
6-1 

��������	�
 
 
 
 
 6.1 
 
 

a) By using MATLAB, the poles and zeros are: 
 

Zeros:  (-1 +1i) , (-1 -1i) 
Poles:  -4.3446 
 (-1.0834 +0.5853i) 
 (-1.0834 –0.5853i) 

   (+0.7557 +0.5830i) 

   (+0.7557 −0.5830i) 

 

  These results are shown in Fig E6.1  

   
    Figure S6.1.  Poles and zeros of G(s) plotted in the complex s plane. 
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b) Process output will be unbounded because some poles lie in the right half 
plane. 

c) By using Simulink-MATLAB 
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            Figure E6.1b.  Response of the output of this process to a unit step input. 
 

As shown in Fig. S6.1b, the right half plane pole pair makes the process 
unstable. 
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Applying zero-pole cancellation: 
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c) Gain = 0.5 

Pole = −2 
Zeros = No zeros due to the zero-pole cancellation. 
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d) 1/1 Pade approximation:  
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)2/51(

)2/51(

15.0

5.0
)(

s

s

s
sG

+
−×

+
=  

 
Gain = 0.5 
Poles = −2, −2/5 
Zeros = + 2/5 
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  From Eq. 6-13  
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b) Overshoot →  y(t) > KM 

 

KMeKM ta >







τ

τ−τ
+ τ− 1/

1

11  

or   τa − τ1 > 0  ,  that is, τa > τ1 

 

00
)(

1/
2

1

1 ><
τ

τ−τ
−= τ− KMforeKMy ta

�  
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  Therefore  τa < 0. 
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 6.4 
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  Since τ1 > τ2,  τa < 0. 
 

d) If an extremum in y exists, then from (a) 
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 6.5 
 
 
  Substituting the numerical values into Eq. 6-15 
 
  Case (i) : y(t) = 1 (1 + 1.25e-t/10 − 2.25e-t/2)  
 
  Case (ii(a)) : y(t) = 1 (1 − 0.75e-t/10 − 0.25e-t/2)  
 
  Case (ii(b)) : y(t) = 1 (1 − 1.125e-t/10 + 0.125e-t/2)  
 
  Case (iii) : y(t) = 1 (1 − 1.5e-t/10 + 0.5e-t/2) 
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      Figure S6.5.   Step response of a second-order system with a single zero. 
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  Conclusions: 
 
   τa > τ1  gives overshoot. 
 
   0 < τa < τ1 gives response similar to ordinary first-order process  
          response. 
 
   τa < 0 gives inverse response. 
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  Put in standard K/τ form for analysis: 
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a) Order of G(s) is 2 (maximum exponent on s in denominator is 2) 

 
b) Gain of G(s) is K1. Gain is negative if K1 < 0. 

 
c) Poles of G(s) are:  s1 = 0  and s2 = –1/τ 

 

s1 is on imaginary axis; s2 is in LHP. 

 

d) Zero of G(s) is:   
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Two possibilities:   1.   K1<0  and K1τ + K2 >0 
 
         2.   K1 > 0 and K1τ + K2 < 0 

 
e) Gain is negative if K1 < 0 
 

Then zero is RHP if K1τ + K2 > 0   
 
This is the only possibility. 

 
f) Constant term and e-t/τ term. 

 
g) If input is M/s, the output will contain a t term, that is, it is not bounded. 
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a) Transfer Function for blending tank: 
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a 6th-order transfer function. 

 

b) Since τbt >> τtl  [ 2 >> 0.02]   we can approximate 
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c) Since τbt ≈ 100 τtl , we can imagine that this approximate TF will yield 

results very close to those from the original TF (part (a)). We also note 
that this approximate TF is exactly the same as would have been obtained 
using a plug flow assumption for the transfer line. Thus we conclude that 
investing a lot of effort into obtaining an accurate dynamic model for the 
transfer line is not worthwhile in this case. 

 
[ Note that, if τbt ≈ τtl , this conclusion would not be valid] 

 
d) By using Simulink-MATLAB, 
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   Fig S6.8.   Unit step responses for exact and approximate model. 
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 6.9 
 
  

a), b) Represent processes that are (approximately) critically damped. A step 
response or frequency response in each case can be fit graphically or 
numerically. 

 
c) θ = 2, τ = 10 
 
d) Exhibits strong overshoot. Can’t approximate it well. 

 

e) θ = 0.5, τ = 10 

 

f) θ = 1, τ = 10 

 

g) Underdamped (oscillatory). Can’t approximate it well. 

 

h) θ = 2, τ = 0 

 

 

By using Simulink-MATLAB, models for parts c), e), f) and h) are 

compared: (Suppose K = 1) 

 

 Part c) 
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  Figure S6.9a.  Unit step responses for exact and approximate model in part c) 
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Part e) 
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Figure S6.9b.  Unit step responses for exact and approximate model in part e) 
 
 
Part f) 
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  Figure S6.9c.  Unit step responses for exact and approximate model in part f) 
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 Part h) 
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  Figure S6.9d.  Unit step responses for exact and approximate model in part h) 
 
 
 6.10 
 
  

a) The transfer function for each tank is 
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 co is the inlet concentration to tank 1. 

 

 V is the volume of each tank. 

 

 q is the volumetric flow rate. 
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Then, by partial fraction expansion, 
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 b) Using Simulink, 
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    Figure S6.10.   Concentration step responses of the stirred tank. 

 
 The value of the expression for c5(t) verifies the simulation results above: 

  
2 3 4

5
5

5 5 5
(30) 0.60 0.15 1 1 5 0.5161

2! 3! 4!
c e−  

= − − + + + + =  
  

 

 
 
 6.11 
 
 

a) 
11

1
)(

1
22

1 +τ
++=

+τ
+τ−

=
s

C

s

B

s

A

s

E

s

s
sY a  

 
We only need to calculate the coefficients A and B because 01/ →τ−tCe   
 for t >> τ1. However, there is a repeated pole at zero. 
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  Plotting 
   

 
 
 
 

b) For a LHP zero, the apparent lag would be τ1 − τa 
 
c) For no zero, the apparent lag would be τ1 
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 6.12 
 
 

a) Using Skogestad’s method 
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b) By using Simulink-MATLAB 
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 Figure S6.12a.  Unit step responses for exact and approximate model. 
 

  
c) Using MATLAB and saving output data on vectors, the maximum error is  

 

Maximum error = 0.0521    at  = 5.07 s 

 

This maximum error is graphically shown in Fig. S6.12b 
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Figure S6.12b.  Maximum error between responses for exact and approximate    

                                         model.                        
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From the solution to Problem 2-5 (a) , the dynamic model for isothermal 
operation is 
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Taking Laplace transforms, and noting that 0)( =′ sPf since Pf is constant, 
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  Substituting for )(1 sP′ from Eq. 3 into 4, 
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  Substituting for )(2 sP′ from Eq. 5 into 4, 
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To determine whether the system is over- or underdamped, consider the 
denominator of transfer functions in Eqs. 5 and 6. 
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  Since x + 1/x ≥ 2   for all positive x, 
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  Since KaKc ≥ 0, 
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  For M =2 ,  K = 3, and τ = 3,  the Simulink response is shown: 



6-19 

  

0 2 4 6 8 10 12 14 16 18 20
-12

-10

-8

-6

-4

-2

0
x 10

8

Time

O
ut

pu
t

 
    Figure S6.14a.  Unit step response for part a). 
 

 b) If       
)1)(1(

)(
2

2 +τ−
=

−

ss

Ke
sG

s

      then,  

)2(
11

1)( /)2(
2

2 −







+τ
τ−

+τ
−= τ−−

−

tSe
e

KMty t
t

 

 
Note presence of positive exponential term. 

 
 c) Approximating G2(s) using a Padé function 

 

   
)1)(1()1)(1)(1(

)1(
)(2 +τ+

=
−+τ+

−=
ss

K

sss

sK
sG  

 

  Note that the two remaining poles are in the LHP. 

 

 d) For  
s

M
sX =)(   

   
)1)(1(

)(
+τ+

=
sss

KM
sY  

 

  Using Table 3.1 

 

    τ1 = 1      ,      τ2 = τ  
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   



 τ−

−τ
+= τ−− )(

1

1
1)( /

3
tt eeKMty  

 
  Note that no positive exponential term is present. 
 

e) Instability may be hidden by a pole-zero cancellation. 
 
f) By using Simulink-MATLAB, unit step responses for parts b) and c) are 
 shown below: (M = 2 , K = 3 , τ = 3) 
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        Figure S6.14b.  Unit step response for part b). 
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           Figure S6.14c.  Unit step response for part c) . 
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 6.15 
 
   
  From Eq. 6-71  and 6-72, 
 

   
21

12

11

22

22

11

2121

121122

2

1

2

1

2 AR

AR

AR

AR

AR

AR

AARR

ARARAR
+





+=

++
=ζ  

 

  Since 2
1 ≥+
x

x  for all positive x and since R1, R2, A1, A2 are positive 

 

   ( ) 1
2

1
2

2

1

21

12 ≥+≥ζ
AR

AR
 

 
 
 
 
 6.16 
 
  
 a) If  w1 = 0 and ρ = constant 
 

  20
2

2 ww
dt

dh
A −=ρ  

 

  2
2

2

1
h

R
w =  

 

 [ Note: could also define R2 by 2
2

222
2

2

1
h

R
qwh

R
q

ρ=ρ=→=  ] 

 
Substituting, 
 

2
2

0
2

2

1
h

R
w

dt

dh
A −=ρ  

 

or    202
2

22 hwR
dt

dh
RA −=ρ  

 
Taking deviation variables and Laplace transforming 
 

  )()()( 022222 sWRsHsHsRA ′=′+′ρ  
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1)(

)(

22

2

0

2

+ρ
=

′
′

sRA

R

sW

sH
 

 

Since )(
1

)( 2
2

2 sH
R

sW ′=′  

 

 
1

1

1

1

)(

)(

2222

2

20

2

+ρ
=

+ρ
=

′
′

sRAsRA

R

RsW

sW
  

 
Let τ2 = ρA2R2 
 

 
1

1

)(

)(

20

2

+τ
=

′
′

ssW

sW
 

 
 

b) ρ = constant 

1
1

1 w
dt

dh
A −=ρ               210

2
2 www

dt

dh
A −+=ρ  

 

)(
1

21
1

1 hh
R

w −=   2
2

2

1
h

R
w =  

 
c) Since this clearly is an interacting system, there will be a single zero. Also, 

we know the gain must be equal to one. 
 

∴  
12

1

)(

)(
22

0

1

+ζτ+τ
+τ

=
′
′

ss

s

sW

sW a   
12

1

)(

)(
22

0

2

+ζτ+τ
=

′
′

sssW

sW
 

 

or         
)1)(1(

1

)(

)(

210

1

+τ′+τ′
+τ

=
′
′

ss

s

sW

sW a   
)1)(1(

1

)(

)(

210

2

+τ′+τ′
=

′
′

sssW

sW
 

 
where 1τ′  and 2τ′ are functions of the resistances and areas and can 
only be obtained by factoring. 

 
f) Case b will be slower since the interacting system is 2nd-order, "including" 

the 1st-order system of Case a as a component. 
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 6.17 
 
  
  The input is ttTi ω=′ sin12)(  

  where      1hr262.0
hours24

radians2 −=π=ω  

 
  The Laplace transform of the input is from Table 3.1, 
 

    
22

12
)(

ω+
ω=′

s
sTi  

 
  Multiplying the transfer function by the input transform yields 
 

    
))(15)(110(

)3672(
)(

22 ω+++
ω+−=′

sss

s
sTi  

 
To invert, either (1) make a partial fraction expansion manually, or (2) use 
the Matlab residue function. The first method requires solution of a system 
of algebraic equations to obtain the coefficients of the four partial 
fractions. The second method requires that the numerator and denominator 
be defined as coefficients of descending powers of s prior to calling the 
Matlab residue function: 
 
 Matlab Commands 
 
>> b = [ 36*0.262  −72*0.262] 
 
b = 
 
     9.4320  −18.8640 
 
>> a = conv([10 1], conv([5 1], [1 0 0.262^2])) 
 
b = 
 
     50.0000 15.0000 4.4322  1.0297  0.0686 
 
>> [r,p,k] = residue(b,a) 
 
r = 

6.0865 − 4.9668i 
6.0865 + 4.9668i 
38.1989 

             −50.3718 



6-24 

p = 
          −0.0000 − 0.2620i 
          −0.0000 + 0.2620i 
          −0.2000  

             −0.1000 
k = 
 
 [] 
 
Note: the residue function recomputes all the poles (listed under p). These 
are, in reverse order: p1 = 0.1( )101 =τ , p2 = 0.2( )52 =τ , and the two 
purely imaginary poles corresponding to the sine and cosine functions. 
The residues (listed under r) are exactly the coefficients of the 
corresponding poles, in other words, the coefficients that would have been 
obtained via a manual partial fraction expansion. In this case, we are not 
interested in the real poles since both of them yield exponential functions 
that go to 0 as t→ ∞. 
 
The complex poles are interpreted as the sine/cosine terms using Eqs. 3-69 
and 3-74. From (3-69) we have: 
 
 α1= 6.0865,  β1 = 4.9668, b = 0, and ω=0.262. 
 
Eq. 3-74 provides the coefficients of the periodic terms: 
 
 ...sin2cos2)( 11 +ωβ+ωα= −− tetety btbt  
 
Substituting coefficients (because b= 0, the exponential terms = 1) 
 
 ...sin)9668.4(2cos)068.6(2)( +ω+ω= ttty  
 
or ...sin9336.9cos136.12)( +ω+ω= ttty  
 
The amplitude of the composite output sinusoidal signal, for large values, 
of t is given by 
 

 7.15)9336.9()136.12( 22 =+=A  

 
Thus the amplitude of the output is 15.7° for the specified 12° amplitude 
input. 
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 6.18 
 
 

a) Taking the Laplace transform of the dynamic model in (2-7) 
 

[ ] )()()()(( 1 sCqsCqsCqqVs TRTiTR ′+′=′++γ     (1) 

 
  [ ] )()()()()1( 1 sCqqsCqqVs TRTR ′+=′++γ−     (2) 
 
  Substituting for )(sCT′ from (2) into (1), 
 
   

  
[ ]

[ ][ ] )()()1()(

)()1(

)(

)(1

RRRR

R

Ti

T

qqqqqVsqqVs

qqVsq

sC

sC

+−++γ−++γ
++γ−

=
′
′

 

   
    

    

1
)(

)1(

1
)(

)1(

2
2

+







+








+
γ−γ

+







+

γ−

=
s

q

V
s

qqq

V

s
qq

V

R

R     (3) 

 
 
  Substituting for )(1 sCT′ from (3) into (2), 
 

  =
′
′

)(

)(

sC

sC

Ti

T

1
)(

)1(

1

2
2

+







+








+
γ−γ

=
s

q

V
s

qqq

V

R

    (4) 

 
b) Case (i), 0→γ  

 =
′
′

)(

)(

sC

sC

Ti

T

1

1

+







=

s
q

V
  =

′
′

)(

)(1

sC

sC

Ti

T

1

1

+








+







+

=
s

q

V

s
qq

V

R  

 
 
 Case (ii), 1→γ  

 

 
)(

)(

sC

sC

Ti

T

′
′

1

1

+







=

s
q

V )(

)(1

sC

sC

Ti

T

′
′

=  
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 Case (iii),   0→Rq  
 

 =
′
′

)(

)(

sC

sC

Ti

T

1
)1(

1

2
2

2

+







+







 γ−γ
=

s
q

V
s

q

V
  ,     =

′
′

)(

)(1

sC

sC

Ti

T

1

1

+






 γ
=

s
q

V
 

 
 Case (iv),   ∞→Rq  
 

 
)(

)(

sC

sC

Ti

T

′
′

1

1

+







=

s
q

V
  =  

)(

)(1

sC

sC

Ti

T

′
′

 

 
c) Case (i), 0→γ  

 
This corresponds to the physical situation with no top tank. Thus the 
dynamics for CT are the same as for a single tank, and TiT CC ′≈′ 1 for small 

qR. 
 

  Case (ii), 1→γ  
 

Physical situation with no bottom tank. Thus the dynamics for 1TC  are the 

same as for a single tank, and 1TT CC =  at all times. 
 
Case (iii),   0→Rq  
 
Physical situation with two separate non-interacting tanks. Thus, top tank 
dynamics, 1TC , are first order, and bottom tank, TC , is second order. 
 
Case (iv),   ∞→Rq  
 
Physical situation of a single perfectly mixed tank. Thus, 1TT CC =  , and 
both exhibit dynamics that are the same as for a single tank. 

 
d) In Eq.(3), 

 

0
)(

)1( ≥







+

γ−

Rqq

V
 

 
Hence the system cannot exhibit an inverse response. From the 
denominator of the transfer functions in Eq.(3) and (4), 
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2

1

2

1
2

)1(4

)(

)(

)1(

2

1








γ−γ

+
=








+
γ−γ=ζ

−

q

qq

qqq

V

q

V R

R

 

 
Since )5.01)(5.0()1( −≤γ−γ  for 10 ≤γ≤ , 
 

1
)( 2

1

≥






 +=ζ
q

qq R  

 
Hence, the system is overdamped and cannot exhibit overshoot. 

 
e) Since 1≥ζ , the denominator of transfer function in Eq.(3) and (4) can be 

written as )1)(1( 21 +τ+τ ss  where, using Eq. 5-45 and 5-46, 
 

2

1

2

1

2

1
2

1

1
)1(4

)(

)1(4

)(

)(

)1(









−

γ−γ
+−








γ−γ

+









+
γ−γ

=τ

q

qq

q

qq

qqq

V

RR

R  

 

2

1

2

1

2

1
2

2

1
)1(4

)(

)1(4

)(

)(

)1(









−

γ−γ
++








γ−γ

+









+
γ−γ

=τ

q

qq

q

qq

qqq

V

RR

R  

 
 
  It is given that 
 

  [ ] stst
Ti

ww e
s

h

s

h
e

s

h
sC −− −=−=′ 1)(  

 
  Then using Eq. 5-48 and (4) 
  

  
1 2/ /

1 2

1 2

( ) ( ) 1
t t

T

e e
c t S t h

− τ − τ τ − τ= − τ − τ 
 

 

            







τ−τ
τ−τ

−−−
τ−−τ−−

21

/)(
2

/)(
1

21

1)(
ww tttt

w

ee
httS  
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  And using Eq. 6-15 and (3) 
 

  







τ−τ
τ−τ

+
τ−τ
τ−τ

+= τ−τ− 21 /

12

2/

21

1
1 1)()( tata

T eehtStC  

 
 

   







τ−τ
τ−τ

+
τ−τ
τ−τ

+−− τ−−τ−− 21 /)(

12

2/)(

21

11)( ww ttatta
w eehttS  

  where  
 

   
( )









+

γ−=τ
)(

1

R
a qq

V
 

 
The pulse response can be approximated reasonably well by the impulse 
response in the limit as 0→wt , keeping htw constant.  

 
 
 
 6.19 
 
 
  Let       VR = volume of each tank 
   A1 = ρ1Cp1VR 
   A2 =  ρ2Cp2VR 
   B1 = w1Cp1 
   B2 = w2Cp2 
   K = UA  
 
  Then energy balances over the six tanks give 
 

   ( ) ( )83862
8

2 TTKTTB
dt

dT
A −+−=     (1) 

   ( ) ( )65642
6

2 TTKTTB
dt

dT
A −+−=     (2) 

   ( ) ( )47422
4

2 TTKTTB
dt

dT
A −+−=     (3) 

 

   ( ) ( )74751
7

1 TTKTTB
dt

dT
A −+−=     (4) 

 

   ( ) ( )56531
5

1 TTKTTB
dt

dT
A −+−=     (5) 
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   ( ) ( )38311
3

1 TTKTTB
dt

dT
A −+−=     (6) 

 
  Define vectors 
 

   [ ]TsTsTsTsTsTsTsT )(),(),(),(),(),()( 345678 ′′′′′′=′  

 

   







′
′

=
)(

)(
)(

1

2*

sT

sT
sT  

 
Using deviation variables, and taking the Laplace transform of Eqs.1 to 6, 
we obtain an equation set that can be represented in matrix notation as 

 

  )()()( * sTBsTAsTIs +′=′       (7) 

 
  where I is the  6×6 identity matrix 

 
 

  









































−−

−−

−−

−−

−−

−−

=

1

1

1

2

2

2

1

1

1

1

1

2

2

22

2

11

1

1

1

22

2

2

2

0000

0000

000

000

000

000

A

BK

A

K
A

BK

A

K
A

B

A

BK

A

K
A

B

A

K

A

BK
A

K

A

B

A

BK
A

K

A

B

A

BK

A  

 
 
 

  



















=

1

1

2

2

00000

00000

A

B
A

B

B  

 
  From Eq. 7, 
 

  )()()( *1 sTBAIssT −−=′  
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  Then 
 

  







=








′
′

000010

000001

)(

)(

7

8

sT

sT
)()( *1 sTBAIs −−  

 
 
 
 
 6.20 
 
 
  The dynamic model for the process is given by Eqs. 2-45 and 2-46,             
  which can be written as 
 

  )(
1

ww
Adt

dh
i −

ρ
=        (1) 

 

  
AhC

Q
TT

Ah

w

dt

dT
i

i

ρ
+−

ρ
= )(       (2) 

 
  where    h   is the liquid-level 
    A   is the constant cross-sectional area 
 
  System outputs:  h , T 
  System inputs :  w, Q 
 

Hence assume that wi and Ti are constant. In Eq. 2, note that the nonlinear 

term 






dt

dT
h can be linearized as   

 

h
dt

Td

dt

Td
h ′+

′
 

 

                               or     
dt

Td
h

′
  since    0=

dt

Td
 

 
Then the linearized deviation variable form of (1) and (2) is 

 

w
Adt

hd ′
ρ

−=
′ 1

 

 

Q
ChA

T
hA

w

dt

Td i ′
ρ

+′
ρ
−

=
′ 1
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Taking Laplace transforms and rearranging, 
 

s

K

sW

sH 1

)(

)( =
′
′

   ,   0
)(

)( =
′
′

sQ

sH
   ,    0

)(

)( =
′
′

sW

sT
   ,     

1)(

)(

2

2

+τ
=

′
′

s

K

sQ

sT
 

where 
A

K
ρ

−= 1
1  ;    and 

Cw
K

i

1
2 =    ,  

iw

hAρ=τ 2  

 
Unit-step change in Q: hth =)(     ,    )1()( 2/

2
τ−−+= teKTtT  

 
Unit step change in w:  tKhth 1)( += ,  TtT =)(  

 
 
 6.21 
 
 
  Additional assumptions: 
 
  (i) The density, ρ, and the specific heat, C, of the process liquid are  
    constant. 
 
  (ii) The temperature of steam, Ts, is uniform over the entire heat transfer  
   area. 
 
  (iii) The feed temperature TF is constant (not needed in the solution). 
 
  Mass balance for the tank is 
 

   qq
dt

dV
F −=         (1) 

 
  Energy balance for the tank is 
 

  )()()(
)]([

TTUATTCqTTCq
dt

TTVd
C srefrefFF

ref −+−ρ−−ρ=
−

ρ    (2) 

 
  where Tref  is a constant reference temperature 
   A is the heat transfer area 
 

  Eq. 2 is simplified by substituting for 
dt

dV
 from Eq. 1. Also, replace  

  V  by hAT  (where TA  is the tank area) and replace A  by Tp h  

  (where pT is the perimeter of the tank). Then,  
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  qq
dt

dh
A FT −=           (3) 

 

  ( ) ( )T F F T s

dT
CA h q C T T Up h T T

dt
ρ = ρ − + −        (4) 

 
  Then, Eqs. 3 and 4 constitute the dynamic model for the system. 
 
 a) Making Taylor series expansion of nonlinear terms in (4) and introducing  
  deviation variables, Eqs. 3 and 4 become: 
 

  qq
dt

hd
A FT ′−′=

′
       (5) 

 

  ( ) ( )T F F F T

dT
CA h C T T q Cq Up h T

dt

′ ′ ′ρ = ρ − − ρ +  

            ( )T s T sUp hT Up T T h′ ′+ + −     (6) 

 
  Taking Laplace transforms, 
 

   
1 1

( ) ( ) ( )F
T T

H s Q s Q s
A s A s

′ ′ ′= −     (7) 

 

  
( )

1 ( ) ( )T F
F

F T F T

CA h C T T
s T s Q s

Cq Up h Cq Up h

    ρ ρ −′ ′+ =    ρ + ρ +    
     

           
( )

( ) ( )T sT
s

F T F T

Up T TUp h
T s H s

Cq Up h Cq Up h

   −′ ′+ +   ρ + ρ +   
  (8) 

 
  Substituting for ( )H s′ from (7) into (8) and rearranging gives 
 

  [ ] ( )
1 ( ) ( )T F

T T F
F T F T

CA h C T T
A s s T s A s Q s

Cq Up h Cq Up h

    ρ ρ −′ ′+ =    ρ + ρ +    
 

 

        [ ]( )
( ) ( ) ( )T sT T

s F
F T F T

Up T TUp hA s
T s Q s Q s

Cq Up h Cq Up h

   −′ ′ ′+ + −   ρ + ρ +   
 (9) 

 

  Let   T

F T

CA h

Cq Up h

ρτ =
ρ +

 

 
  Then from Eq. 7 
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( ) 1

( )F T

H s

Q s A s

′
=

′
        ,       

( ) 1

( ) T

H s

Q s A s

′
= −

′
         ,          

( )
0

( )s

H s

T s

′
=

′
 

 
  And from Eq. 9 
 

  
( )

( )F

T s

Q s

′
=

′ ( ) ( )

( ) ( )
1

( )

1

T s F T

F T T s

T

Up T T C T T A
s

Cq Up h Up T T

A s s

   − ρ − +   ρ + −    
τ +

 

 

  
( )

( )

T s

Q s

′
=

′ ( ) ( )

( )

1

T s

F T

T

Up T T

Cq Up h

A s s

 −−  ρ + 
τ +

 

 

  
( )

( )s

T s

T s

′
=

′ 1

T

F T

Up h

Cq Up h

s

 
 ρ + 

τ +
 

 
 
  Note: 
 

  2

( )

( )
F T

T s

C T T A

Up T T

ρ −τ =
−

 is the time constant in the numerator. 

   Because 0FT T− <   (heating) and 0sT T− >  , 2τ  is negative. 

 
  We can show this property by using Eq. 2 at steady state: 
 
  ( ) ( )F F T sCq T T Up h T Tρ − = − −    

 

  or   
( )

( ) T s
F

F

Up h T T
C T T

q

− −ρ − =  

  Substituting 
 

  2
T

F

hA

q
τ = −  

  Let  TV hA=    so that   2
F

V

q
τ = − = −(initial residence time of tank) 

  For  
( )

( )F

T s

Q s

′
′

  and  
( )

( )

T s

Q s

′
′

  the “gain” in each transfer function is  
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   ( )
( )T s

T F T

Up T T
K

A Cq Up h

 − =
ρ +  

 

 
  and must have the units temp/volume .  
 
  (The integrator s has units of t-1). 
 
  To simplify the transfer function gain  we can substitute 
 

  
( )

( ) F F
T s

Cq T T
Up T T

h

ρ −− = −  

 
  from the steady-state relation. Then 
 

  ( )
( )FT F

T F T

Cq T T
K

hA Cq Up h

−ρ −=
ρ +

 

 

  or   

1

F

T

F

T T
K

Up h
V

Cq

−=
 

+ ρ 

 

 
  and we see that the gain is positive since 0FT T− > . 

 
  Further, it has dimensions of temp/volume. 
 

  (The ratio T

F

Up h

Cqρ
 is dimensionless). 

 
 b) Fh q−  transfer function is an integrator with a positive gain. Liquid level  

  accumulates any changes in Fq , increasing for positive changes and vice- 

  versa. 
 
  h q−  transfer function is an integrator with a negative gain. h accumulates 
  changes in q, in opposite direction, decreasing as q increases and vice  
  versa. 
 
  sh T−   transfer function is zero. Liquid level is independent of sT , and of  

  the steam pressure sP . 

 
  T q−  transfer function is second-order due to the interaction with liquid  
  level; it is the product of an integrator and a first-order process. 
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  FT q−  transfer function is second-order due to the interaction with liquid  

  level and has numerator dynamics since Fq  affects T directly as well if  

  FT T≠ . 

   
  sT T−  transfer function is simple first-order because there is no interaction 

  with liquid level. 
 
 c) Fh q− :  h increases continuously at a constant rate. 

 
  h q− :  h decreases continuously at a constant rate. 
 
  sh T− : h stays constant. 

 
  FT q− : for FT T< ,   T decreases initially (inverse response) and then  

  increases. After long times, T increases like a ramp function. 
 
  T q− : T decreases, eventually at a constant rate. 
 
  sT T− : T increases with a first-order response and attains a new steady  

  state. 
   
 

 
6.22 
 
 

a) The two-tank process is described by the following equations in deviation 
 variables: 

 
'

' ' '1
1 1 2

1

1 1
( = − − ρ  

dh
w h h

dt A R
    (1) 

 
'

' '2
1 2

2

1 1
( = − ρ  

dh
h h

dt A R
    (2) 

 
 Laplace transforming 
 
  ' ' ' '

1 1 1 2( ) ( ) ( ) ( )ρ = − +iA RsH s RW s H s H s    (3) 

 
  ' ' '

2 2 1 2( ) ( ) ( )ρ = −A RsH s H s H s      (4) 
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 From (4) 
 
  ' '

2 2 1( 1) ( ) ( )ρ + =A Rs H s H s      (5) 

 
or 

  
'

2

'

1 2 2

( ) 1 1

( ) 1 1
= =

ρ + τ +
H s

H s A Rs s
     (6) 

 
  where 2 2τ = ρA R  

 
Returning to (3) 

 
' ' '

1 1 2( 1) ( ) ( ) ( )ρ + − = iA Rs H s H s RW s     (7) 

 
Substituting (6) with 1 1τ = ρA R       

 

  ' '

1 1

2

1
( 1) ( ) ( )

1

 
τ + − = τ + 

is H s RW s
s

    (8) 

 
 or 
   

2 ' '

1 2 1 2 1 2( ) ( ) ( ) ( 1) ( ) τ τ + τ τ = τ +  is s H s R s W s    (9) 

[ ]
'

1 2

'

1 1 2 1 2

( ) ( 1)

( ) ( )

τ +=
τ τ + τ + τ

H s R s

W s s s
     (10) 

 
 Dividing numerator and denominator by 1 2( )τ + τ  to put into standard form 

 

  
'

1 1 2 2

'

1 1 2

1 2

( ) [ /( )]( 1)

( )
1

τ + τ τ +=
 τ τ + τ + τ 

H s R s

W s
s s

     (11) 

 
 Note that 
 

  
1 2 1 2 1 2

1 1

( )
= = = =

τ + τ ρ + ρ ρ + ρ
R R

K
A R A R A A A

  (12) 

 
  since 1 2= +A A A  

 
 Also, let 
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2 2

1 2 1 2 1 2

1 2 1 2( )

τ τ ρ ρτ = = =
τ + τ ρ +s

R A A RA A

R A A A
    (13) 

 
 so that 
 

  
'

1 2

'

3

( ) ( 1)

( ) ( 1)

τ +=
τ +i

H s K s

W s s s
      (14) 

 
 and 
 

  
' ' '

2 2 1 2

' ' '

1 2 3

( ) ( ) ( ) ( 1)1

( ) ( ) ( ) ( 1) ( 1)

τ += =
τ + τ +i i

H s H s H s K s

W s H s W s s s s
 

   
3( 1)

=
τ +

K

s s
      (15) 

 
 
 Transfer functions (6), (14) and (15) define the operation of the two-tank 
 process. 
 
 The single-tank process is described by the following equation in 
 deviation variables: 
 

   
'

'1=
ρ i

dh
w

dt A
      (16) 

 
 Note that ω, which is constant, subtracts out. 
 
 
 Laplace transforming and rearranging: 
 

   
'

'

( ) 1/

( )

ρ=
i

H s A

W s s
      (17) 

 Again 

   
1=

ρ
K

A
 

   
'

'

( )

( )
=

i

H s K

W s s
      (18) 

 
 which is the expected integral relationship with no zero. 
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b)      For 1 2 / 2A A A= =  
 

  2

3

/ 2

/ 4

τ = ρ 
τ = ρ 

AR

AR
       (19) 

 
 Thus 2 32τ = τ  

 
 We have two sets of transfer functions: 
 
 One-Tank Process   Two-Tank Process 
 

 
'

'

( )

( )
=

i

H s K

W s s
    

'

3

'

3

( ) (2 1)

( ) ( 1)

τ +=
τ +

i

i

H s K s

W s s s
 

 

      
'

2

'

3

( )

( ) ( 1)
=

τ +i

H s K

W s s s
 

 
 Remarks: 
 

- The gain ( 1/ )= ρK A  is the same for all TF’s. 

- Also, each TF contains an integrating element. 

- However, the two-tank TF’s contain a pole 3( 1)τ +s  that will “filter 

out” changes in level caused by changing wi(t). 
- On the other hand, for this special case we see that the zero in the first 

tank transfer function ' '( ( ) / ( ))i iH s W s  is larger than the pole 

  2 3 3τ > τ  

and we should make sure that amplification of changes in h1(t) caused 

by the zero do not more than cancel the beneficial filtering of the pole 

so as to  cause the first compartment to overflow easily. 

Now look at more general situations of the two-tank case: 

 
'

1 2 2

'
1 2 3

( ) ( 1) ( 1)

( ) ( 1)
1

ρ + τ += =
ρ τ + +  

i

H s K A Rs K s
RA AW s s s

s s
A

    (20) 

'

2

'

3

( )

( ) ( 1)
=

τ +i

H s K

W s s s
      (21) 

 

For either 1 20  or  0→ →A A , 

 

 1 2
3 0

ρτ = →RA A

A
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Thus the beneficial effect of the pole is lost as the process tends to 
“look” more like the first-order process. 

 

c) The optimum filtering can be found by maximizing 3τ  with respect 

 to A1 (or A2) 

 

  1 2 1 1
3

( )ρ ρ −τ = =RA A RA A A

A A
 

 Find max [ ]3
3 1 1

1

: ( ) ( 1)
∂τ ρτ = − + −
∂

R
A A A

A A
 

 

 Set to 0: 1 1 0− − =A A A  

 

   12 =A A  

 

   1 / 2=A A  

 Thus the maximum filtering action is obtained when 1 2 / 2.= =A A A  

 

 The ratio of 2 3/τ τ  determines the “amplification effect” of the zero on 

 1( ).h t  

 

  2 2

1 23 1

τ ρ= =ρτ
A R A

RA A A
A

 

As 1A  goes to 0, 2

3

τ → ∞
τ

 

 

Therefore the influence of changes in 1( ) on ( )iw t h t  will be very large, 

leading to the possibility of overflow in the first tank. 

 

Summing up: 

 

The process designer would like to have 1 2 / 2= =A A A  in order to obtain 

 the maximum filtering of 1 2( ) and ( ).h t h t   However, the process response 

 should be checked for typical changes in ( )iw t  to make sure that 1h  does 

 not overflow.  If it does, the area 1A  needs to be increased until that is not 

a  problem. 

 

Note that 2 3τ = τ  when 1 =A A , thus someone must make a careful study 

 (simulations) before designing the partitioned tank.  Otherwise, leave well 

 enough alone and use the non-partitioned tank.  
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 6.23 
 
 
  The process transfer function is 
 

   
)124()11.0(

)(
)(

)(
22 +++

==
sss

K
sG

sU

sY
 

 
    where K = K1K2 

 
We note that the quadratic term describes an underdamped 2nd-order 
system since 
  42 =τ   →   2=τ  
 

    22 =ζτ  →   5.0=ζ  

a) For the second-order process element with τ2 = 2 and this degree of 
underdamping )5.0( =ζ , the small time constant, critically damped 2nd-

order process element (τ1 = 0.1 ) will have little effect. 
 

In fact, since 0.1 << τ2 (= 2) we can approximate the critically damped 
element as 12τ−e  so that  
 

 
124

)(
2

2.0

++
≈

−

ss

Ke
sG

s

 

 
b) From Fig. 5.11 for 5.0=ζ ,   15.0≈OS    or from Eq. 5-53 
 

  Overshoot = exp 163.0
1 2

=










ζ−

πζ−
    

 
  Hence ymax = 0.163 KM + KM = 0.163 (1) (3)  + 3 = 3.5 
 
 
c) From Fig. 5.4,  ymax occurs at t/τ = 3K or tmax = 6.8 for underdamped 2nd-

order process with 5.0=ζ . 
 

Adding in effect of time delay t ′ = 6.8 + 0.2 = 7.0 
 
 

d) By using Simulink-MATLAB 
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Fig S6.23a.  Step response for exact and approximate model ; τ1 = 0.1 
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      Fig S6.23b.  Step response for exact and approximate model ; τ1 = 1 
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τ1 = 5 

0 5 10 15 20 25 30
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time

O
ut

pu
t

Exact model
Approximate model

 
     Fig S6.23c.  Step response for exact and approximate model ; τ1 = 5 
 
As noted in plots above, the smaller τ1 is, the better the quality of the 
approximation.  For large values of τ1 (on the order of the underdamped 
element's time scale), the approximate model fails. 
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   Figure S6.24.  Unit step response in blood pressure.  
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Transport
Delay1= 30 s

Transport
Delay = 75 s

-0.4

40s+1

Transfer Fcn1

-1

40s+1

Transfer Fcn

Step1

Step

Scope

  The Simulink-MATLAB block diagram is shown below 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
  It appears to respond approx. as a first-order or overdamped second-order  
  process with time delay. 


