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 5.1 
 
 

a)       xDP(t) = hS(t) – 2hS(t-tw) + hS(t-2tw) 

xDP (s) = 
s

h
(1 − 2e

-tws
 + e

-2tws) 

 

b)  Response of a first-order process, 
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       Kh(1−e

-t/τ)         ,  0 < t < tw 

  

   y(t) =      Kh(–1 – e
-t/τ

 + 2e
-(t-tw)/τ

)        ,  tw < t < 2tw 

 

       Kh(–e
-t/τ

 + 2e
-(t-tw)/τ

 − e
-(t-2tw)/τ

 )    ,   2tw < t 

 

  Response of an integrating element, 

 

  
s

h

s

K
sY =)( (1 − 2e

-tw s + e
-2tw s) 

  

       Kht         ,  0 < t < tw 

  

   y(t) =      Kh(-t + 2 tw)            ,  tw < t < 2tw 

 

       0             ,   2tw < t 

 

c) This input gives a response, for an integrating element, which is zero after 

a finite time. 
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 5.2 
 
 

a)  For a step change in input of magnitude M 
 

y(t) = KM (1- e-t/τ)  + y(0) 
 
We note that KM = y(∞) – y(0) = 280 – 80 = 200°C 

 

Then K = 
Kw

C

5.0

200�

= 400 °C/Kw 

 

At time t = 4,     y(4) = 230 °C 

 

Thus   τ−−=
−
− /41

80280

80230
e    or   τ = 2.89 min 

 

∴      
189.2

400

)(

)(

+
=

′
′

ssP

sT
 [°C/Kw] 

 

a) For an input ramp change with slope a = 0.5 Kw/min 

 

Ka = 400 ×0.5 =  200 °C/min 

 

This maximum rate of change will occur as soon as the transient has died 

out, i.e., after 

 

 5×2.89 min ≈ 15 min have elapsed. 
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            Fig S5.2.  Temperature response for a ramp input of magnitude 0.5 Kw/min. 
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 5.3 
 
 
  The contaminant concentration c increases according to this expression: 
 
   c(t) = 5 + 0.2t 
 
  Using deviation variables and Laplace transforming, 
 

   ( ) 0.2c t t′ =   or  
2

2.0
)(

s
sC =′  

  Hence   

2

2.0

110

1
)(

ss
sCm ⋅

+
=′  

 
  and applying Eq. 5-21 
 
   /10( ) 2( 1) 0.2t

mc t e t−′ = − +  

 
  As soon as ( ) 2 ppmmc t′ ≥   the alarm sounds. Therefore, 

 
   ∆t = 18.4 s       (starting from the beginning of the ramp input) 
 

The time at which the actual concentration exceeds the limit (t = 10 s) is 
subtracted from the previous result to obtain the requested ∆t . 
 
 ∆t = 18.4 − 10.0 = 8.4 s     
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  Fig S5.3.  Concentration response for a ramp input of magnitude 0.2 Kw/min. 
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 5.4 
 
 

a) Using deviation variables, the rectangular pulse is 
 

0       t < 0 

Fc′ =  2 0 ≤ t < 2 

0 2 ≤ t ≤ ∞ 
 
  Laplace transforming this input yields   
 

   ( )s
F e

s
sc 21

2
)( −−=′  

  
The input is then given by  
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and from Table 3.1 the time domain function is  

 
  )1(8)1(8)( 2/)2(2/ −−− −−−=′ tt eetc S )2( −t    (1) 
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            Fig S5.4.  Exit concentration response for a rectangular input. 
 
 

b) By inspection of Eq. 1, the time at which this function will reach its 
maximum value is 2, so maximum value of the output is given by 
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)1(8)1(8)2( 2/01 −− −−−=′ eec S )0(     (2) 
 
  and since the second term is zero, 057.5)2( =′c  
 

c) By inspection, the steady state value of )(tc′ will be zero, since this is a 
first-order system with no integrating poles and the input returns to zero.   
To obtain )(∞′c , simplify the function derived in a) for all time greater 
than 2, yielding  

 
)(8)( 2/2/)2( tt eetc −−− −=′      (3) 

 
 which will obviously converge to zero. 

   
Substituting 05.0)( =′ tc  in the previous equation and solving for t gives 
  

t = 9.233 
 
 
 
 5.5 
 
 

a) Energy balance for the thermocouple, 
 

mC )( TThA
dt

dT
s −=       (1) 

 
  where  m is mass of thermocouple 
   C is heat capacity of thermocouple 
   h is heat transfer coefficient 
   A is surface area of thermocouple 
   t is time in sec 
 
  Substituting numerical values in (1) and noting that 
 

  TTs =    and  
dt

Td

dt

dT ′
= , 

 

   TT
dt
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s ′−′=

′
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  Taking Laplace transform, 
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b) Ts(t) = 23 + (80 − 23) S(t) 
 

23== TTs  

 
From t = 0 to t = 20,  
 

=′ )(tTs 57 S(t)       , 
s

sTs

57
)( =′    

)115(
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)(
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1
)(

+
=′

+
=′

ss
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Applying inverse Laplace Transform, 
 

    )1(57)( 15/tetT −−=′  
 
Then 
 

)1(5723)()( 15/teTtTtT −−+=+′=  
 
Since T(t) increases monotonically with time, maximum T = T(20). 
 
Maximum T(t) = T(20) = 23 + 57 (1-e-20/15) = 64.97 °C 
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                     Fig S5.5.  Thermocouple output for part b) 
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a) The overall gain of G is  
0=s

G  

 

= 21
2

2

1

1

1010
KK

KK =
+×τ

⋅
+×τ

 

 
b) If the equivalent time constant is equal to τ1 + τ2 = 5 + 3 = 8, then 

 
y(t = 8)/KM = 0.632    for a first-order process. 
 

y(t = 8)/KM = 
35

35
1

3/85/8

−
−−

−− ee
  = 0.599 ≠ 0.632 

 
  Therefore, the equivalent time constant is not equal to τ1 + τ2  
  

c) The roots of the denominator of G are  
 

 -1/τ1   and   -1/τ2 
 

which are negative real numbers. Therefore the process transfer function 
G cannot exhibit oscillations when the input is a step function. 

 
 
 
 5.7 
 
 

Assume that at steady state the temperature indicated by the sensor Tm is 
equal to the actual temperature at the measurement point T. Then, 

 

   
( ) 1

( ) 1 1.5 1
mT s K

T s s s

′
= =

′ τ + +
 

 
   350mT T C= = �  

 
   ( ) 15sinmT t t′ = ω  

 
  where ω=2π×0.1 rad/min = 0.628 rad/min 
 

At large times when t/τ >>1, Eq. 5-26 shows that the amplitude of the 
sensor signal is 
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2 2 1

m

A
A =

ω τ +
 

 
  where A is the amplitude of the actual temperature at the measurement  
  point. 
 

  Therefore 2 215 (0.628) (1.5) 1A = + = 20.6°C 

 
  Maximum T T A= + =350 + 20.6 = 370.6 
 
  Maximum Tcenter = 3 (max T) – 2 Twall  

 
    = (3×370.6)−(2×200) = 711.8°C 

 
Therefore, the catalyst will not sinter instantaneously, but will sinter if 
operated for several hours. 

 
 
 
 
 5.8 
 
 

a) Assume that q is constant. Material balance over the tank, 
 

qqq
dt

dh
A −+= 21  

 
Writing in deviation variables and taking Laplace transform 
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 t
A

th
5

)( =′ S(t) − )12(
5 −t
A

S(t-12) 

 
 

  4 + tt
A

177.04
5 +=     0 ≤ t 12≤  

   h(t) =  

  4 + 122.612
5 =


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
 ×
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        Fig S5.8a.  Liquid level response for part b) 

 
   

c) ft122.6=h  at the new steady state t ≥ 12 
 
d) =′ )(1 tq 5 S(t) – 10S(t-12) + 5S(t-24)   ;  tw = 12 
 

( )ss ee
s

sQ 2412
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ss e
s
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s
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s
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sH 24
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h(t) = 4 + 0.177tS(t) − 0.354(t-12)S(t-12) + 0.177(t-24)S(t-24) 
 

For  t 24≥  

 

24ft4)24(177.0)12(354.0177.04 ≥=−+−−+= tatttth  
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        Fig S5.8b.  Liquid level response for part d) 
 
 
 
 

 5.9 
 
 

a) Material balance over tank 1. 
 

)33.8( hqC
dt

dh
A i −=  

 
where  A = π×(4)2/4 = 12.6 ft2 
 

 C = 0.1337 
USGPM

/minft 3

 

 
)()33.8()()( sHCsQCsHAs i ′×−′=′  
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For tank 2, 
 

)( qqC
dt

dh
A i −=  
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)()( sQCsHAs i′=′  , 
ssQ

sH

i

011.0
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b) ssQi /20)( =′  

 

For tank 1,     
128.11

1.274.2

)128.11(

4.2
)(

+
−=

+
=′

ssss
sH  

 
  h(t) = 6 + 2.4(1 – e

-t/11.28
) 

 

For tank 2,     2/22.0)( ssH =′  

 

            h(t) = 6 + 0.22t 
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   Fig S5.9.  Transient response in tanks 1 and 2 for a step input. 

 

 

c) For tank 1,  h(∞) = 6 +2.4 – 0 = 8.4 ft 

 

For tank 2,  h(∞) = 6 + (0.22×∞) = ∞ ft 

 

 d) For tank 1,  8 = 6 + 2.4(1 – e
-t/11.28

)  

   h = 8 ft  at t = 20.1 min 

  For tank 2,  8 = 6 + 0.22t  
   h = 8 ft  at t = 9.4 min 

 
  Tank 2 overflows first, at  9.4 min. 
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 5.10 
 
 
 a) The dynamic behavior of the liquid level is given by 
 

  )(
2

tpChB
dt

hd
A

dt

hd ′=′+
′

+
′

 

 
  where 

   A = 
ρ

µ
2

6

R
 B = 

L

g

2

3
 and  C =

Lρ4

3
 

 
  Taking the Laplace Transform and assuming initial values = 0 
 
  )()()()(2 sPCsHBsHAssHs ′=′+′+′  
 

  or  )(
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1
/

)(
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A
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  We want the previous equation to have the form 
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K
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  Hence  K = C/B = 
gρ2

1
 

   
B

12 =τ  then  
2/1
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2
/1 



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==τ
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2 3
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
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
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b) The manometer response oscillates as long as 0 < ζ < 1  or 

0  <   
2/1

2 3

23






ρ

µ
g

L

R
 <  1 

b) If ρ is larger , then ζ is smaller and the response would be more 
oscillatory. 

 
 If µ  is larger, then ζ is larger and the response would be less oscillatory.  
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 5.11 
 
 

  Y(s) = 
)1()1(

2
2
1

2 +τ
+=

+τ ss

K

s

K

ss

KM
 

 
   K1τs + K1 + K2s = KM 
 
   K1 =  KM 
   K2 = −K1τ = − KMτ 
 
  Hence 

Y(s) = 
)1(2 +τ

τ−
ss

KM

s

KM
 

  or 
   y(t) = KMt − KMτ (1-e-t/τ) 
 
  After a long enough time, we can simplify to 
 
   y(t) ≈ KMt - KMτ          (linear) 
 
   slope = KM 
   intercept = −KMτ 
 
  That way we can get K and τ 
 
   

  Figure S5.11.  Time domain response and parameter evaluation 
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y(t)



5-14 

 5.12 
 
 

a) xyyKy =++ 4���  
 

Assuming y(0) = 0)0( =y�  
 

 
125.025.0

25.0

4

1

)(

)(
22 ++

=
++

=
KssKsssX

sY
 

 
b) Characteristic equation is 

 
s2  +  Ks  + 4 = 0 

 

  The roots are s = 
2

162 −±− KK
 

 
  -10 ≤ K < -4 Roots : positive real, distinct 
    Response : A + B 1/ τte  + C 2/ τte  
 

  K = -4  Roots : positive real, repeated 
    Response : A + Bet/τ + C et/τ 

 
  -4 < K < 0 Roots: complex with positive real part. 

    Response: A + eζt/τ (B cos 21 ζ−
τ
t

 + C sin 21 ζ−
τ
t

) 

 
  K = 0  Roots: imaginary, zero real part. 
    Response: A + B cos t/τ + C sin t/τ 

 
 
  0 < K < 4 Roots: complex with negative real part. 

    Response: A + e-ζt/τ (B cos 21 ζ−
τ
t

 + C sin 21 ζ−
τ
t

) 

 
  K = 4  Roots: negative real, repeated. 
    Response: A + Be-t/τ + C t e-t/τ 

 
 
  4 < K ≤ 10 Roots: negative real, distinct     
    Response: A + B 1/ τ−te  + C 2/ τ−te  
 

Response will converge in region 0 <  K ≤ 10, and will not converge in 
region   –10 ≤ K ≤ 0   
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 5.13 
 
 

a) The solution of a critically-damped second-order process to a step change 
of magnitude M is given by Eq. 5-50 in text. 

 

y(t) = KM 














τ
+− τ− /11 te

t
 

 
  Rearranging 
 

   τ−
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


τ
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t
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y
 

 
    

   
KM

y
e

t t −=






τ
+ τ− 11 /  

 
When y/KM = 0.95, the response is 0.05 KM below the steady-state value. 

 
 

 05.095.011 / =−=






τ
+ τ−ts e

t
 

 

 00.3)05.0ln(1ln −==
τ

−






τ
+ ss tt

 

 

 Let   E = 31ln +
τ

−






τ
+ ss tt
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KM

time

0.95KM

y

0
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and find value of 
τ
st that makes E 0≈ by trial-and-error. 

 
ts/τ E 

4 0.6094 
5 -0.2082 

4.5 0.2047 
4.75 -0.0008 

 
∴  a value of  t = 4.75τ is ts, the settling time. 

 

b) Y(s) = 
2

43
2
21

22 )1(1)1( +τ
+

+τ
++=

+τ s

a

s

a

s

a

s

a

ss

Ka
  

 
We know that the a3 and a4 terms are exponentials that go to zero for large 
values of time, leaving a linear response. 
 

 a2 = Ka
s

Ka
s

=
+τ→ 20 )1(

lim  

 

Define  Q(s) = 
2)1( +τs

Ka
 

 

 
3)1(

2

+τ
τ−=

s

Ka

ds

dQ
 

 

Then   a1 = 







+τ

τ−
→ 30 )1(

2
lim

!1

1

s

Ka
s

 

 
(from Eq. 3-62) 
 
 a1 = − 2 Kaτ 
 
∴  the long-time response (after transients have died out) is 
 
 )2(2)( τ−=τ−= tKaKaKatty�  

          )2( τ−= ta  for   K = 1 
 
and we see that the output lags the input by a time equal to 2τ. 
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 5.14 
 
 

 a) Gain = psi/mm20.0
psi15psi31

mm8mm2.11 =
−

−
 

 

  Overshoot = 47.0
mm8mm2.11

mm2.11mm7.12 =
−

−
 

  Overshoot = exp 47.0
1 2

=










ζ−

πζ−
       ,  ζ = 0.234 

  Period = sec3.2
1

2
2

=










ζ−

πτ
 

   τ = 2.3 sec sec356.0
2

234.01 2

=−×
π

 

  
1167.0127.0

2.0

)(

)(
2 ++

=
′
′

sssP

sR
      (1) 

 
b) From Eq. 1, taking the inverse Laplace transform, 

 
P RRR ′=′+′+′  0.2         0.167      0.127 ���  

 
  158 P-P              R-R             RR             RR =′=′=′=′ ������  
 
  52016701270    P  .    R    R .     R . +=++ ���  
 
  53957.1887311 .   P     R  .    R .     R +=++ ���  

yl

time

y

0

=a(t-2τ)x=at

2τ

actual response
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 5.15 
 
 

  
1)3)(7.0(2)3(

3

)(

)(
22 ++

=
′
′

sssT

sP
     [ºC/kW] 

 

  Note that the input change kw62026)( =−=′ tp  

 

Since K is 3 °C/kW, the output change in going to the new steady state 

will be 

 

 ( ) C18kW6)kW/3( �� ==′
∞→

CT
t

 

 

 a) Therefore the expression for T(t)  is  Eq. 5-51 

    





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             Fig S5.15.  Process temperature response for a step input 

 

b) The overshoot can obtained from Eq. 5-52 or Fig.  5.11. From Figure 5.11 

we see that OS ≈ 0.05 for ζ=0.7. This means that maximum temperature is 

 

Tmax ≈ 70° + (18)(1.05) = 70 + 18.9 = 88.9° 

 

  From Fig S5.15 we obtain a more accurate value. 
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The time at which this maximum occurs can be calculated by taking 
derivative of Eq. 5-51 or by inspection of Fig. 5.8. From the figure we see 
that t / τ = 3.8 at the point where an (interpolated) ζ=0.7 line would be. 

 
   

∴  tmax ≈ 3.8 (3 min) = 11.4 minutes 
 
 
 
 5.16 
 
  

 For underdamped responses, 
 



































τ
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ζ−
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









τ
ζ−−= τζ− tteKMty t

2

2

2
/ 1

sin
1

1
cos1)(    (5-51) 

 
a) At the response peaks, 

 
2 2

/

2

1 1
cos sin

1

tdy
KM e t t

dt
−ζ τ

     − ζ − ζζ ζ     = +    τ τ τ − ζ     
   

 

             
2 2 2

/ 1 1 1
sin cos 0te t t−ζ τ

    − ζ − ζ − ζζ     − − + =   τ τ τ τ       
 

   
  Since  KM ≠ 0  and   0/ ≠τζ− te  
 

  

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2

22 1
sin
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1

1
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  π=










τ
ζ−

= nt sin
1

sin0
2

    ,     t
21 ζ−

πτ= n  

  where n is the number of the peak. 
 

  Time to the first peak,     
21 ζ−

πτ=pt  

b) Overshoot, OS = 
KM

KMty p −)(
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OS = 











π

ζ−
ζ+π







τ
ζ−− )sin(

1
)cos(exp

2

t
 

       












ζ−
πζ−=













ζ−τ
ζτπ−=

22 1
exp

1
exp  

 

c) Decay ratio, DR = 
KMty

KMty

p

p

−
−

)(

)( 3  

 where  
23

1

3
)(

ζ−

πτ=pty  is the time to the third peak. 

 

 DR = 























ζ−

πτ
τ
ζ−=



 −

τ
ζ−=τζ−

τζ−

23/

/

1

2
exp)(exp

3

ppt

t

tt
eKM

eKM
p

p

 

           2

2

2
exp (OS)

1

 − πζ= = 
− ζ  

 

 
d) Consider the trigonometric identity 
  
 sin (A+B) = sin A cos B  +  cos A sin B 
 

 Let  B = 










τ
ζ−

t
21

 ,      sin A = 21 ζ−   ,        cos A = ζ  

 [ ]












ζ+ζ−
ζ−

−= τζ− BBeKMty t sincos1
1

1
1)( 2

2

/  

          












+
ζ−

−=
τζ−

)sin(
1

1
2

/

BA
e

KM
t

 

 

 Hence for stt ≥ , the settling time, 
 

 05.0
1 2

/

≤
ζ−

τζ− te
   ,  or      ( )

ζ
τζ−−≥ 2105.0lnt   

 Therefore,      










ζ−ζ
τ≥

21

20
lnst  
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 5.17 
 
 

a) Assume underdamped second-order model (exhibits overshoot) 
 

 
gal/min

ft
2.0

gal/min120140

f610

������
������� =

−
−== t

K  

 

   Fraction overshoot = 25.0
4

1

610

1011 ==
−
−

 

 
  From Fig 5.11, this corresponds (approx) to ζ = 0.4 
 
  From Fig. 5.8 ,  ζ = 0.4 , we note that tp/τ ≈ 3.5 
 
 
  Since tp = 4 minutes (from problem statement), τ = 1.14 min 
 
 

  
191.031.1

2.0

14)2(0.4)(1.1(1.14)

0.2
               

222 ++
=

++
=∴

ssss
(s)G p  

 
b) In Chapter 6 we see that a 2nd-order overdamped process model with a 

numerator term can exhibit overshoot. But if the process is underdamped,  
it is unique. 

 
 
 
 5.18 
 
 

a) Assuming constant volume and density,  
 

Overall material balances yield:  q2 = q1 = q    (1)  
 
Component material balances: 
 

 ( )1
1

1 ccq
dt

dc
V i −=       (2) 

 ( )21
2

2 ccq
dt

dc
V −=       (3) 

 
b) Degrees of freedom analysis 

 
3 Parameters : V1, V2, q 
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3 Variables : ci, c1, c2 

 
2 Equations: (2) and (3) 
 
NF = NV − NE = 3 − 2 = 1 

 
  Hence one input must be a specified function of time. 

 
   2 Outputs = c1, c2 
   1 Input = ci 
 
 

c) If a recycle stream is used 
 

 
Overall material balances: 
 
 q1 = (1+r)q       (4) 
 
 q2 = q1 = (1+r)q      (5) 
 
 q3 = q2 – rq = (1+r)q − rq = q    (6) 
 
Component material balances: 
 

V1 12
1 )1( qcrrqcqc

dt

dc
i +−+=      (7) 

 

V2 21
2 )1()1( qcrqcr

dt

dc
+−+=      (8) 

 
Degrees of freedom analysis is the same except now we have 
 
  4 parameters : V1, V2, q, r 

 



5-23 

d) If ∞→r , there will a large amount of mixing between the two tanks as a 
result of the very high internal circulation. 

 
Thus the process acts like 
 

 
Model : 

  (V1 +V2) )( 2
2 ccq

dt

dc
i −=      (9) 

  c1 = c2 (complete internal mixing)    (10) 
 

     Degrees of freedom analysis is same as part b) 
 
 
 5.19 
 
 

a) For the original system, 
 

 
1

11
1 R

h
Cq

dt

dh
A i −=  

 
2

2

1

12
2 R

h

R

h

dt

dh
A −=  

 
where A1 = A2 = π(3)2/4 = 7.07 ft2 
 

 C = 0.1337 
gpm

/minft 3

 

 R1 = R2 = 
/minft

ft
187.0

1001337.0

5.2
3

1 =
×

=
iqC

h
 

 

ci

q

c2

q

Total Volume = V1 + V2



5-24 

Using deviation variables and taking Laplace transforms, 
 

 
132.1

025.0

11)(

)(

11

1

1
1

1

+
=

+
=

+
=

′
′

ssRA

CR

R
sA

C

sQ

sH

i

 

 
132.1

1

1

/
1

/1

)(

)(

22

12

2
2

1

1

2

+
=

+
=

+
=

′
′

ssRA

RR

R
sA

R

sH

sH
 

 
2

2

)132.1(

025.0

)(

)(

+
=

′
′

ssQ

sH

i

 

 
For step change in qi of magnitude M, 
 
 Mh 025.0max1 =′  

 Mh 025.0max2 =′  since the second-order transfer function  

 

2)132.1(

025.0

+s
 is critically damped  (ζ=1), not underdamped 

 Hence Mmax = gpm100
ft/gpm025.0

f5.2 =t
 

 
For the modified system, 
 

 
R

h
Cq

dt

dh
A i −=   

 
 22 ft6.124/)4( =π=A   

 V = V1 + V2 = 2 ft5ft07.7 2 ××  = 70.7ft3 
 hmax = V/A = 5.62 ft 
 

 R = 
/minft

ft
21.0

1001337.0

62.55.0
3

=
×

×=
iqC

h
 

 

 
164.2

0281.0

11)(

)(

+
=

+
=

+
=

′
′

sARs

CR

R
As

C

sQ

sH

i

 

 
 Mh 0281.0max =′  

 Mmax = gpm100
ft/gpm0281.0

f81.2 =t
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Hence, both systems can handle the same maximum step disturbance in qi. 
 

b) For step change of magnitude M, 
s

M
sQi =′ )(  

 
For original system, 
 

 
s

M

s
sH

R
sQ

22
2

2 )132.1(

025.0

187.0

1
)(

1
)(

+
=′=′  

 

  







+

−
+

−=
2)132.1(

32.1

)132.1(

32.11
134.0

sss
M   

    












 +−=′ − 32.1/

2 32.1
11134.0)( te

t
Mtq  

 
For modified system, 
 

 





+
−=

+
=′=′

164.2

64.21
134.0

)164.2(

0281.0

21.0

1
)(

1
)(

ss
M

s

M

s
sH

R
sQ  

 
 [ ]64.2/1134.0)( teMtq −−=′  
 
Original system provides better damping since )(2 tq′  <  )(tq′  for t < 3.4. 
 
 
 

 5.20 
 
 

a) Caustic balance for the tank, 
 

wccwcw
dt

dC
V −+=ρ 2211  

   
Since V is constant, w = w1 + w2 = 10 lb/min 
 
For constant flows, 
 

  )()()()( 2211 sCwsCwsCwsCVs ′−′+′=′ρ  
 

   
149

5.0

10)7)(70(

5

)(

)( 1

1 +
=

+
=

+ρ
=

′
′

sswVs

w

sC

sC
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1)(

)(

+τ
=

′
′

s

K

sC

sCm    ,     K = (3-0)/3 = 1    ,      τ ≈  6 sec = 0.1 min 

         (from the graph) 
 

   
)149)(11.0(

5.0

)149(

5.0

)11.0(

1

)(

)(

1 ++
=

++
=

′
′

sssssC

sCm  

 

b) 
s

sC
3

)(1 =′  

)149)(11.0(

5.1
)(

++
=′

sss
sCm  









−

−
+=′ −− )491.0(

)1.049(

1
15.1)( 49/1.0/ tt

m eetc  

 

c) 
)149(

5.13

)149(

5.0
)(

+
=

+
=′

ssss
sCm  

 
( )49/15.1)( t

m etc −−=′  

 
 

d) The responses in b) and c) are nearly the same. Hence the dynamics of the 
conductivity cell are negligible. 

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

time

C
m

'(
t)

Part b)
Part c)

 
                       Fig S5.20.   Step responses for parts b) and c) 
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 5.21 
 
 
  Assumptions:  1)  Perfectly mixed reactor 

2) Constant fluid properties and heat of reaction 
 

a) Component balance for A, 
 

AAiA
A cTVkccq

dt

dc
V )()( −−=         (1) 

 
Energy balance for the tank, 
 

ARi cTVkHTTqC
dt

dT
VC )()()( ∆−+−ρ=ρ        (2) 

 
Since a transfer function with respect to cAi is desired, assume the other 
inputs, namely q and Ti, are constant. Linearize (1) and (2) and note that  

 

dt

cd

dt

dc AA ′
=   ,  

dt

Td

dt

dT ′
= , 

 

 T
T

TkcVcTVkqcq
dt

cd
V AAiA

A ′−′+−′=
′

2

20000
)())((       (3) 

 

 ARAR cTVkHT
T

TkcVHqC
dt

Td
VC ′∆−′





 ∆+ρ−=

′
ρ )(

20000
)(

2
  (4) 

 
Taking Laplace transforms and rearranging 
 

[ ] )(
20000

)()()()(
2

sT
T

TkcVsCqsCTVkqVs AAiA ′−′=′++       (5) 

2

20000
( ) ( ) ( ) ( ) ( ) ( )R A R AVCs qC H Vc k T T s H Vk T C s

T
  ′ ′ρ + ρ − −∆ = −∆  

   (6) 

 
Substituting )(sCA′ from Eq. 5 into Eq. 6 and rearranging, 
 

2 2
2 2

( ) ( )( )
20000 20000( ) ( ) ( ) ( ) ( ) ( )

R

Ai
R A R A

H Vk T qT s

C s
Vs q Vk T VCs qC H Vc k T H V c k T

T T

′ −∆=
′   + + ρ + ρ − −∆ + −∆    

           
          (7) 

Ac  is obtained from Eq. 1 at steady state, 
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)(TVkq

cq
c Ai

A +
= = 0.001155 lb mol/cu.ft. 

 
Substituting the numerical values of T , ρ, C, –∆HR, q, V, Ac  into Eq. 7 

and simplifying, 

 

 
)150)(10722.0(

38.11

)(

)(

++
=

′
′

sssC

sT

iA

  

 

For step response, ssCAi /1)( =′  

 

 
)150)(10722.0(

38.11
)(

++
=′

sss
sT  

 

 







−

−
+=′ −− )500722.0(

)0722.050(

1
138.11)( 50/0722.0/ tt eetT  

 

A first-order approximation of the transfer function is 

 

 
150

38.11

)(

)(

+
=

′
′

ssC

sT

iA

  

For step response, 
)150(

38.11
)(

+
=′

ss
sT   or  [ ]50/138.11)( tetT −−=′  

 

 The two step responses are very close to each other hence the 

approximation is valid. 

   

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

time

T
'(
t)

Using transfer function
Using first-order approximation

 
    Fig S5.21.   Step responses for the 2nd order t.f  and 1st order approx. 
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 5.22 
 
 

(τas+1)Y1(s) = K1U1(s) + Kb Y2(s)     (1) 
(τbs+1)Y2(s) = K2U2(s) + Y1(s)     (2) 
 

a) Since the only transfer functions requested involve U1(s), we can let U2(s) 
be zero. Then, substituting for Y1(s) from (2) 
 
Y1(s) = (τbs+1)Y2(s)       (3) 
 
(τas+1)(τbs+1)Y2(s) =K1U1(s) + KbY2(s)    (4) 
 
Rearranging (4) 
 
[(τas+1)(τbs+1) − Kb]Y2(s) =K1U1(s)  
 

∴      
bKss

K

sU

sY

−+τ+τ
=

)1)(1()(

)(

ba

1

1

2      (5) 

Also, since 
 

 1
)(

)(
b

2

1 +τ= s
sY

sY
      (6) 

 
From (5) and (6) 
 

bKss

sK

sY

sY

sU

sY

sU

sY

−+τ+τ
+τ

=×=
)1)(1(

)1(

)(

)(

)(

)(

)(

)(

ba

b1

2

1

1

2

1

1    (7) 

 
b) The gain is the change in y1(or y2) for a unit step change in u1. Using the 

FVT with U1(s) = 1/s. 
 

bb
s K

K

sKss

K
sty

−
=








−+τ+τ

=∞→
→ 1

1

)1)(1(
lim)( 1

ba

1

0
2  

 
This is the gain of TF Y2(s)/U1(s). 
 
Alternatively,  
 

K
bb

ss K

K

Kss

K

sU

sY

−
=








−+τ+τ

=







=

→→ 1)1)(1(
lim

)(

)(
lim 1

ba

1

0
1

2

0
 

 
For Y1(s)/U1(s)  
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bb

b

s K

K

sKss

sK
sty

−
=








−+τ+τ

+τ
=∞→

→ 1

1

)1)(1(

)1(
lim)( 1

ba

1

0
1  

In other words, the gain of each transfer function is 
bK

K

−1
1  

c) 
bKss

K

sU

sY

−+τ+τ
=

)1)(1()(

)(

ba

1

1

2      (5) 

 
Second-order process but the denominator is not in standard form, i.e., 
τ2s2+2ζτs+1 
 
Put it in that form 
 

bKss

K

sU

sY

−+τ+τ+ττ
=

1)()(

)(

ba
2

ba

1

1

2     (8) 

 
Dividing through by 1- Kb 

 

1
1

)(

1

)1/(

)(

)(

ba2ba

1

1

2

+
−

τ+τ
+

−
ττ

−
=

s
K

s
K

KK

sU

sY

bb

b      (9) 

 
Now we see that the gain K = K1/(1-Kb), as before 
 

 
bK−

ττ
=τ

1
ba2   

bK−
ττ

=τ
1

ba     (10) 

 

 
bK−

τ+τ
=ζτ

1
2 ba  ,  then 

 

 
bK−

τ+τ
=ζ

12

1 ba =
ττ

−

ba

1 bK













ττ
τ+τ

ba

ba

2

1

bK−1

1
  (11) 

 
Investigating Eq. 11 we see that the quantity in brackets is the same as ζ 
for an overdamped 2nd-order system (ζOD) [ from Eq. 5-43 in text]. 
 

   
bK−

ζ
=ζ

1
OD      (12) 

  where 
ba

ba
OD 2

1

τ+τ
τ+τ

=ζ  
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  Since  ζOD>1,   
 
              ζ>1, for all 0 < Kb < 1. 
 
In other words, since the quantity in brackets is the value of ζ for an 

overdamped system (i.e. for τa ≠ τb is >1) and bK−1 <1 for any positive 

Kb, we can say that this process will be more overdamped (larger ζ) if Kb 
is positive and <1. 
 
For negative Kb we can find the value of Kb that makes ζ = 1, i.e., yields a 
critically-damped 2nd-order system. 
 

 
1

OD

1
1

bK−
ζ

==ζ       (13) 

 or   
1

2
OD

1
1

bK−
ζ

=  

 
        1 – Kb1 = ζOD

2       

  
      Kb1 = 1 −  ζOD

2
      (14) 

 
where 
   Kb1 < 0 is the value of Kb that yields a critically-damped process.  
 
Summarizing, the system is overdamped for 1 − ζOD

2
 < Kb < 1. 

 
Regarding the integrator form, note that 
 

bKss

K

sU

sY

−+τ+τ+ττ
=

1)()(

)(

ba
2

ba

1

1

2     (8) 

 
For Kb = 1 

 

 [ ])()()(

)(

baba

1

ba
2

ba

1

1

2

τ+τ+ττ
=

τ+τ+ττ
=

ss

K

ss

K

sU

sY
  

 

  









+

τ+τ
ττ

τ+τ
=

1

)/(

ba

ba

ba1

ss

K
 

which has the form 
)1(

1

+τ′
′

=
ss

K
  ( s indicates presence of integrator) 
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d) Return to Eq. 8 
 
System A: 
 

164

1

164

2

5.01)12()1)(2()(

)(
22

1
2

1

1

2

++
=

++
=

−+++
=

ssss

K

ss

K

sU

sY
 

 
   τ2 = 4  →  τ = 2 
   2ζτ  = 6 →  ζ = 1.5 
 
System B: 

For system 
132

1

)1)(12(

1
2 ++

=
++ ssss

 

 

   τ2
2 = 2  →  τ2 = 2  

   2ζ2τ2 = 3 →  ζ2 = 
22

3
 = 

2

5.1
 ≈ 1.05 

 

Since system A has larger τ (2 vs. 2 ) and larger ζ (1.5 vs 1.05),  it will 
respond slower. These results correspond to our earlier analysis. 


