Chapter 5

a) xop(t) = hS(t) — 2AS(t-tw) + hS(t-2ty)

XDp (S) = 2(1 —Ze-tws + e'ZtWS)

b) Response of afirst-order process,

c)

vie) = BRH (1 20t 4 029
s+10s

a
or Y(s)=(I —2¢™° + e_ZtVﬂ oy +——2 J
S rs+1H
a, = Kh =Kh azzK—h =-Kht
s+l S |1
Y(s)= (I —2¢™° + e'ZtWS) (Kh _ Kht O
H? TS+1E
[ Kn(1-e") . 0<t<ty
y(0) = { Kh(=1— "™ + 2T . tw<t<2fy
\ Kh(_e-t/T + 26-(t-tW)/T _e'(t'ztw)/T) , ztw< t
Response of an integrating element,
Y(s) = EE(1 —2e™S 4 ¢S
S S
.
Kht , O0<t<ty
0 , 2ty <t

\

This input gives a response, for an integrating element, which is zero after
a finite time.
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a) For a step change in input of magnitude M
y(t) = KM (1- €™) + y(0)
We note that KM = y(0) — y(0) = 280 — 80 = 200°C

200°C

Then K = =400 °C/Kw
0.5Kw

Attimet=4, y(4)=230"°C

230-80 _, _ an

Thus ————= or T=2.89 min
280-80
T'(S) _ 400 (°C/Kw]
P'(s) 2.89s+1
a) For an input ramp change with slope a = 0.5 Kw/min

Ka =400 x0.5 = 200 °C/min

This maximum rate of change will occur as soon as the transient has died
out, i.e., after

5%2.89 min = 15 min have elapsed.

1500
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time(min)

Fig Sb.2. Temperature response for a ramp input of magnitude 0.5 Kw/min.
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The contaminant concentration ¢ increases according to this expression:
c(t)y=5+ 0.2t

Using deviation variables and Laplace transforming,

c'(t)=0.2t or C'(s) = 0—22
S
Hence

Ch(9) =2

10s+1 s

and applying Eqg. 5-21
¢ (t)y=2(e""* -1) +0.2t
Assoon as ¢, (t) =2 ppm the alarm sounds. Therefore,

At=184s  (starting from the beginning of the ramp input)

The time at which the actual concentration exceeds the limit (t = 10 9) is

subtracted from the previous result to obtain the requested At .

At=184-10.0=84s

2.5

0.5+

0 2 4 6 8 10 12 14 16 18 20
time
Fig S5.3. Concentration response for a ramp input of magnitude 0.2 Kw/min.
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a) Using deviation variables, the rectangular pulseis

0 t<O
Cr 2 0<t<2
0 2<t<

Laplace transforming thisinput yields

c.(s) = %(1— e‘zs)

<

The input isthen given by

c'(s) = 8 _ 8™
s(2s+1) s(2s+1])

and from Table 3.1 the time domain function is

c'(t) =8(1-e"?)-8(1-e 2 S(t - 2) (1)

6

L . .
0 2 4 6 8 10 12 14 16 18 20

time

Fig Sb.4. Exit concentration response for a rectangular input.

b) By inspection of Eq. 1, the time at which this function will reach its
maximum vaueis 2, so maximum value of the output is given by

5-4



c'(2) =8(1-¢e™) -8(1-e™?) S(0) (2
and since the second term is zero, c'(2) = 5.057

By inspection, the steady state value of c'(t)will be zero, since thisis a

first-order system with no integrating poles and the input returns to zero.
To obtain c'(«), simplify the function derived in a) for all time greater

than 2, yielding

c'(t) =8(e 22 —g7'2) ©)
which will obviously converge to zero.
Substituting c'(t) = 0.05 in the previous equation and solving for t gives

t=9.233

Energy balance for the thermocouple,

dT _ B
mC- - = AT, -T) 1)

where mis mass of thermocouple
C is heat capacity of thermocouple
his heat transfer coefficient
Ais surface area of thermocouple
tistimein sec

Substituting numerical valuesin (1) and noting that

T =T ad =97
d dt
159
dt

TG 1
T!(s) 15s+1

Taking Laplace transform,
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b)

Tq(t) = 23 + (80 - 23) (1)

T,=T=23

Fromt=0tot = 20,

T =578 . TA9=
S

TS = T = o
15s+1 s(15s+1)

Applying inverse Laplace Transform,

Then

Since T(t) increases monotonically with time, maximum T = T(20).

T'(t) =57(1-e™'®)

T(t)=T'(t)+T =23+57(1-e"'*)

Maximum T(t) = T(20) = 23 + 57 (1-?1%) = 64.97 °C

50

451
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35
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151

10
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time

Fig S5.5. Thermocouple output for part b)
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b)

Theoverall gainof Gis G|_

— Kl D K2 —
T, x0+1 1,x0+1

KlKZ

If the equivalent time constant isequal to1; + T, =5+ 3=8, then

y(t = 8)/KM = 0.632 for afirst-order process.

-8/5 _ ~.-8/3
y(t = 8)/KM = 1—% = 0,599 #0.632

Therefore, the equivalent time constant is not equal tot; + 1>
Theroots of the denominator of G are
-1ty and -lto

which are negative real numbers. Therefore the process transfer function
G cannot exhibit oscillations when the input is a step function.

Assume that at steady state the temperature indicated by the sensor Ty, is
equal to the actual temperature at the measurement point T. Then,

T()_ K _ 1
T'(s) 1s+1 15s+1

'Fm =T =350°C
T.(t) =15sinut
where w=21x0.1 rad/min = 0.628 rad/min

At large times when t/t1 >>1, EQ. 5-26 shows that the amplitude of the
sensor signal is



b)

A

N

where A is the amplitude of the actual temperature at the measurement
point.

Therefore  A=15,/(0.628)?(L.5)2 +1=20.6°C

Maximum T =T + A=350 + 20.6 = 370.6
Maximum Teenter = 3 (MaX T) — 2 Ty
= (3x370.6)—(2x200) = 711.8°C

Therefore, the catalyst will not sinter instantaneously, but will sinter if
operated for several hours.

Assumethat g is constant. Material balance over the tank,

dh
AE:%*—qz_q

Writing in deviation variables and taking Laplace transform

AsH'(s) = Q,(s) + Q;(s)

H'(s) _ 1
Q(s) As

q.(t) =5 S(r) - 55(1-12)

Q9 =2-2e
Hi(9 =L Q9 =2 -2 e



() = %t ) - %(t ~12) St-12)

)
4+%t:4+0.177t O<t<12
hit)= ¢
4+ B2 x12H=6.122 12<t
oA O

\

25

15

h(t)

0.5-

I I I [ I [ I [ I
0 5 10 15 20 25 30 35 40 45 50

time

Fig Sb.8a. Liquid level response for part b)

0 h =6.122ft at the new steady statet > 12

d q(t) =5 () - 10S(-12) + 55(1-24) ; ty =12

Q9 =2ft-2e +e7)

5/A 10/ Ae_lzs + 5/2Ae_24S

H'(s) = g? s? S

h(t) = 4 + 0.177tS(¢) —0.354(r-12)S(r-12) + 0.177(r-24)S(t-24)
For r 224

h =4+0.177t -0.354(t -12) + 0.177(t - 24) = 4ft at t > 24
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time

Fig S5.8b. Liquid level response for part d)

a) Materia balance over tank 1.

dh
A= =C(q -8.33h
e )

where A= 7m1x(4)%4 = 12.6 ft?

ft3/min

C=01337 —
USGPM

AsH'(s) = CQ/(s) - (Cx8.33)H'(9)

H'(s) _ 012
Q(s) 11.28s+1

For tank 2,

dh
A—=C(q -
4 - Ct@ )
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b)

c)

d)

N~ H'(s) _ 0.011
AsH =CQ , =
Q/(s)=20/s
24  _24 271

Fortank1l, H'(s)j=————="T-_""_
s(11.28s+1) s 11.28s+1

h(t) = 6 + 2.4(1 — e "12%8)
For tank 2, H'(s) =0.22/s?

h(t) = 6 + 0.22t

4k ’ 4
/”’
.
-
3k e 8
,I
2 -~
.
-
/,’
.

1r o b

P2 — Tank 1

-== Tank2
0 L L L L L L I
0 5 10 15 20 25 30 35 40

time

Fig S5.9. Transient responsein tanks 1 and 2 for a step input.

Fortank 1, h(c)=6+24-0=8.4ft

Fortank 2,  h(®) =6 + (0.22 xc0) = oo ft

Fortank 1,  8=6+2.4(1 — "%,
h=8ft att=20.1 min

For tank 2, 8=6+0.22t
h=8ft att=9.4 min

Tank 2 overflows first, at 9.4 min.
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5.10

b)

b)

The dynamic behavior of theliquid level is given by

d?h’ dh’
+ A—+Bh'=Cp'(t
dt dt P M)
where
A= 65 B= 3_g and C:i
R°p 2L 4pL

Taking the Laplace Transform and assuming initial values =0

S?H'(s) + AsH'(s) + BH'(s) =CP'(s)

or H'(s) =T A C/E P'(s)
—s?+—s+1
B B

We want the previous equation to have the form

K

H'(s) = P'(s
(s) 128 + 2l1s+1 (s)
1
Hence K=C/B= —
2pg

12
rzzé then T:\/l/B:%%
g

_A _wppLe”
ZZT—B then Rzp%%

The manometer response oscillatesaslongas0< (<1 or

/2
o< B <

If pislarger, then  issmaller and the response would be more
oscillatory.

If 1 islarger, then C islarger and the response would be less oscillatory.
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KM K K,

Y(§) = ———=—1+
© s’(ts+1) s°  s(1s+))
Kits+ K1 + Kys= KM
Ki= KM
Ky = K31 = —KMt
Hence
KM KMt
Y(§) = —-
S s(ts+1)
or

y(t) = KMt —KMt (1-e)
After along enough time, we can smplify to
y(t) =KMt - KMt (linear)

slope=KM
intercept = KMt

That way we can get K and t

y@© 4 ~

-KMrt

Figure S5.11. Time domain response and parameter evaluation
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5.12

a)

b)

y+Ky+4y=Xx

Assuming y(0) = y(0) =0

Y9 . 1 _ 0.25
X(s) s*+Ks+4 0.255°+0.25Ks+1

Characteristic equation is

€+ Ks+4=0

-K+4/K?-16
2

Therootsares=

-10 <K < -4 Roots: positive real, distinct
Response: A+ Be'™ + C €'™

K=-4 Roots : positive real, repeated
Response: A+ Be”" + C &”

-4< K< 0 Roots. complex with positive real part.

Response: A+ 6V (B cosy1- 22 ~ + Csiny1-¢* L
r r

K=0 Roots: imaginary, zero real part.
Response: A+ B cost/t + Csint/t

0<K<4 Roots: complex with negative real part.
Response: A + €T (B cosy/1- 2 tic siny1-22 l)
T T

K=4 Roots: negative real, repeated.
Response: A+ Be'"+ Cte'"

4<K=<10 Roots: negative real, distinct

Response: A+ Be™'™ + C e'™
Response will convergeinregion 0 < K <10, and will not convergein
region —10 sK <0
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5.13

a) The solution of a critically-damped second-order process to a step change
of magnitude M is given by Eq. 5-50 in text.

(t)-KM% EL+ ‘“T

Rearranging

KM

0.95KM

0 tg time

H+t—SEe‘“T =1-0.95=0.05
O tQ0

InEl+—B— = In(0.05) = -3.00
10T

Let E= InEl.+—El—tS+3
10T
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and find value of L that makes E= Oby trial-and-error.
T

tg/T E
4 0.6094
5 -0.2082
45 0.2047

4.75 -0.0008

O avalueof t=4.751ists, the settling time.

Ka a a
B V9= o m e
s°(ts+]) S s° 1S+l (ts+))

We know that the ag and a4 terms are exponentials that go to zero for large
values of time, leaving alinear response.

a = Iimﬁz: Ka
s-0(1s+1)
. Ka
Define Q(s) =
Q(s) (s +1)?
d_Q: - 2Kart
ds (1s+1)°

. O- O
Then a; = % li 2Kat

HTS+1)3%

o3

(from Eq. 3-62)
a; = —2Kar

O the long-time response (after transients have died out) is

y, (t) = Kat — 2Kart = Ka(t - 21)
=a(t - 21) for K=1

and we see that the output lags the input by atime equal to 2t.

5-16



5.14

b)

Yi=a(t-21)

>
0 \actual response time

Gain= LL2MM=8MM _ 6 55 1im/ ps

3lps —15psi
Overshoot = 12.7mm-11.2mm — 047

11 2mm -8mm
Overshoot = exp H‘ 047 , (=0234
El\/l Z ol

period = 2™ 1o 5 360

H/l ’H

_ 2
1= 23sec x V170234 _ (356 e
2ir

R'(s) _ 0.2

, > D
P'(s) 0.127s’ +0.167s+1

From Eq. 1, taking the inverse Laplace transform,
0.127R + 0.167R + R = 0.2P

R =R R =R R = R8 P' = P-15
0127R + 0167R + R = 02P + 5

R + 131R + 788R = 157P + 395
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5.15

P'(s) _ 3
T'(s) (3)?s?+2(0.7)(3)s+1

[°C/kW]

Note that the input change p'(t) =26 —-20 =6 kw

Since K is 3 °C/kW, the output change in going to the new steady state
will be

T' =(3C/Kw)(6kW)=18C

a) Therefore the expression for T(t) is Eq. 5-51

T(t) = 70° +18§ '()3%035“1 (07)° H+ 0.7 gn 1_(0'7)2t%
H 5 d 3 H\ll 07n* H§ T

25

20+

151

10

L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50
time

Fig S5.15. Process temperature response for a step input

b) The overshoot can obtained from Eq. 5-52 or Fig. 5.11. From Figure 5.11
we see that OS = 0.05 for {=0.7. This means that maximum temperature is

Trhax=70° + (18)(1.05) =70 + 18.9 = 88.9°

From Fig S5.15 we obtain a more accurate value.

5-18



5.16

b)

The time a which this maximum occurs can be calculated by taking
derivative of Eq. 5-51 or by inspection of Fig. 5.8. From the figure we see
that t / T = 3.8 at the point where an (interpolated) {=0.7 line would be.

g tmax = 3.8 (3 min) = 11.4 minutes

For underdamped responses,

N e L= e %
y(t) = KM %— e '"[tos t sin t (5-51)
g 5H v Ha1-¢ HT

At the response peaks,

—7? D 0. jp-¢2 0
dy_ =KM %Z—e“” E:os Z t —si 1 Z
dt ET 4/

5
_Mﬁ DJTHCOWD:
i

Since KM #0 and e€%/"#0

e S 4 T G S R SRR St Gl G TGN
e e e

:sinHH“l_zzt H i L.

=sinnmt , t=n
T i 1- 72

where n is the number of the peak.

Timeto thefirst peak, t, =

y(t,) —KM

Overshoot, OS =
KM
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d)

__ gt 4
OS= exp@%%ﬁos(nﬁ P

O_zm 0 O_pz O
:expElim—ex 50

g BA-E

0
sin(md
B

t, ) — KM
Decay rétio, DR = M
y(t,) —KM
where y(t;,) = % isthe timeto the third peak.
1-¢
KM e ' 0 Z U7H 2m
DR = WZGXpE—— _t )E_ pG‘—H > %
e T H Ti-¢ %
0

=exp [—lﬂm (0S)

A1-H

Consider the trigonometric identity

sin(A+B)=sinA cosB + cosA snB

Let B HH“ - E sSnA=,1-7% , cosA =

YO = KM -
5

[\/ﬁcosB+Zsm B]D

1Z2

=KM % e sm(A+B)§

Hencefor t > t_, the settling time,

<005 ,or t= —|n(0.05¢ﬁ)%

nd. 20 H
" h

e—Zt/T
1- 22

Therefore, t.=>

S =

m|-|



5.18

b)

b)

Assume underdamped second-order model (exhibits overshoot)

K = Aoutput _ 10-6ft -0 ft
Ainput  140-120 gal/min  gal/min
Fraction overshoot = % = % =0.25

From Fig 5.11, this corresponds (approx) to = 0.4

FromFig. 5.8, { =0.4, wenotethat ty/t = 3.5
Since t, = 4 minutes (from problem statement), T = 1.14 min

0.2 0.2

0 G (s = =
S = L1077 ¥ 2(04)(L14)s+1  131s? +0915+1

In Chapter 6 we see that a 2™-order overdamped process model with a
numerator term can exhibit overshoot. But if the process is underdamped,
itisunique.

Assuming constant volume and density,
Overall material balancesyield: g =1 =q (1)

Component material balances:

dc
V,—t=q(c -c 2
v ~ae-c) @
dc
Vv, d_tz = q(Cl - Cz) ©)
Degrees of freedom analysis

3 Parameters: Vi, Vy, q
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3 Variables: ¢, ¢, C;
2 Equations: (2) and (3)
Ne=Ny-Ng=3-2=1
Hence one input must be a specified function of time.
2 Outputs = ¢, C;

1 Input = ¢

C) If arecycle stream is used

C.

I

q | 1

¢, ] rq
A 2 i q1
c2
—— —~—  ~— o q
q 3
ol 0o 2
o110
Overdl materia balances:
o = (1+r)q (4)
02 = g1 = (1+r)q ©)
0= Qx—rqg=(1+r)g —rq=q (6)
Component material balances:
dc, _
Vlg =(qc, +rqc, —(L+r)qc, (7)
dc, _
Vot = (W r)ag ~ L+ e, (8)

Degrees of freedom analysis is the same except now we have

4 parameters: Vi, Vo, g, 1
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If r - oo, therewill alarge amount of mixing between the two tanks as a

d)
result of the very high internal circulation.

Thus the process acts like

C
q

A J >

q
O 1
Total Volume =V, +V,
Modd :
dc, _
(V1+Vo) o q(c —¢,) 9)
(10)

C1 = C (complete internal mixing)

Degrees of freedom analysisis same as part b)

5.19
a) For the original system,
ﬂ = qu —&
dt R
dn, _h _h,
d R R
where A, = A, = T(3)%/4 = 7.07 ft?
3y
C = 0.1337 /min
~gpm
_h 2.5 ft
ft*/min

R]_: Rz— — = = U
Cg  0.1337x100
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Using deviation variables and taking Laplace transforms,

Hi()_ C _ CR _ 0025
Q) pg+ L ARs+l 132s+1

Hys) . YR _ RIR _ 1

IS pge b " ARsS+1 1.32s+1
R,
Hy(s) _ 0025

Q(s) (1.32s+1?
For step change in g; of magnitude M,

h e = 0.025M
h;,.. =0.025M since the second-order transfer function

% is critically damped ({=1), not underdamped
.32s

2.5ft

Hence Mppx= ———— =100 gpm
T 0.025 ft/gpm ®

For the modified system,

Aﬁ = qu —D
dt R
A =T(4)?/4=12.6 ft’

V=V, + V, = 2x7.07ft? x5ft = 70.7ft°
hrex = VIA = 5.62 ft

h
R= - 05%x562 _,,, 3ft_
Cg,  0.1337x100 ft*/min

H() C _ CR _ 00281
Q) ass 1 ARs+1 264s+1
R

h, =0.0281M

_ 28U o
T 0.0281ft/gpm
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5.20

b)

Hence, both systems can handle the same maximum step disturbancein g;.

For step change of magnitude M, Q/(s) = %

For original system,

1 0025 M
0.187 (1.32s+1)> s

Q;(s):RiZH;(s):

: . O
:O.134MDL— 132 132 g
(1.32s+1) (1.32s+D)°[]

ey — _ t 132U
qz(t)—0.134M§ Q'+1.32§e R

For modified system,

1 1 00281 M 1 264 [
'(s)==H'(s) = — =0.134M -
Q= =02 (2.64s+1) s & 264s+1H

g'(t) = 0.134M [1_ e—t/z_m]

Original system provides better damping since g, (t) < q'(t) fort<3.4.

Caustic balance for the tank,

dC _
pV o w,C, +W,C, —WC

SinceV is constant, w = w; + w, = 10 |[b/min
For constant flows,
pVsC'(s) = w,C, (s) + w,C; (s) —wC'(s)

Cle_ w _ 5 _ 05
C/(s) pVs+w (70)(7)s+10 49s+1
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C'(s) 1s+1

= , K=@3-0)/3=1 , t1=6sc=01min

(from the graph)

C.(s) _ 1 05 _ 0.5
Ci(s) (0.1s+1) (49s+1) (0.Is+1)(49s+1)

b Cl9) :g

C (9 = 15
™Y 5(0.15+1)(49s+1)

cn(t) = 1.5§+ 1 g 49e‘”49)g
0 (49-0.J) 0

9  c9=_05 3. 15
" (49s+1) s s(49s+1)

c.(t) =15(1-e*'*)

d) The responsesin b) and c) are nearly the same. Hence the dynamics of the

conductivity cell are negligible.

15

cm't)

0.5

— Partb)
--= Partc)
I

0 I I L I I I L I
0 20 40 60 80 100 120 140 160

time

Fig S5.20. Sep responses for partsb) and ¢)
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Assumptions: 1) Perfectly mixed reactor
2) Constant fluid properties and heat of reaction

a) Component balance for A,
dc, _
\% at a(ca —Ca) —VK(T)c, 1)
Energy balance for the tank,
dT
Ve =paC(T; —T) +(-AHR)VK(T)c, @)

Since a transfer function with respect to cy is desired, assume the other
inputs, namely q and T;, are constant. Linearize (1) and (2) and note that

dc, _dc, dT _dT’

dt  at ot

dc! 20000
\% th =qc,, —(q+VK(T))c, —VEk(T) —=— 3)
pVC— - ZOOOOH — AH VK(T)E, (4)

Taking Laplace transforms and rearranging

B/s+q+Vk(T)]c () = qCl () -VC k(T)ZO_OZOOT() ®)

20000

DT() =(~MHVK(T)CL(9) ()

Substituting C/, (s) from Eq. 5 into Eq. 6 and rearranging,

T'(s) _ (-AHR)VK(T)q

200000]

Ci(s) Vs+q +Vk(f)§§)\/03 +pIC ~(~MHVEK(T) o —MH VK (T) "=

(7)
C, isobtained from Eq. 1 at steady state,
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N ¢ (o

C, =—————==0.001155 |b mol/cu.ft.
g+VK(T)

Substituting the numerical valuesof T , p, C, —AHR, g, V, C, into Eq. 7
and simplifying,

T'(s) _ 11.38
C,(s) (0.0722s+1)(50s+1)

For step response, C}, (S) =1/s

' 11.38
T'(s) =
5(0.0722s+1)(50s +1)
T'(t) = 1138%+ ; (0_07228—“0.0722 _ 506_“50)5
H (50-0.0722) A

A first-order approximation of the transfer function is

T'(s) _11.38
C,(s) 50s+1
, 11.38 , _
For step response, T (S) = m or T'(t) :11.38[1—e “5OJ

The two step responses are very close to each other hence the
approximation is valid.

12

— Using transfer function
-=-=Using first-order approximation
I i i T

0

L L L
0 20 40 60 80 100 120 140 160 180 200
time

Fig S5.21. Sep responses for the 2" order t.f and 1% order approx.
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5.22

b)

(taSt 1) Y1(S) = KiU4(s) + Ky Yo(9) (D)
(test 1) Y2(s) = KoUy(s) + Yi(S) 2

Since the only transfer functions requested involve U4(s), we can let Ux(S)

be zero. Then, substituting for Yi(s) from (2)

Y(s) = (Tost1)Y2(s) 3
(taSt 1) (Tps+ 1) Yo(S) =K1U1(S) + KpY2(S) 4
Rearranging (4)

[(Tast1)(Tpst1) —Kp]Ya(s) =K1U1(S)

Y,(9) _ K,
Uy (s) (T,s+D(t,s+D)-K,
Also, since

(5)

Yi(8)
Y(8)

=1,5+1 (6)

From (5) and (6)

Yi(8) _Ya(9) Yi(S) _ Kyi(T,s+7)

U,(s) U(S) Y(S) ('[as+1)(1'b5+]_)_Kb )

The gain is the change in yi(or y») for a unit step change in u;. Using the

FVT with Uy(s) = Us.

D K, 10 K,
Yo(t » ) =lim ~0=
SHOD(T s+(t,s+1)-K, s 1-K,

Thisisthe gain of TF Y2(s)/U4(S).

Alternatively,
D O 0
K= IimDY (s) . K, = K,
Ejl(s ) [ s~ EtT s+1)(t,s+)-K,g 1-K,
For Y1(s)/U1(s)
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O + 0]
Vit~ ) =times WS Lo K
-0 (T,s+D(1,8+D) - K, s 1-K,

In other words, the gain of each transfer function is Ky

Y,(s) _ K,
U,(9) (T,5+D(1,5+1) -K,

(5)

Second-order process but the denominator is not in standard form, i.e.,
°S+201s+1

Put it in that form

Yo(S) _ Ky

= ®
Ui(s) T.T,8" +(T,+T,)s+1-K,
Dividing through by 1- K,
Yz(s) — Kll(l_ Kb)
U (s) T.T (T, +71,) ©)
1 a‘'b SZ+ a b S+l
1-K, 1-K,
Now we see that the gain K = K1/(1-K},), as before
2= lalb 1= | lalo (10)
1-K, 1-K,
+
20t = LEST , then
1-K,
+ - +1, O
ZZET& 1, [1-K, Ot +1, 1 (1)

= 0
21-K, V1.1, R 1,1, B41-K,

Investigating Eq. 11 we see that the quantity in brackets is the same as
for an overdamped 2™-order system (Zop) [ from Eq. 5-43 in text].

ZOD
1-K,

(12)
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Since (op>1,
(>1,foral 0< Kp< 1.

In other words, since the quantity in brackets is the value of { for an
overdamped system (i.e. for 1.# 1, is >1) and /1- K, <1 for any positive

Kb, We can say that this process will be more overdamped (larger ) if Ky,
is positive and <1.

For negative Ky, we can find the value of Ky that makes{ = 1, i.e., yieldsa
critically-damped 2™-order system.

Z =1= (13)
V1= Ky
2
or 1= Con
- Kbl
2
1-Kp = Cop
Kpn=1-Top (14)

where
K1 < 0 isthevalue of K, that yields a critically-damped process.

Summarizing, the system is overdamped for 7 —Zop® < Kp < 1.
Regarding the integrator form, note that

Yy(s) _ K,

2 (C)
U,(8) T,1,58" +(T,+1,)s+1-K,
For Kp,=1
Y,(9) _ K, _ K,
U () T,T,82+(T,+T,)S ST,T,5+(T,+1,)]
K (T, +T,)
SDTaTb s+1D
Ea+-[b %
which hasthe form = L (' sindicates presence of integrator)
s(t's+1)
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d)

Returnto Eq. 8
System A:

Y,(s) _ K, _ 2K, _ 1
U,(s) (Q@s*+(2+D)s+1-05 4s*+6s+1 4s”+6s+1

=4 S~ 1=2
201=6 - (=15
System B:
For system = L
(2s+1(s+1) 25" +3s+1
,°=2 - = 2
3 15
251, =3 - (= ——="—==105
282 2 2\/5 \/E

Since system A has larger T (2 vs. +/2) and larger (1.5 vs 1.05), it will
respond slower. These results correspond to our earlier analysis.
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