Chapter 4
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Y( S) = L
S(10s+1)

From the Final Vaue Theorem, y(t) = 10 whent - o

y(t) = 10(1-e "% , then y(10) = 6.32 = 63.2% of thefinal value.

Y(s) = 5 (@1-e7)
(10s+1) S
From the Fina Vaue Theorem, y(t) = 0 when t— o

Y=
(10s +1)
From the Fina Vaue Theorem, y(t)=0 when t— o

5 6

Y(s) = >
(10s+1) (s +9)

y(t) = 0.33e %" - 0.33cos(3t) + 0.011sin(3t)

The sinusoidal input produces a sinusoidal output and y(t) does not have a

limit when t  co.
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By using Simulink-MATLAB, above solutions can be verified

30 40 50

Fig $4.2a. Output for part ¢) and d) Fig $4.2b. Output for part €)

Fig $4.2c. Output for part f) Fig $4.2d. Output for part g)

a) The dynamic model of the system is given by
dv _
e 2-45
m ( ~W) (2-45)
dT _w, Q
' — 2-46
dt Vp v TD* VpC (2-40)
Let the right-hand side of Eq. 2-46 be f(w;,V,T)
C(jj_-[ f(w,V,T)= %EWH_B@HV B—H ' (1)



V\/i
of W . 0 1 T
=—_1 - =T)—— =—__ =0

@N% Vzp(T' )VZpC VDdt%
o __w

OTO  Vp

LI VL T _gr
d Vp Vp dt

Taking Laplace transform and rearranging

T'(9) _ (T -T)/W,
W(s) Vp "
e

Laplace transform of Eq. 2-45 gives V'(s) =

Wi(s)
PS

If Bi H were not zero, then using (3)
OV [

0T -T), V [of [j10
T(s) 0 W W VasH

W(s) ?%H
V_\/i

dT _ dT’

2

3

(4)

Appel polscher guessed the incorrect form (4) instead of the correct form

(2) because he forgot that @ﬁ% %Would vanish.

b) From Eq. 3,

Vis) _ 1
W'(s) ps
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K
Y(s)=G(s)X(s)=
(8)=G($)X(8) = oy
G(s) Interpretation U(s) Interpretation
of G(s) of u(t)
K 2" order process” 1 X0) [ Deltafunction]
s(ts+1)
K 1% order process = S0) [Unit step function]
1s+1
K Integrator K le'” ' [Exponential input]
S 1s+1 T
: H 1 -t/1
K Smplegain l-e
. . s(ts+1) o
(i.e no dynamics) [Step + exponential input]

" 2" order or combination of integrator and 1% order process

dy,

1 =2y 3y, 42 1
at y1—3y2+2u; (1)

_d;’tz = 4y, — 6y2 + 2u1 + 4uy 2)

Taking Laplace transform of the above equations and rearranging,
(2s+2)Y1(S) + 3Y2(s) =2U4(9) 3)
-4 Y1(9) + (s+6)Y2(s)=2U1(S) + 4Ux(S) 4)

Solving Egs. 3 and 4 simultaneously for Yi(s) and Y2(s),
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_ (2s+6)U,(s) ~12U,(s) _ 2(s+3)U,(s) ~12U,(s)

Y]_(S) >
2s° +14s+24 2(s+3)(s+4)
Yale) = (45+12)U,(S) - (Bs+8)U,(s) _ 4(s+3)U,(s) +8(s+DU,(9)
A= 2s? +14s+24 - 2(s+3)(s+4)

Therefore,

Yi(s) _ 1 Y,(s) _ -6

U(s) s+4 ’ U,(9) (s+3)(s+4)

Yo(s) . 2 Y,(s) _  4(s+))

U(s) s+4 ’ Uy(9) (s+3)(s+4)

The physical model of the CSTR is (Section 2.4.6)

Y, dgt’* = q(c, —C,) - Vke, (2-66)

daT
VpC - = WO(T, ~T) + (-AH)Vke, +UA(, ~T) (2-68)
where: k =k, R (2-63)

These equations can be written as,

de, _
o fi(CarT) (1
dar
=R TT) @)

Because both equations are nonlinear, linearization is required. After
linearization and introduction of deviation variables, we could get an

expression for c,(s)/ T'(s).
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b)

But it is not possible to get an expression for T'(s)/T/(s) from (2) dueto
the presence of ca in (2). Thus the proposed approach is not feasible
because the CSTR is an interacting system.

Better approach:

After linearization etc., solve for T'(s) from (1) and substitute into the
linearized version of (2). Then rearrange to obtain the desired, C,(s)/
T.(S) (See Section 4.3)

The assumption that H is constant is redundant. For equimolal overflow,
L,=L =L , V,=V,=V

d—H—L +V,-L -V, =0 ,i.e, Hisconstant.

dt

The simplified stage concentration model becomes

dx
Hd—t1= L(X% = %) +V (Y, = Y1) (1)
y1 = ap + arxy + axe® +agxs’ )

Let the right-hand side of Eq. 1 be f(L, Xo, X1, V, Y1, ¥2)

dxl = TLX% X VoY) = 0 HL +E§LE %;%Xl
of of of

+B—HV'+% ’+%% !
DV [ yEY1 v, 0"

Substituting for the partial derivatives and noting that dd—);l = C:j—);l
dX1 = ] \ /7« ,/ \ /<,
d (Xo - 1)'— + I-Xo - LX + (Y2 yl)V +Vy, -Vy; ©)



Similarly,
r - — ag T = = 2 r
Y1 =9(x)= . X = (3, +2a,%, +3a,%,°)% 4

C) For constant liquid and vapor flow rates, L' =V' =0
Taking Laplace transform of Egs. 3 and 4,
HsX;(s) = LXo(8) — LX(8) +VY;(9) -VY/(9) ®)

Yi(9) = (& +28,%, +38,%,") X; () (6)

From Egs. 5 and 6, the desired transfer functions are

Xi(s) TS+l ’ Yi(s) Ts+1

- 2 L
Y/(s) _ (a +2a,% +33;% )ﬁr

Xo(S) - 1s+1
(a, +2a,%X +3a3‘2)zr
Yi(s) _ & 2% X H
Y,(S) 1s+1
where
T= H
L +V(a, +2a,% +3a,%,")

From materia balance,

d(pAh) _ W — Rht®
dt '

d_ 1. R

dt pA ' PpA



We need to use a Taylor series expansion to linearize

dh _ Dl 15Rh°5

o pA _hlSH+

Since the bracketed term isidentically zero at steady state,

(h-h)

1 1~ 0.5
dh _ 1, 15Rh

— =W - h
d pA pA
Rearranging
pA d_h’+h':—1
1.5Rh%® dt 1.5Rh%® "
Hence H( __K
Wi(s) Tts+1
where
_ 1 _ h _ h _ [height]
15Rh°° 15Rh*® 15w |flowrate]
PA _ pAh _pV _ [mass]

T15RN5  15Rh 15w  |mass/timg = time

a) The model for the system is given by

dT

mC = = wC(T, ~T) +h, AL(T, = T) (2-51)
dT, _
rn\NCWF - hsAs(Ts _Tw) - hpAp (Tw _T) (2'52)

Assume that m, my, C, Cy, hy, hs, Ay, As, and w are constant. Rewriting the
above equationsin terms of deviation variables, and noting that



4.10

b)

ar _dT’ dT, _ dT,

dt dt dt  dt

dT' I I I I
o S WE =T+ AT -T)
daT,,

C
mWWdt

=h,A(0-T,)-h,A (T, -T)

Taking Laplace transforms and rearranging,

(mCs+wC +h A )T'(s) =wWCT/(s) +h AT, (s) D
(m,C,s+hA +h A)T,(s)=h,AT'(s) 2

Substituting in Eq. 1 for T, (s) from Eq. 2,

h A
MCs+wC +h_A )T'(s) =wCT/(s) +h_A p_P T'(s
( JAT(S) (s A (mCosthA +h A (s)
Therefore,
T’(S) _ WC(mNCWS+ hspg +hpAp)

T/(9) (mCs+wC+h A)m,C,s+hA +h A)-(hA)

(90 _ WC(h,A +h A)
TS, WChA +hA)+hAhA

Theganis

No, the gain would be expected to be 1 only if the tank were insulated so
that hpA,= 0. For heated tank the gain is not 1 because heat input changes
as T changes.

Additional assumptions

1) perfect mixing in the tank
2) constant density, p, and specific heat, C.
3) T is constant.



4.11

Energy balance for the tank,

pVCC;—I =wC(T, -T)+Q—-(U +bv)A(T -T,)

Let the right-hand side be f(T,v),

dT of f
VC— = f(T,v) = T+ v 1
PVE G = F(TY) Eﬁ% é%% 0
BiH =-wC (U +bv)A
0T [}
T H - paT-T)
ov [}

- : o : dT _dT’
Substituting for the partial derivativesin Eqg. 1 and noting that E:F
pvcctllt = -|wC + (T +bv) AT’ = bAT -T,)V'

Taking the Laplace transform and rearranging
[oVCs+wC + (U +bv) A T'(s) == bAT - T,V (9)
0 -bA(T -T,) O
T(s)_  OwC+(U +bv)A
Vi(s) O pXC . %5+1
Hve + (T +bv) AR
Mass balances on surge tanks
d
W, @
dm
dt2 =W, =Wy )
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Ideal gaslaw
PV, =2 -RT 3

m
PV, = VZ RT 4)

Driving For
Flows (Ohm's law is | :E:M

Resistance
W, :é(Pc -R) 5)
w, :é(a—%) ©)
w, :é(% -R) ™

Degrees of freedom:
number of parameters : 8 (V1, Vo, M, R T, Ry, Ry, Ra)
number of variables : 9 (Mg, Mp, Wy, Wo, W, Py, Py, Pc, Pp)
number of equations : 7

U number of degrees of freedom that must be eliminated =9 —7 =2

Since Pc and P, are known functions of time (i.e., inputs), Ng=0.

b) Development of model
) ) MV, dP, _
Substitute (3) into (1) : FE =W W, (8)
MV, dP.
Substitute (4) into (2) : RT2 % =W, — W, 9)

Substitute (5) and (6) into (8) :

MV, dP, _ 1 1
Fr == (R-R)-—(R-R)
RT d R R,
W = IR -(E R+ IR (10)
RT dt R R R R,
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4.12

Substitute (6) and (7) into (9):

MV, dP, 1 1
—2=-(R-P)-—(P,-P

BT R2(1 ) R3(2 )

MV, 0P, 1 (1,1 Lo 1)

RT dt R, R, R, R,

Note that % = f,(R,R,) fromEg. 10

% f,(R,R,) fromEqg. 11

dt

This is exactly the same situation depicted in Figure 6.13, therefore the
two tanks interact. This system has the following characteristics:

) Interacting (Egs. 10 and 11 interact with each other )
i)  2"-order denominator (2 differential equations)

iii) Zero-order numerator (See example 4.4 in text)

iv) No integrating elements

W (s)
R(s)

the units on the two variables are different).

is not equal to unity. (Cannot be because

V) Gain of

A@ = qi _(:vhl/2
dt
Letf= g —-C,h"?

Thenf=g -C,h"2 +q - g —%Cvﬁ‘l’z(h—ﬁ)

dh C. o

& =q - e because g -C,h'?>=0

0 A
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b)

Ew = %’(s) =Q(9)

H; 1
(s) _ Note: Not a standard form

i' S CV
Q( ) SA\-'—ZEI/Z

H'(s) _ 2h"?/C,

' - 12
QI(S) 2Ah S+1
CV
n1l/2 Kr1l/2
where K:2h and T:ZAh
Because g =C h"?

1. C 1
'=C,=h™*h'=—=_"h==n
177 2hv? K

5 QO _1 QEHE_1 K
H'(s) K ' H'(s) Q(s) K ts+1
Qs _ 1
Q(s) TS+l

For alinear outlflow relation

dh

AE =g -C, h Notethat C,” # C,
dn’ .

A—=q -C/h
4G

Aﬂ+cv*h':qi' or i*ﬂ+h':i* I’
dt c, dt C,

Multiplying numerator and denominator by h on each side yields

phooh R

c’hdt c,’h
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4.13

a)

T :¥ K" :Q g.ed
al q

To put T and K in comparable terms for the square root outflow form of
the transfer function, multiply numerator and denominator of each by

ﬁl/z

2hY? hY2 2h  2h \
K= =12 T 2K
C, h C,h q

\ I

*

= 2AhY? hY2  2Ah

C ﬁl/Z - C ﬁl/Z =2t

v
v q

Thus level in the square root outflow TF is twice as sensitive to changes in
g and reacts only Y as fast (two times more slowly) since T= 21",

The nonlinear dynamic model for the tank is:

dh 1
EZM(% _Cv\/ﬁ) )

(corrected nonlinear ODE; model in first printing of book is incorrect)

To linearize Eq. 1 about the operating point (h=h, ¢ =), let

f - qi _C:v\/E
(D —-h)h
Then,
[of O Uof U
f(hq) = h+5—0d
Eﬁ_ha 04 [l
where
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b)

0 0

of O
Bhi T 2R o h {m(p -hyA) H

Notice that the second term of last partial derivative is zero from the
steady-state relation, and the term 1(D —h)h is finite for all O<h<D.
Consequently, the linearized model of the process, after substitution of
deviation variablesis,

d_h' DlC 1 Dh’+D 1 Dq
& g2 MD-mhg HrD -hQ "

Since G =Cvx/ﬁ

d_01g 1 1
a H2h D h)hH +BT(D —h)FHq'

or dn =ah' +bqg
ot

where
1

U__G&
(D -hhH "~ v,

= ||l

19
2

QJ
I:Iq:l

V, = volume at the initial steady state

Taking Laplace transform and rearranging
sh'(s) =ah (s) +bd (s)
Therefore

h()_ b or H(s) _ (-bl/a)
q(s) (s-a) q(s) (-l/a)s+1

Notice that the time constant is equal to the residence time at the initial
steady state.
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Assumptions

1) Perfectly mixed reactor
2) Constant fluid properties and heat of reaction.

Component balance for A,

dc,

q  d(Cs ~Ca) mVK(T)e, D
Energy balance for the tank,

dT
pVCd——qu(T =T) +( —H)VK(T)c, (2

Since atransfer function with respect to c,; is desired, assume the other
inputs, namely q and T;, to be constant.

dc, _dc, dT _dT’

dt ~ dt ' dt  dt
dc! 20000
\% th =qcyy —(q+VK(T))c, —VE, k(T ) 3
pVC— = 20000 B" +(—AH)VK(T)C, (4

Taking the Laplace transforms and rearranging

B/S+q+Vk(T)]C (s)=qCj(s)—-Vc k(T)ZO_OZOOT( S) (5)

%)VCS+qu (-MH)ve, k(T)ZOOOODT() =(—-MH)VK(T)C,(s) (6)

Substituting for C),(s) from Eq. 5 into Eq. 6 and rearranging,
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T'(s) _ -AHVK(T)q
Cu(s) -

W/s+q+Vk(T)H E)VCS +pgC —(—H)VC,k(T) 2(;_02005 H ~HYS VKT 20000

(7)
C, isobtained from Eq. 1 at steady state,

C,=—CA__=0,0011546 mol/cuft.
q+Vk(T)

Substituting the numerical valuesof T, p, C, (-AH), q, V,C, into Eq. 7
and simplifying,

T'(S) _ 11.38
C,(s) (0.0722s+1)(50s+1)

OT'(s) O
b)  Thegain K of the above transfer function is T, (S il
A (8) [

K= _ 0.157556 q _ ®)

0 q s C, L0 Q [l ; C
~3.153x10° oA +13.844+4.364.10" oA
Hio00 T2HHooo H T2

obtained by putting s=0 in Eq. 7 and substituting numerical values for p,
C, (-AH), V. Evaluating sensitivities,

__ K’ q
0.15766q H 10°

ol

A
2

+0.01384 - 3153 =-6.50x107*

=

0
dK __ K? % a +13845p5153x106— x2%2x4364x10 0

d 3.153 {11000 5
=-257%x10"
dk _ dK ch

dc, dc,  dc,

w2 6 7 =
K E—rH 4,130 153x10 4.36f:10 q E
~ 0157664 i 1000 T +13840

=8.87x107°
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4.15

From Example 4.4, system equations are:

dh:{_ I_l I
A at =q thl ,
dn, 1 1
L =_" !__h!
A SRR
Using state space representation,
X=Ax+Bu
y =Cx+Du
where x:EhfS
%'ZD
then,
[dh; O
g0 2L o Hono
0 0. g RA DE B
Uy, O 1 1
h! H - [ =
0 h
tE0 5RA RAEDEE
Oh O
.o %) 1DDhl
% =0 g0 O
2 r
g,
Therefore,
01, C .
A= 0 o o, B:D
o1 _ 1 =
HRA RAH A
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4.16

Applying numerical values, equations for the three-stage absorber are:

9 _ 0881y, ~1.173x +0539x,

% = 0.634x, —1.173x, +0.530x,

9 _ 0.634x, ~1.173x, + 0.539x,
t
y, =0.72x%,

Transforming into a state-space representation form:

o
%‘Hx

[ o o Y e Y e |
2|
OOOooOoogogo

+1.173 0.539 0 0O0Ox O [0.8811

_ O _ 00, O, 04 O
= 0634 -1173 0539 g%, o+ g 0 gy

H o 063 -11739Ex, 3 HO H

o
x
N

o
X
o8

o
=5

Oy, 0 72 0 0 00x O [00L
0. O

_ O g, 0, Of0
0Y-0 = DO 0.72 ODDXZD+DODyf

Hy:H HO0 0 O072HExH HOH

Therefore, because x; can be neglected in obtaining the desired transfer
functions,

31173 0539 0 [ [0.881[]
_0 _ 0 g_0q O
A=0634 -1173 0539 B=5 0 -
H 0 0634 -1173 H0 H
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4.17

072 0 0O 0o o

_0 0 _ 040
C={0 072 0 f D= 07
50 0 0720 HO B

Applying the MATLAB function ss2tf , the transfer functions are:

Y/(s) _ 0.6343s” +1.4881s+0.6560
Y{(s) s®+3.5190s’ +3.443s+0.8123

Y, () _ 0.4022s + 0.4717
Y{(s) s®+3.5190s’ +3.443s+0.8123

Y;(s) _ 0.2550
Y!(s) s®+3.5190s° +3.443s+0.8123

Dynamic model:

dX
= (S)X - DX
o u(s)

ds
ot =-W(S)X/Yy,;s =D(S; =)

Linearization of non-linear terms: (reference point = steady state point)

e HS
L 6(8.X) =uOX =22
LX) = (6 X+ (5-5+M] (x-%)
0S 5.X oX 5%

Putting into deviation form,
of ' = (K +9) ~1nS o HHaS [,
sx O (K,+9)7 Ko+S

f(S,X") ==L
1 ( ) 35

S +i
oX

S, X
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Substituting the numerical valuesfor p,,,K.,S and X then:

f(S,X")=0.113S' +0.1X'

2. £,(D,S,S,)=D(S, -9S)

t,0.5,5)=%  p+d
Dlyss,  0S

D.S,5, 0S;
f,(D'.S.S,)=(S, -S)D'-DS +DS;

f,(D',S,S;)=9D'-0.1S +0.1S,"’

3. f,(D,X)=DX
f. (D', X")=D'X+X'D =2.25D"+0.1X'

Returning to the dynamic equation: putting them into deviation form by
including the linearized terms:

dd_>: =0.113S +0.1X"' = 2.25D' - 0.1X"

&S _01B8g Oy gp 4ois -0.1S,
dt 0.5 0.5

Rearranging:

dl =0.113S'-2.25D'
dt

ds'

pre =-0.126S'-0.2X"' -9D"' -0.1S;

Laplace Transforming:
sX'(s) =0.113S'(s) — 2.25D'(s)

sS'(s) = —0.126S'(s) —0.2X'(s) -9D'(s) -0.1S;(s)
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Then,

0.113 2.25

X' (S)——S'( S) — TD (s)
o 0.2 9 A
S(S)_s+o.126x(s) s+0.126D(S) s+o.126S’(S)

or

X()a 0.0226 D

] S(S+O 126)D
1.017 0.0113 2.25
== 05 D) S (9 - T D)
s+0.126 s+0.126

Therefore,

X'(s) . —1.3005-2.25s
D'(s) s +0.126s+0.0226
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