- Define a file called brxn:

function dy=brxn(t,y)

o

o

Batch reactor example
Cott & Machietto (1989); "Temperature control
of exothermic batch reactors using generic model
control", I&EC Research, 28, 1177

o° o° o°

o

o

Parameters
cpa=18.0; cpb=40.0; cpc=52.0; cpd=80.0;
cp=0.45; cpj=0.45;
dh1=-10000.0; dh2=6000.0;
uxa=9.76*6.24;
rhoj=1000.0;
k11=20.9057; k12=10000;
k21=38.9057; k22=17000;
vj=0.6921;
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tauj=3.0;

wr=1560.0;

dy=zeros (7,1);

ma=y (1l); mb=y(2); mc=y(3); md=y(4); tr=y(5);
ti=y(6);

tisp=y(7);

kl=exp (k11-k12/ (tr+273.15));

k2=exp (k21-k22/ (tr+273.15));
rl=kl*ma*mb;

r2=k2*ma*mc;

gr=-dhl*rl-dh2*r2;

mr=ma-+mb+mc+md;

cpr= (cpa*ma+cpb*mb+cpc*mc+cpd*md) /mr;
gj=uxa* (tj-tr);

dy (1l)=-rl-r2;

dy (2)=-rl;

dy (3)=rl-r2;

dy (4)=r2;

dy (5)=(qr+qgj) / (mr*cpr) ;

dy (6)=(tjsp-tj)/tauj-qj/ (vj*rhoj*cpj) ;
dy (7)=0;

Note: The error between the reactor temperature and its set-point (e=cvsp-cv) is
computed at each sampling time. That is, control actions are computed in the
discrete-time. For the integral action, error is simply summed (se = se+e).
Controller output is estimated by mv=Kc*e+Kc/taui*se*st, where Kc =
proportional gain, taui=integral time, e=error, se=summation of error and
st=sampling time

2.- PID controller simulation

clear
clf

o

o

batch reactor control system
PID controller (velocity form)

o

o

o

process initial values
ma=12.0; mb=12.0; mc=0; md=0; tr=20.0; t3=20.0;
tjsp=20.0;

y0=[ma,mb,mc,md, tr,tj, tispl;

% controller initial values
kc=26.5381; taui=2.8658; taud=0.4284;
en=0; enn=0;

cvsp=92.83; mv=20;

% simulation

st=0.2;
t0=0; tfinal=120;
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ntf=round(tfinal/st)+1;
cvt=zeros (1l,ntf); mvt=zeros (l,ntf);

for it=1:ntf
[tt,y]=0ded5('brxn', [ (it-1)*st it*st],y0);
y0=y (length(y(:,1)),:);

cv=y0 (5);

oe

PID control calculation

e=cvsp-cv;

mv=mv+kc* (e*st/taui+ (e-en)+taud* (e-2*en+enn) /st) ;
if mv>120, mv=120; elseif mv<20, mv=20; end
enn=en; en=e;

y0 (7)=mv;

cvt (it)=cv; mvt (it)=mv;
end

t=(1:1it) *st;
plot(t,cvt,'-r',t,mvt, '--g")

3.- Batch unit simulation

[}

% controller
kc=10.7574; taui=53.4882;
mh=120; ml=20; mg=46;

mv=20;
cvsp=92.83;

% simulation

st=0.2;

z=ml; al=exp (-st/taui);
t0=0; tfinal=120;
ntf=round(tfinal/st)+1;

for it=1:ntf
[tt,y]=0ded5 ('brxn', [ (it-1) *st,it*st],vy0);
yO0=y (length(y(:,1)),:);

cv=y0 (5) ;

e=Ccvsp-Ccv;
m=kc*e+z;

if m>mh, m=mh;

end

f=m

z=al*z+(1l-al)*f; [f z m]

y0 (7)=m;
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cvt (it)=cv;
mvt (it)=m;
end

t=(1:1it) *st;
plot(t,cvt,'-r',t,mvt,'-g');

4.- Batch unit with preload simulation

Q

% controller

kc=10.7574; taui=53.4882;
mh=120; ml=20; mg=46;
mv=20;

cvsp=92.83;

% simulation

st=0.2;

z=ml; al=exp(-st/taui);
t0=0; tfinal=120;
ntf=round (tfinal/st)+1;

for it=1l:ntf
[tt,y]=0ded5 ('brxn', [ (it-1) *st,it*st],v0);
yO0=y (length(y(:,1)),:);

cv=y0 (5);

e=cvsp-cv;

m=kc*e+z;

if m>mh, m=mh; else if m<ml, m=ml
end

end

f=m

z=al*z+ (l-al)*f; [f z m]

y0 (7)=m;
cvt (it)=cv;
mvt (it)=m;

end

t=(1l:1t) *st;

plot(t,cvt,'-r',t,mvt,'-g");
5.- Dual-mode simulation

clear
clf

o\

o\

batch reactor control system
dual-mode controller

o\

o
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Q

% initial wvalues
ma=12.0; mb=12.0; mc=0; md=0; tr=20.0; tj=20.0;
tjsp=20.0;

y0=[ma,mb,mc,md, tr,tj,tispl;

$ controller initial wvalues
kc=26.5381; taui=2.8658; taud=0.4284;

en=0; enn=0;

cvsp=92.83;

tdl=2.8; td2=2.4; pl=46; Em=0.95;
mv=20;

is=0;

% simulation

st=0.2;

t0=0; tfinal=120;

ntf=round (tfinal/st)+1;

cvt=zeros (1l,ntf); mvt=zeros(l,ntf);

for it=1l:ntf
[tt,y]l=0ded5 ('brxn', [ (it-1)*st it*st],y0);
yO=y (length(y(:,1)),:);

cv=y0 (5);
if is== % heat up stage
if cv<Em*cvsp
mv=120;
else
is=1;
tcool=it*st;
end
end
if is== % cooling stage
if it*st<tcool+tdl
mv=20;
else
is=2;
tpre=it*st;
end
end
if is== % preload stage
if it*st<tpre+td?2
e=Ccvsp-Ccv;
mv=pl;
else
is=3;
end
enn=en; en=e;
end
if is== % control stage
e=Ccvsp-Ccv;
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mv=mv+kc* (e*st/taui+ (e—-en)+taud* (e-
2*en+enn) /st) ;
if mv>120, mv=120; elseif mv<20, mv=20; end
enn=en; en=e;
end

y0 (7)=mv;

cvt (it)=cv;

mvt (it)=mv;

end

t=(1l:1it) *st;
plot(t,cvt,'-r',t,mvt, '-g")
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Chapter 23

23.1

(@) Use IMC-tuning-based PI: identify open loop model as t=4.5h, K=44 (average of high and

low open-loop step changes), pick 1. as 1/3 of <. PI tuning: Kc=-.07 L/g-h, t,=4.5h. Closed-loop
responses are given in the following figure:

7.5 T T
Setpoint-1.0
==="-Setpoint-0.5
LA IR =:=:=Setpoint+0.5 |77
S e Setpoint +1.0
] ettt -
=) ¢
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»
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45 . . . .
0 20 40 60 80 100
Time (h)

Figure S23.1a. Biomass closed-loop response for setpoint change

Solution Manual for Process Dynamics and Control, 4th edition
Copyright © 2016 by Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp,
and Francis J. Doyle 11l
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(b) Closed-loop simulation for a -12.5% step change in the maximum growth rate (um):
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Figure S23.1b. Biomass closed-loop response for disturbance change

(c) From setpoint response, get slightly underdamped response on negative setpoint

changes — corresponding to strong open-loop nonlinearity observed in Figure 23.2.

(d) Major difference is new gain (with opposite sign), and different time constant. Gain is

smaller, time constant is larger, suggesting larger t,, and larger controller gain.
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23.2

(@) Sample code for MPC design provided below

P=40; %Prediction Horizon

M=2; %Control Horizon
Weights=[0,0,0]; %Manipulated Variables Weights
(Default = 0,0,0)

Penalize=[5,1,1]; %[Bulk Weight, d5 Weight, d90
Weight]

Nominals=[180,180,180,40,400,1600]; %[Flow Rates 1-3, Bulk density, d5,
doo]

Constrains=[105,345]; %Lower and Upper Flow Rates
NominalModelFlag=1; % 1=Nominal Model, Otherwise ->
Actual plant model

SimTime=[0,50]; %Simulation time [Start,End]
StepTarget=[90,400,1600]; %Simulated step change in physical
units: [Bulk, d5, do0]

StepTime=1; %Time of Simulated step change;

[tsim,ysim_rescaled]=MPCSim(P,M,Weights,Penalize,Nominals,Constrains,Nomin
alModelFlag,SimTime,StepTarget,StepTime);
plotsimresults(tsim,ysim_rescaled,Constrains, "Nominal Controller®);
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Figure S23.2a. Setpoint response for closed-loop granulation system under MPC control
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(b) Sample code for MPC design provided below

P=40; % Prediction Horizon

M=2; % Control Horizon
Weights=[0.1,0,0]; % Manipulated Variables Weights
(Default = 0,0,0)

Penalize=[2,1,1]; % [Bulk Weight, d5 Weight, d90
Weight]

Nominals=[180,180,180,40,400,1600]; % [Flow Rates 1-3, Bulk density, d5,
doo]

Constrains=[105,345]; % Lower and Upper Flow Rates
NominalModelFlag=0; % 1=Nominal Model, Otherwise ->
Actual plant model

SimTime=[0,100]; % Simulation time [Start,End]
StepTarget=[90,400,1600]; % Simulated step change in physical
units: [Bulk, d5, d90]

StepTime=1; % Time of Simulated step change;

[tsim,ysim_rescaled]=MPCSim(P,M,Weights,Penalize,Nominals,Constrains,Nomin
alModelFlag,SimTime,StepTarget,StepTime);
plotsimresults(tsim,ysim_rescaled,Constrains, "Actual Plant Simulation®);

Actual Plant Simulation
150 T T T T T T T T T

100

Bulk

50

420

400

380
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1550 | | | | | | | | |
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Actual Plant Simulation
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Figure S23.2b. Setpoint response for closed-loop granulation system under MPC control

(uncertain case)
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(c) Sample code provided for each scenario below:

i) step change in bulk density from 40 to 90

P=40; % Prediction Horizon

M=2; % Control Horizon
Weights=[0.1,0,0]; % Manipulated Variables Weights
(Default = 0,0,0)

Penalize=[1,1,1.5]; % [Bulk Weight, d5 Weight, d90
Weight]

Nominals=[175,175,245,40,400,1620]; % [Flow Rates 1-3, Bulk density, d5,
doo]

Constrains=[100,340]; % Lower and Upper Flow Rates
NominalModelFlag=0; % 1=Nominal Model, Otherwise ->
Actual plant model

SimTime=[0,100]; % Simulation time [Start,End]
StepTarget=[90,400,1620]; % Simulated step change in physical
units: [Bulk, d5, d90]

StepTime=1; % Time of Simulated step change;

[tsim,ysim_rescaled]=MPCSim(P,M,Weights,Penalize,Nominals,Constrains,Nomin
alModelFlag,SimTime,StepTarget,StepTime);
plotsimresults(tsim,ysim_rescaled,Constrains, "Scenario ¢ - 17);
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i) simultaneous change in 5™ percentile from 400 to 375, and 90™ percentile from 1620
to 1630

P=40; % Prediction Horizon

M=2; % Control Horizon
Weights=[0.2,0.1,0.1]; % Manipulated Variables Weights
(Default = 0,0,0)

Penalize=[3,2,2]; % [Bulk Weight, d5 Weight, d90
Weight]

Nominals=[175,175,245,40,400,1620]; % [Flow Rates 1-3, Bulk density, d5,
doo]

Constrains=[100,340]; % Lower and Upper Flow Rates
NominalModelFlag=0; % 1=Nominal Model, Otherwise ->
Actual plant model

SimTime=[0,100]; % Simulation time [Start,End]
StepTarget=[40,375,1630]; % Simulated step change in physical
units: [Bulk, d5, d90]

StepTime=1; % Time of Simulated step change;

[tsim,ysim_rescaled]=MPCSim(P,M,Weights,Penalize,Nominals,Constrains,Nomin
alModelFlag,SimTime,StepTarget,StepTime);
plotsimresults(tsim,ysim_rescaled,Constrains, "Scenario c - 27);
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Figure S23.2c.ii Closed-loop response for d5 and d90 changes
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23.3

(@) tc =1 corresponds to an aggressively tuned controller (fast response). Pick 1. as 1/3 of

tau: K.=1.43, 1, =10.1

(b)
25 T T T
Set point change -10 mm Hg
20 .
2 15t :
IS
E
o L
O 10
5 - -
0 1 1 1
0 5 10 15 20

Time (h)

Figure S23.3.b Closed-loop response for ICP setpoint change

Undershoot=2/10=.2
Minimum =8 mm Hg

Settling time =4.85 h

(c) Overshoot is modest, the settling time is a bit long, but possibly acceptable for a delay

system. Smith predictor and/or MPC would make good sense.
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23.4

v [km/h]
r
T

HR [bpm]

45
time [min]

Figure E23.4
(a) Assume the change was made at t=3.5 min
Delay =0.5 min
Tau=(1/3)*.5=.167min
Gain=(84-72)/2.5=4.8
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(b)

15 . :
Set point change +10 bpm

T 10l
= 10
2
2
©
o
3
T °f

O 1 1 1 1

0 1 2 3 4 5

Time (min)

Figure S23.4.b Closed-loop response for Heart Rate setpoint change
Rise time = ~1.02 min

Overshoot = 11.22-10/10=.112 (11.2%)

Settling time =~2.4 min

(c) Improved response might be possible with multiple step changes, larger step changes,
second-order model
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23.5

(a) RGA calculated below:

RGA =
1.4209 0.0467 -0.4676

-0.1508 0.9643 0.1864
-0.2701 -0.0111 1.2812

This suggests a diagonal pairing of MVs and CVs

(b) All first order processes:

IMC tuning rules for PI controllers:

Kz,
T, =7
1-1 Loop 2-2 Loop 3-3 Loop
Kc 3.7 15 3.7
2.7-10°r, 1.137, 6.3-10"7,
T, 3.7 7.5 3.7

Naive choice for z,would be 7, =7/3

(c) Following are step test for setpoint change of 10% of steady-state values for each of

the controlled variables (using 7, = z/3) . The fourth step test is a combined change

in both variables 2 & 3.
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DT, [K]

Step Change of 10% in variable 1 - output variables
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Figure S23.5.c.i Closed-loop response for y; setpoint change
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Step Change of 10% in variable 2 - output variables
005 T T T T T T T

DT, [K]
o

_005 | | | | | | |
0 5 10 15 20 25 30 35 40
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l T T T T T
3
o 0 i
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g‘\' 4 x 10 T T T T T T
(=2
< 2r ]
(=2
X,
o O | | | | | | |
= 0 5 10 15 20 25 30 35 40
time [sec]
x 10° Step Change of 10% in variable 2 - input variables
l T T T T T T T
)
™
E 0 % -
; _l | | | | | | |
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time [sec]

time [sec]

time [sec]

Figure S23.5.c.ii Closed-loop response for y, setpoint change
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Step Change of 10% in variable 3 - output variables
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2‘1 0 1 1 1 1 1 1 1
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Figure S23.5.c.iii Closed-loop response for y; setpoint change
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Step Change of 10% in variable 2&3 - output variables
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Figure S23.5.c.iv Closed-loop response for y, and ys setpoint changes
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23.6

(@) To calculate an approximate second-order insulin-glucose model for the patient we shall
set the disturbance, D, to zero. A step of one mU/min shall be introduced to the system.
One simulates the response for 400 min with constant insulin injection of 15 mU/min to
reach a steady state. Then introduce a step change. Using Smith’s method one can
identify from the figurer below a second- order model of the form:

K

G(s) =
(s) 252 + 28ts + 1

K=-5.16
t20/t60=0.5 = &=0.48 and t=59min

—5.16

G —
() = 59757 727048 595 7 1

90 T 1
Process [

89

__.——'-"-‘

/
88 I

87

Glucose (mg/dL)

85 \

84

83

82

81
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (min)

Figure S23.6.a.i Open-loop step response for change in insulin

23-19



90 : | : 1
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85

Glucose (mg/dL)

84
\i

83

82

81
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (min)

Figure S23.6.a.ii Comparison of model and process

(b) Using IMC- Based PID controller settings for G, for a second-order model:

Kc=2* £ * 1t /K/1c=-10.29/1C
Ti=2* £ * 1=53.1
T 4= 1 /2/ £=65.56

(c) Simulation results of the closed-loop system response to a step setpoint change in
blood glucose of -20 mg/dl. As can be seen from figure below, one can tune t. to

improve the transient response.
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Figure S23.6.c Influence of controller tuning on closed-loop response

(d) With 1.=0.5 as can be seen in figure below, one can maintain the hypoglycemic

boundary but one still violates the upper constraint with maximum glucose of 159

mg/dL

23-21



160

150

140

130

120

110

Glucose (mg/dL)

100

90

70

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (min)

Figure S23.6.d Closed-loop response to meal disturbance

(e) With 10 min sensor delay the response is sluggish and one violates the upper

constraint. The response will become unstable if one tries to tune t. to a lower value

23.7

(@) On the basis of the transfer function characteristics, the glucagon pump has more

favorable qualities for use as a manipulated variable.

e The time delay is smaller, meaning the MV will have an effect on the CV more
quickly

e The glucagon pump has simpler (first order versus second order) dynamics and a
smaller time constant. Overall the dynamics of the glucagon pump are faster.

e The glucagon pump has a larger gain, meaning it will take less glucagon to have
the same magnitude of effect on the blood glucose.

e There are fewer safety concerns with a glucagon pump (the insulin pump has a
risk of overdosing insulin and causing death, whereas the glucagon pump does not

23-22



have the same type of risk). Also, the glucagon pump has the ability to correct
hypoglycemia, while the insulin pump does not.

Note that if the glucagon pump is used as the MV, insulin would still need to be delivered
either by the patient manually or by a set pattern on an insulin pump. Insulin is necessary
for survival. Also, glucagon alone cannot be used to lower the BG following the meal
disturbance.

(b) For the insulin pump, the process transfer function parameters are given as follow:

K=-15

1:=20 min
T, =25 min
0 =30 min

Using IMC tuning rules, the PID controller parameters are given by the following
expressions from Table 12.1, row I (with tc=20min and 13=0):

_ n+r, 20425
© K(zr,+6) -15(20+30)
7, =7,+7, =20+25=45min
7,  20(25)
° 1 +7, 20+25

=11.1min

Gy _ (20s+1)(25s +1)i6205
G (30s+1) 1.5

p
This controller is not realizable due to the positive 20 min delay (requiring knowledge
from the future) and the fact that the numerator order is greater than the denominator
order.

(c) Gf =—

To make the controller realizable, you could set the delay to zero (remove the delay
term from the controller) and introduce a filter to increase the order of the
denominator.

(d) See the diagram below
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23.8

FC

(a) and (b) Reading from the graph, we can generate the following readings:

Sensor %<70 %<180 %<80 %<140
BG 0.6 67.3 2.2 42.9

cGM1 1.9 69.1 4.1 48.4

cGM2 2.6 68.1 4.8 46.1

Using these readings, we can calculate the percentage time from 70-180 mg/dL and from
80-140 mg/dL as determined by each sensor.

BG cGM1 cGM2
70-180 66.7 67.2 65.5
80-140 40.7 44.3 41.3

According to the BG measurement, the algorithm kept the BG between 70 and 180mg/dL
for 66.7% of the time. The BG spent 0.6% of time below 70mg/dL and 32.7% of time
above 180mg/dL. This means that the BG was in the desired range for about 2/3 of the
total time. Most of the time that was not spent within 70-180mg/dL was spent above
180mg/dL. Very little time was spent below 70mg/dL, which is good for safety. The time
spent below 70mg/dL should be minimized, although in reality it is very difficult to
completely eliminate hypoglycemia. According to the graph, very little time was spent
with BG above 300mg/dL, which is also good for safety.
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(c) The two CGMs overestimated the time that was spent below 70 mg/dL. In fact, from
the graph we see that the CGMs overestimated the time spent below glucose levels up to
about 200mg/dL. This difference indicates a bias of the sensor to read below the actual
BG. The differences could also be due to lags and delays in the CGMs. Generally the two
CGMs had similar readings, meaning they are fairly precise. The resolution is to the ones
place in mg/dL.
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Chapter 24

24.1

[problem adapted from Alon, Introduction to Systems Biology, Chapman & Hall]
a)

™ _ G, — k™M where G is the input. Solve steady-state balance:

dt
G, _M

k MRNA Ss
d

b)

‘(’j_Ft’:kTM_k;M

c) step change in Gy from basal value to G;, mMRNA has first order response with time

constant and gain both equal:

1

0, =K =&
K

Protein has first order response to mRNA with gain and time constant:

1
T, = —de
k

Solution Manual for Process Dynamics and Control, 4th edition
Copyright © 2016 by Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp,
and Francis J. Doyle 11l
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Analytical expression for deviation protein concentration (P’) is given by the expression
for two first-order systems in series:

P! _ kT 1 (1+ﬁet/q +iet/z'2]

=—0
P mMRNA
k; kg 7 T,

Where (using partial fraction expansion):

(rls+1)g(s)]: 1

A = lim (_1/2'1)((—Tz/z'1)+1)

s—-1/7 Ks

A= lim (TZHK? g(s)jz (—mz)((il/ 7)+1)
24.2

(i-a)

y =PP,Pu

(i-b)

Algebra here follows:

y= Ps(C3y+ Pz(czy+ Pl(u +C1y)))
=PC,y+PPC,y+PP,Pu+PPPCy

RPRP;

= u
Y 1_C3Pe> —C2P2P3 _C1P1P2P3

(i-c)

__ ARk
1-C,PP,P,
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(i)
_ PlPZPS u
1- Kcsps - Kc2P2P3 - Kc1PlP2P3

(iii)

y

y = RPRPR
1- Kc1P1P2P3

(iv) More attenuation possibilities in case (b) since there are more control loops that can

regulate the process
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24.3

| . .
: Transcription | Tryptophan synthesis
I
i | Translation
| , . ! .
d a . ! d
i E(OR): EO.C(T) Oy E(n?ﬁ?\ﬁ):kjoxﬂ(ﬂ '\mRNA B ] E1":&_.(}(1’"),5 ;
|| ka0 -0; e mRNA—pmRNA [ 1P| g E=RmRNA-uE > o T _ur
I & —
i % < : T+K,
| | %
S ) I I
Regulation Aftenuation Inhibition
K. 192 - K_. ‘..]
GO =——m G =— 55— GO =——3
K LT K 2T

Figure S24.3a. Block diagram for tryptophan process

In this figure, four states (synthesis of free operator, mMRNA transcription, translation and
tryptophan synthesis) are represented as each block. Also, controllers (regulation, Attenuation
and inhibition) are connected to the specific states. This block diagram is exactly the same as in
Exercise 24.2, excluding one less state.

x 10

15

Tryptophan (Moles)

0 200 400 600 800
(b) Time (min)

Figure S24.3b.i Tryptophan response for g=0
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x 10
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x/z=0.4
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t.=30 min
S
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S :
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L z
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1r H : B
0 1 I 1 1 1 1
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Figure S24.3b.ii Tryptophan response for g=25

(c) Rise time=4 mins, overshoot=0.4, decay ratio=0.16, settling time=30 mins

(d) Response of tryptophan after deleting the two feedback loops (red curve; blue curve is
with all the feedback loops). Here, system is sluggish taking almost 50 mins to reach

steady state without any overshoot.
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Figure S24.3d Tryptophan response for two feedback loop case

24.4

(@) Algebra for derivation follows (recall that numerator of the first term involves an
additional differentiation wrt s compared to the example derived in the chapter):

T y(t)dt
= TZ

sig

Top = [Fo——

dur

T y(t)dt

—& (' (s+ )P (s+ ) +4Aa’ (s+ ) N(s+B)”°) (1 4]2
_ s=0 _ +

ﬁ4
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o0

4 /10{4
t)dt o
A:Joy() 5

2
2Tdur 2 iz—l-iz 1+£
A B ik
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24.5

(a) Equation defining variables in the loop

e

Transfer function has a pole located at s=-k, therefore if k is positive, loop is stable. With

integrator in loop, require zero activity at steady state
(b)

Solving transfer function:

y_ ks
u s+k

(©)

Receptor activity always resets to zero, always capable of full range of action

24.6

[Adapted from problem described in Goldbeter & Koshland, PNAS, 78, 6840-6844,
1981]

(a) Laying out the relevant mass balances:

% = —a[P][E,]+ d,[PE, ]+ k,[P'E,]
% = a[PI[E,]- (d, + k)[PE,]

%Ft’*] =-a,[P"][E,]+d,[P"E,]+k [PE,]
d[F;*th] — a,[P'][E,]-(d, + k,)[P'E,]
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Invoking assumption about fixed total amounts, and dropping concentration notation ([.]):

P+P +PE +PE,=P.
E; =E ++PE,
E, =E,+P'E,

Algebra leads to

5 12
P v, vV, K, Vv, vV, K, Vv, Vv,
P z)ﬁ_
Vv,

Where the following variables are used:

V, =kE;

Vi =k,Eyr

(Gt
&P

-tk
a,Pr

Invoking the conservation balance on P at steady-state, and assuming that V; and V, are

not equal, one can derive the following simplified expression:
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P 1—P—+ K,
ﬁ: T K
V * *
> [P Py K,
PP

(b) and (c) [combined plot, also included K;=K,=.01 for illustration]

l T T T T T T T T T ’,J T ML | T )) T

{ K1=K2=1
{

0.9r N R K1=K2=0 [
I

0.81

0.7 .

0.5r i

0.3r

P*/PT (molar fraction at steady-state)

0.2

10 10 10 10" 10°

(d) For small values of K; and K, the response approaches a switch-like shape. Larger

values lead to more sigmoidal response profiles. Hence, this biochemical network
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consisting of two antagonistic enzymes can be tuned (or regulated) to give switch like

behavior under appropriate conditions. In some texts this is referred to as “zero order
ultra-sensitivity”.

24.6

(@) G, = transcription (DNA to RNA)
Gy = translation (RNA to protein)
G, = protein activation
Y = activated protein

(b) Inner Loop:
Gb
1+G,

Inner two loops:
G Gy
“1+G,

1+G, G,
1+ G,

All three loops:
G G,
“1+G,
Gb
1+G,
Y(s) GQ
X(s) 1+G,Q
G G,
“1+G,
1+ G, G,
1+G,
G,
“1+G,
1+ G, G,
1+G,

Q=
1+ G,

G

1+G
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Simplifying this expression gives:

Y(s) G,G,G,
X(s) 1+G,+G,G,+G,G,G,

(c) Now we can substitute the given values for the biological processes:

G, =5
1
G - —
b 2s
.2
s

13

5—°

Y(s) _ 25 s

X(S) 1+i+i§+5i§
25 2SS 25 S

15
_ 2s?
1 3 15
I+ —+ S+
2s 2s° 2s
3 15
25 +5+18

The roots of the characteristic equation are

1. 1
s, =——i143 - =
| 4

1. 1
s, =—i\J143-=
24 4

Since the real part of both roots is negative, the system is stable.

5)
Gtranscription = Gl = S +1
_ _ —0s
Gtranslation—deg - GZ = Ke

(a) We calculate the frequency response measures as follows:
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AR(G,) =———

o +1
#(G,) =~tan (o)
AR(G,) =K
#(G,) = —bw

(b) During circadian rhythms, we require:

(©)

o - lcycle 27 rad
o 24hr  24hr

For stable oscillations,

—T = —chirc - tan_l (a)circ)
0 _ T — tan_l (a)circ)

a)circ
6=11.0 hr

Now we want to find the gain, K, of the translation/degradation process.

AR(G,) =K at all frequencies, so need to calculate
G, amplitude at o,

irc

ARG (w = w,,.)) = L =484

[ 2
a)circ +1

Need overall gain equal to 1, so therefore:

1

K=—=0.207
AR(Gl (a)circ ))
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