Chapter 6

ﬂ

a) By using MATLAB, the poles and zeros are:

Zeros: (-1 +1i), (-1-1i)
Poles: -4.3446
(-1.0834 +0.5853i)
(-1.0834 -0.5853i)
(+0.7557 +0.5830i)
(+0.7557 —0.58301)

These results are shown in Fig E6.1
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Figure S6.1. Polesand zeros of G(s) plotted in the complex s plane.
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b) Process output will be unbounded because some polesliein the right half
plane.
C) By using Simulink-MATLAB
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Figure E6.1b. Response of the output of this process to a unit step input.

Asshown in Fig. S6.1b, the right half plane pole pair makes the process

unstable.
a) Standard form = K(Ts+1)
(t;s+1(t,5+1
b)
-5s
Hence G(s) = 0.5(2s+1e

(0.55+1)(2s+1)

Applying zero-pole cancellation:

G(s) = 0.5e™°
(0.55+1)

C) Gan=0.5

Pole=-2
Zeros = No zeros due to the zero-pole cancellation.
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d) 1/1 Pade approximation: e = (1-5/2s)
(1+5/2s)

The transfer function is now

(=05 ,(1-5/29
05s+1  (L+5/25)

Gan=0.5
Poles= -2, -2/5
Zeros=+ 2/5
K +1
Y(9) _ K(ts+1) o xg=M
X(s) (1;5+) S
From Eqg. 6-13
O O - O
y(t) - M |j. % T_a%—t/l'l D: KM a+ Ta Tl e—t/'l'l |:|
0 T O [l T 0
0 -1,
d  y(0')=KM+ 2 = "aKM
0 1 O U
b) Overshoot — y(t) > KM
- O
kM 3+ 12T g s ki
[l T [l
o T,-1:>0, thatis, 1> 11
y= KMg h<0  for KM >0
Tl
C) Inverse response — y(t) <0
KM %+Ta_-[ —t/1y <O
0 T D
aZ e g o laci-evu<o a t=0
Tl Tl

Therefore 1,<0.
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b)

Y(s) . K(t,s+)
X(s)  (1,;5+)(1,5+D)

From Eq. 6-15

, T1>To,  X(S) =M/s

-1 ot T,-T, U
y(t)_KMa ~a 1 tity _ Zet/2|:|

-1, ,-T,

Extremum - y(t)=0

U

KM %)_i a_Tl %—t/r1 +i a_TZ %—t/r2 BZO
0 LOL-T, L,O,-0 Il

1_Ta/T2 e_tE% l%

=1 since 15T
1-1,/1,

Overshoot - y(t) >KM

KM Eﬁ_ Ta _Tl e—t/r1 _ Ta - T2 e—t/r2 S> KM

LT, LT,

1 1
T, T ‘tgv E
2 15 e >0, therefore 1511
L P

Inverseresponse — y(t)<0 att=0"

KM E'ﬂ i Tl %—thl 1 TZ %
O U _Tz _Tz
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d)

SinceT; > Ty, Ta<0.

If an extremum iny exists, then from (a)

e
(= 1,1, InHl—Ta/QE

LT, Eb-_ Ta/Tl

Substituting the numerical valuesinto Eq. 6-15
Case (i) : y(t) = 1 (1 + 1.25¢"%0 - 2.25¢%?)

Case (ii(a)) : y(t) = 1 (1 - 0.75e"*° - 0.25¢"?)
Case (ii(b)) : y(t) =1 (1 - 1.125e"*° + 0.125¢"2)

Case (iii) : y(t) =1 (1 - 1.56"° + 0.5¢"?)

T

— case(i)

-=-= case(ii)a
------ case(ii)b
==+ case(iii)

y(®)

Time

50

Figure S6.5. Sep response of a second-order systemwith a single zero.
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d)

Conclusions:
T > T1 givesovershoot.

0 < 1,< 17 givesresponse similar to ordinary first-order process
response.

Ta< 0 givesinverse response.

Y(9) = KU(s)+ SUCE

s s+1§J()

Y(s) _ Kits+ K, +K,s (K, 1+K,)s+K,
U(s) s(ts+1) s(ts+1)

Put in standard K/t form for analysis:

%{ %”—D
Y(s)

() U (s) s(ts+1)

Order of G(s) is 2 (maximum exponent on s in denominator is 2)
Gain of G(s) isK;. Gainisnegativeif Ky < 0.

Polesof G(s) are: s, =0 ands, =-1/1

S1 1S on imaginary axis; S is in LHP.

Zero of G(s) is:

-1 -K,

Sa
+& Kt+K,
K1

If L<0 the zero is in RHP.
Kt+K,




f)
9)

b)

Two possibilities: 1. K;<0 and K;t + K3 >0
2. Kiy>0andKjit+ K;<0

Gainisnegativeif K; <0

Then zero isRHPif Kit + K2 >0

Thisisthe only possibility.

Constant term and eV term.

If input is M/s, the output will contain at term, that is, it is not bounded.

p'(t)=(4-2)S(t) , P'(s)= %

-3 P'(s) = -3 g
20s+1 20s+1 s

Q(s) =

Q'(t) =-6(1-e™'*)

R(9)+Q(9) = Py(9)
FO)+ 1) = P(t) = p(t) - P (0)
() = po(t) ~12+6(1- ')

r'(t = o) _18-12+6(1-0) _

= 6
pL=)-p(=0)  4-2

Overshoot,

_r'(t=15)-r'(t =) _ 27 12 +6(1 - %) 12
F(t= o) 12

oS =0.514



OS:epo T H o514 . 71=02

Ah-22H

Period, T, for r'(t)is equal to the period for pu(t) since €Y decreases
monotonically.

Thus, T=50-15=35

and T—l 1- 7% =5.46
211

P(s)_ K K
P'(s) T1°s®+2lts+1 T's+1

<)

_(KT2)s? + (KT + 2K 'T1)s + (K +K')
(1%S% + 2lts+1)(T's+1)

! 0
d) Overal process gain = IO K+K' :6—3:34)_

P'(S) | psi
a) Transfer Function for blending tank:
K g,
G, (s)=—2 where K, =—" #1
bt( ) Tth+1 bt qu
T, = 2—m3 =2min
* 1m3/min
Transfer Function for transfer line
G, (s) = K where K, =1
" e “
3
0= % =0.02min
5xIm*/min



b)

d)

Cou (9) _ Kyt
C'(s) (2s+1)(0.02s+1)°

a6"-order transfer function.

1 -0s

Sincety>>T1y [ 2>>0.02] wecan roximate ——— by e
o>>Ta | ] PP (0.02s+1)°

5
where 6 = Z (0.02)=0.1

Cou(9) _ K™
C.. (9 2s+1

Since T, = 100 1y , we can imagine that this approximate TF will yield
results very close to those from the original TF (part (a)). We aso note
that this approximate TF is exactly the same as would have been obtained
using a plug flow assumption for the transfer line. Thus we conclude that
investing a lot of effort into obtaining an accurate dynamic model for the
transfer line is not worthwhilein this case.

[ Note that, if T, =Ty, this conclusion would not be valid]

By using Simulink-MATLAB,

1.2

Output/Kbt

— Exact model
--- Approximate model
1

0.2 I I I I
0 5 10 15 20 25 30

Time

Fig S6.8. Unit step responses for exact and approximate model.



a), b) Represent processes that are (approximately) critically damped. A step

g)

h)

response or frequency response in each case can be fit graphicaly or
numerically.

6=2,1=10

Exhibits strong overshoot. Can’t approximate it well.

8=0.5,1=10

0=1,t=10

Underdamped (oscillatory). Can’t approximate it well.

6=2,1=0

By using Simulink-MATLAB, models for parts c), e), f) and h) are
compared: (Suppose K = 1)

Part ¢)

0.7 B

Output
o
[62]
L

0.4+ =

0.3 B

0.2 bl

0.1

/ il

4 — Exact model

! --- Approximate model
Il Il

oL I I I I I I I
0 5 10 15 20 25 30 35 40 45 50

time

Figure S6.9a. Unit step responses for exact and approximate model in part ¢)
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Part €)

0.9 B

0.7 B

0.6 B

0.3 B

0.2 B

0.1

—— Exact model
-=-- Approximate model
I I

=

0 I I L I I I L
0 5 10 15 20 25 30 35 40 45 50

Time

Figure S6.9b. Unit step responses for exact and approximate model in part €)

Part f)

0.8 B

0.7 B

0.3 B

0.2 B

0.1

—— Exact model
-=-- Approximate model
I I

0 I I L I I I L
0 5 10 15 20 25 30 35 40 45 50

Time

Figure S$6.9c. Unit step responses for exact and approximate model in part f)
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Part h)

15

Output

-0.5 B

— Exact model
-== Approximate model
-1 1 1 1 L 1 1 1 I I

0 5 10 15 20 25 30 35 40 45 50

Time

Figure $6.9d. Unit step responses for exact and approximate model in part h)

a) The transfer function for each tank is

Cle _ 1

Cla(9 S

where | represents the i" tank.

Co 1s the inlet concentration to tank 1.
V is the volume of each tank.

g is the volumetric flow rate.

Cs(s) _ 7 UCI(s9 0 O 1
Co9 - LT Bsin

Then, by partial fraction expansion,
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6.11

b)

Concentration

¢, (t) =0.60- 015El ‘”6%+
g

no
2% Eﬁa RS

o~

Using Simulink,

0.6 p=

0.58

0.56

0.54

0.52

0.5

0.48

0.46

0.44 1 1 1 1 L 1 1 1
0 5 10 15 20 25 30 35 40 45

Figure $6.10. Concentration step responses of the stirred tank.

The value of the expression for cs(t) verifies the simulation results above:

[] 2 3 4[][]
¢.(30)=0.60-0.151 ~e® 0 +5 +2> +2 +5_DD ~0.5161
0 B 2 3 4log

-1,st1E_A B C
= =—+—+
s s* T1,;5+1

t/1y

We only need to calculate the coefficients A and B because Ce
for t >> 1;. However, there is arepeated pole at zero.
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Now look at
E(-1,8+1) = As(t,s+1) + B(1,s+1) +Cs’
- Et,s+E = At,s* + As+ Br,;s+ B +Cs?
Equate coefficientson s:
-Et, =A+Br,
A=-E(t,+T1,)
Then the long-time solution is

y(t) = Et - E(Ta + Tl)

Plotting
A
(T,t1y)
y| 0% “ECE(, )
- S
actual response time
-E(1,+1)

b) For a LHP zero, the apparent lag would be 11 — 14

C) For no zero, the apparent lag would be 1;
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a) Using Skogestad’s method

5e—(0.5+0.2)s B 5e—0.7s
(10s+1)((4+0.5)s+1) (10s+1)(4.55+1)

G(S) approx

b) By using Simulink-MATLAB

5

Output
N

— Exact model
-== Approximate model
-1 [ | | [ [ [ [ [ [

0 5 10 15 20 25 30 35 40 45 50

Time

Figure S6.12a. Unit step responses for exact and approximate model.

c) Using MATLAB and saving output data on vectors, the maximum error is
Maximum error = 0.0521 at =5.07s

This maximum error is graphically shown in Fig. S6.12b

6-15



6.13

T T T T T — T
—— Exact model /s
--- Approximate model ’
0.9H il / -
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Figure $6.12b. Maximumerror between responses for exact and approximate
model.

From the solution to Problem 2-5 (@) , the dynamic model for isothermal
operationis

VMdR _FR-R _R-FR
RT, dt R, R,

D

V,M dP, _R-P, R-P @
RT, dt R, R,

Taking Laplace transforms, and noting that Py (s) = 0since Ps is constant,

. K, P;(s) +K_ P (s
T,5+1
K. P/(s)
Py(s) = —12 4
e 4
where
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Ka=R /(R +R,)
Ky =R /(R +R,)

K =R /R, +R)

L VM _RR,
" RT, (R,+R)

. -VwM_RR
* R, (R +R)

Substituting for B/(s) from Eqg. 3into 4,

KpKe
R(s) _ KoK _ %— KaKcE
Pd'(S) ) (T,5+D(1,5+1) - K, K, ) 0T, %z + L+, %+l (
%— K, K., -K, K,

Substituting for P, (s) from Eqg. 5 into 4,

5)

O

Ef&°5awn
Pl’(s) - - KaKC |:| 2

O B D fnen
-K.K.O0 [01-K,Kg

(6)

To determine whether the system is over- or underdamped, consider the
denominator of transfer functionsin Egs. 5 and 6.

12 = Y . 21 = LT
-K.K, 1-K K,

Therefore,

z:l (1,+7,) VA-KK) _1 i+\/§ 1
2(1-K,K) i1, 2T, Vu mya-K,K,)

Sincex+ 1/x>2 for al positive x,

6-17



6.14

1

(22—

JA-KK,)
Since K K. =0,
(=1

Hence the system is overdamped.

For X(s) = M

S

C
Ts+1

 s(1-9)(15+1)

m= & = KM
s-0  (1-s)(t1s+))

. KM KM
B=Ilim= =
s-1  g(ts+1) T+l

. OKM O_ KM _—-KMT?
C= lim = =
-9 0im B el

1
< H

Then,

et T —t/T|:|
-——e
T+1 1+l 0

V()= KM -
0

ForM =2, K=3,and 1 = 3, the Simulink responseis shown:
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0
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Figure S6.14a. Unit step response for part a).

-2s
B If G(9=— S then,
@-9s)(ts+])
_ e’ T w2t
yz(t)—KMEr 1 T—+le E;S(t 2)

Note presence of positive exponential term.
C) Approximating Gx(S) using a Padé function

K(1-9) _ K
(s+D(1s+D(1-95) (s+1(ts+1)

G,(s) =

Note that the two remaining poles are in the LHP.

d) For X(s) = %
9= e
Using Table 3.1
=1 , T=T1
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f)

Y5 (t) = KM é-'-r_]—-jl_(e_t _ Te-t/T)E

Note that no positive exponential term is present.
Instability may be hidden by a pole-zero cancellation.

By using Simulink-MATLAB, unit step responses for parts b) and c) are
shown below: M=2,K=3,1=3)

x 107
0

Output
(4]

| L | L | L L I L
2 4 6 8 10 12 14 16 18 20

Time

Figure S6.14b. Unit step response for part b).

Il L Il L Il L L I L
0 2 4 6 8 10 12 14 16 18 20
Time

Figure S6.14c. Unit step response for part c) .
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6.15

6.16

From EqQ. 6-71 and 6-72,

(_RATRATRA _1 RlAu\/RZAZE’E%
2JRRAA  20/RA, |RA I 2\RA,

Since x+1 > 2 for dl positive x and since Ry, Ry, A;, Az are positive
X

1 1 IRA
125(2)+E /ﬁzl

If wy =0 and p = constant

dh
pAzd_,[z:Wo W,

W, =

Lh
2

[ Note: could aso define R; by q, :éhz - W, =pd, :ﬂhz ]

Substituting,
% = WO - i h2
dt R,

dh
or pAszd_tz =Rw, —h,

Taking deviation variables and Laplace transforming

PAR,SH(8) + Ho(8) = RW(9)

6-21
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b)

f)

Hye _ R,
Wi(s) PARs+L

SinceWz’(s):RiH;(s)
W) 1 R 1
Wy(s) R, pARS+l pAR,s+1

LetT, = pAsz

wi(s) _ 1
Wi(s) T,5+1

p = constant
d dh
pA&d—:&:—Wl pAzd_::Wo"'Wl_Wz
1 1
= (h~h,) w, =h
1 R1 7) 2 R2 7)

Sincethis clearly is an interacting system, there will be asingle zero. Also,
we know the gain must be equal to one.

0 Wi(s) _ 1,5+l W, (s) _ 1

Wy(s) T1°s° +20ts+1 W, (s) T1°s”+20ts+1
or W(s) _ 1,5+1 W, (s) _ 1

Wo(s) (Tis+D(T5s+]) Wo(s) (Tis+D(T5s+1)

where 1; and T, are functions of the resistances and areas and can
only be obtained by factoring.

Case b will be slower since the interacting system is 2™-order, "including"
the 1%-order system of Case a as a component.
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6.17

Theinputis T/(t) =12sinwt
_ 2nradians
24 hours

where =0.262 hr™*

The Laplace transform of the input isfrom Table 3.1,

12w

TS = oo

Multiplying the transfer function by the input transform yields

T(s) = (—72+36s)r;c i
(10s+D(5s+1(s” +w")

To invert, either (1) make a partia fraction expansion manually, or (2) use
the Matlab residue function. The first method requires solution of a system
of algebraic equations to obtain the coefficients of the four partia
fractions. The second method requires that the numerator and denominator
be defined as coefficients of descending powers of s prior to calling the
Matlab residue function:

Matlab Commands

>>p = 36*0.262 -72*0.262]
b=

9.4320 -18.8640
>> a = conv([10 1], conv([5 1], [1 0 0.262"2]))
b=

50.0000  15.0000 4.4322 1.0297 0.0686
>> [r,p,k] = residue(b,a)
r=

6.0865 — 4.9668i

6.0865 + 4.9668i
38.1989

-50.3718
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—0.0000 - 0.2620i
-0.0000 + 0.2620i
-0.2000
-0.1000

[l

Note: the residue function recomputes all the poles (listed under p). These
are, in reverse order: p; = 0.1(t, =10), p. = 0.2(1, =5), and the two
purely imaginary poles corresponding to the sine and cosine functions.
The residues (listed under r) are exactly the coefficients of the
corresponding poles, in other words, the coefficients that would have been
obtained via a manual partial fraction expansion. In this case, we are not
interested in the real poles since both of them yield exponentia functions
that gotoOast— oo,

The complex poles are interpreted as the sine/cosine terms using Egs. 3-69
and 3-74. From (3-69) we have:

0,= 6.0865, B =4.9668, b =0, and w=0.262.
Eq. 3-74 provides the coefficients of the periodic terms:

—bt

y(t) = 2a,e™ coswt + 2B.e™ sinwt +...

Substituting coefficients (because b= 0, the exponential terms= 1)
y(t) = 2(6.068) cosut + 2(4.9668) sinwt + ...
or y(t) =12.136coswt +9.9336sinwt +...

The amplitude of the composite output sinusoidal signal, for large values,
of tisgiven by

A=./(12.136) +(9.9336) =15.7

Thus the amplitude of the output is 15.7° for the specified 12° amplitude
Input.
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a) Taking the Laplace transform of the dynamic model in (2-7)
[(Ws+(a+aa)]Cr(s) = aCy (9) + A C3 (9) (1)
[(L-v)Vs+(a+0R)|Ci (9) = (a+ ae)Cra(S) )
Substituting for C!(s) from (2) into (1),

Cru(s) _ ol -y)Vs+(a+ )]
Cr () [Ws+(q+a)]@-y)Vs+(a+ag) - e (a+ag)

1-y)yv o1
- Iq+qR)D
a-yV 0., VO
Ja@+a0) 5 HE

3

Substituting for Cr,(s)from (3) into (2),

Cr(s) __ 1

Cr (s) By@-yVv°0, + VO +
O 1
Ca(g +dg) g g

(4)

b) Case(i),y -0

J v %+1

Ci(9) ___ 1 Ciu(9) _ _ [+ e ]
Cutd i, Cr, () Vo Ly

aila aila
Case(ii),y -1
Ci(9) _ 1 _Ch(9
Ch(9 O, G

O
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d)

Case (iii), gz — O

C (S) 1 Cr.(s)

1
R Ha B

Case (i), Gy -

Ci() _ 1 _ Ciuls
GO VO, GO
U

Case (i), y - O

This corresponds to the physical situation with no top tank. Thus the
dynamics for Cr are the same as for a single tank, and C;, = C;; for small

Or-

Case(ii),y -1

Physical situation with no bottom tank. Thus the dynamics for C,, are the
same asfor asingletank, and C, =C,, at all times.

Case (iii), gz — O

Physical situation with two separate non-interacting tanks. Thus, top tank
dynamics, C;,, arefirst order, and bottom tank, C , is second order.

Case (iv), Gy — o

Physical situation of a single perfectly mixed tank. Thus, C;, =C,, , and
both exhibit dynamics that are the same as for a single tank.

In EQ.(3),

LWV L
Iq +0:) 0

Hence the system cannot exhibit an inverse response. From the
denominator of the transfer functions in Eq.(3) and (4),
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N[
[N

_1v g(l—y)vz O2 _O(q+qg)
= —_— |:| = Iji
29ma(a+ag) 0 ﬁqv(l—v)g

Since y(1-y) <(0.5(@1-0.5) for 0O<y<1,

=

9+ )
q

Z:

T

1
o >1
U

O

Hence, the system is overdamped and cannot exhibit overshoot.

€) Since ( =1, the denominator of transfer function in Eq.(3) and (4) can be
written as (t,5+1)(t,s+1) where, using Eq. 5-45 and 5-46,

1
By1-yVv? 0
O, 0
0a(@+dg) 0

0= 1 1
O(a+ds) & _0(Q+ds) _ 0
Eﬂqv(l-v)H H4qv(1-v)

D/(l-v)VZE%

. Ja(a+ ) O
O(a+ge) &, 0(@+ds) _,O
Hﬁlqv(l-v)H Eﬂqv(l-v) H

Itis given that

Ch (9) :2[1— = 2 _hgus

S

Then using Eq. 5-48 and (4)

0 T e—t/r1 -1 e—t/Tzlj
C (1) =S(t)hd-—= —
U LT [l

m e )/t _ o tt)IT

- S(t-t,)hi - 2 0

O LT O
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6.19

And using Eq. 6-15 and (3)

g T.—T1 T -1 ) 0
Cp,(t) = S(t)h@+-2——tetm +-2a 2t
|:| Tl_Tz '[2_-[1 |:|
- S(t-t )h%*‘ﬁe_(t_m/Tl +ﬁe—(t—tw)/rz B
|:| Tl_Tz TZ_Tl |:|
where
O1-y)NV O
M 0
q+qR)|:|

The pul se response can be approximated reasonably well by the impulse
responseinthelimitast, — 0O, keeping ht, constant.

Let  Vg=volume of each tank
A1 = p1CuiVr
A>= paCpoVR
B, = W]_Cpl
B,= Wszz
K= UA

Then energy balances over the six tanks give

Az%:Bz(Te _T8)+K(T3 _Ts) 1)
Az%:Bz(th _Te)+K(T5 _Te) )
Az%:Bz(Tz _T4)+K(T7 _T4) ©)
AJ.%:Bl(TS _T7)+K(T4 _TY) (4)
Ai%: Bl(T3 _T5)+K(T6 _Ts) )
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dT, _
Aldt_

Bl(Tl_T3)+K(T8 _Ts) (6)
Define vectors

T'(9) =[T5(9),T;(8), T (9), Te(9), Ta(9). Ty ()]

[T,(s)0

T (s) =
T O 59H

Using deviation variables, and taking the Laplace transform of Egs.1 to 6,
we obtain an equation set that can be represented in matrix notation as

sIT'(s)=AT(9+BT (9) ©)

where | isthe 6x6 identity matrix

+K - B, B, K 0O
- 0 —2 0 0 -~ g
o A A, A g
O -K-B E £ O
50 0 0 =
0 A A 0
O o 0 “K-B K B, o O
A:E A, A, A, B
g o 0 K kB 0 3 g
0 A A A [
S 0 K 0 0 “K-B 0 E
A, A,
5ok ~K-B, =
o = 0 0 0 0 10
H A A H
%)000-8—2 o%
A,
B=0O g O
% 000 o -—O
AH
From Eq. 7,

T'(9=(sl-A"BT (9
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Then

T.()0_ 1 0 0 0 0 0O

9 B 1000 of LTABTE

The dynamic model for the processis given by Egs. 2-45 and 2-46,
which can be written as

dh 1

== (W - 1
L= oa W W @
oW g1y O @
dt  pAh pAhC

where h istheliquid-level
A isthe constant cross-sectiona area

System outputs. h, T
Systeminputs: w, Q

Hence assume that w; and T; are constant. In Eq. 2, note that the nonlinear

term H’ld—TB:an be linearized as
0O dt O

—dT’  dT

he + Ly
dt dt
or ﬁdi since OI—T:O
dt dt

Then the linearized deviation variable form of (1) and (2) is

ﬁ = —ivv'
dt pA
ar’ -w _, 1
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Taking Laplace transforms and rearranging,

H K HEO_, TO_, TO_ K
W) s Q9 - W) - Q9 T,5+1
where Kl:—i; and KZ:i , T2:ﬂ

pA w,C W,

Unit-step changein Q: h(t)=h , T@)=T +K,(1-e"'™)

Unit step changeinw: h(t) =h +Kt, Tt)=T

Additional assumptions:

(i) The density, p, and the specific heat, C, of the processliquid are
constant.

(if) The temperature of steam, Ts, is uniform over the entire heat transfer
area

(iii) The feed temperature Tg is constant (not needed in the solution).
Mass balance for the tank is

dv

= —_ 1
praial C 1)

Energy balance for thetank is

oC diV(T - Ty )]

o =0epC(Te =T ) —apC(T -T ) +UA(T, -T) (2

where T,¢ IS aconstant reference temperature
Aisthe heat transfer area

Eq. 2 issimplified by substituting for C:j—\: from Eq. 1. Also, replace

V by A.h (where A; isthetank area) and replace A by p.;h
(where pr isthe perimeter of the tank). Then,
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dh_
Argr =9 3

PCAR ST =q.pC(T, ~T) +Up;(T, -T) @

Then, Egs. 3 and 4 constitute the dynamic model for the system.

Making Taylor series expansion of nonlinear termsin (4) and introducing
deviation variables, Eqgs. 3 and 4 become:

dh’
= = A 5
A praiak S ®)
_dT' T\ ~/ — ~\T/
pCAfhE:pC(TF _T)qF _(FﬁqF +UpTh)T
+Up,hT, +Up, (T, -T)h (6)

Taking Laplace transforms,

S P
H(S)—EQF(S) ArsQ(S) (7)

M pcAh O O . OpCT -T)O
T UCR et D

O Up (T,-T)O

+ —T.(s — H'(s 8
b +upnil Hoca. +unt] " ?

M pcAh O O = OpCT.-T) , 0
————=0s+10T = — =AU (S
[Af]ntquﬁUpThE 0 = acq, +Upn Y

0 uphAs O, . OUp(T,-T)O _
+WETS(S) EW[Q} (s)-Q(9) )

pCAh

Let T=— Py
pCq. +Up;h

Then from Eq. 7
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H'(s) _ 1 H'(s)

Q:(s) As Q(s) As T.(s)

And from Eq. 9

OUp, (T,-T) O0pC(T. -T)A O O
- = =—=—[S+10
T'(s) _ PCT: +Um“%%0UDT(TS -T) E 0

Q (s (As)(ts+1)
_Oup(T,-T) O
T'(s) _ [pCo, +Up;hH]

Qe (As)(ts+1)

0 Uph B
T'(s) _ [PCae +Up;hi]
T.(9) 1s+1

Note:

T,= M Is the time constant in the numerator.
Up, (T, -T)

Because T, -T <0 (heating) and T,-T >0, T, isnegative.

We can show this property by using Eq. 2 at steady state:

pCC—IF (TF _f) = _Uprﬁ(fs _-F)

or pC(T. -T) :—_Uprh_(TS 1)
F
Substituting
1, = _h_i
O
Let V=hA sothat T,=-—= —(initial residence time of tank)
o=

T g TO
Qx(s) Q'(s)

For the “gain” in each transfer function is
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b)

U - _1y U

A (pCa. +Upih )5

and must have the units temp/volume .

(Theintegrator s has units of t™).

To simplify the transfer function gain we can substitute

— quF (TF _-r)

UpT(-ITs _-F) = h

from the steady-state relation. Then

K = _quIF (-ITF _-F)_
hA (pCcTF +UpTh)

and we see that the gain is positivesince T - T, >0.

Further, it has dimensions of temp/volume.

(Theratio Up:h is dimensionless).

PCQ:
h—q. transfer function is an integrator with a positive gain. Liquid level

accumulates any changesin ¢ , increasing for positive changes and vice-
versa.

h-q transfer function is an integrator with a negative gain. h accumulates
changesin g, in opposite direction, decreasing as q increases and vice
versa

h-T, transfer functioniszero. Liquid level isindependent of T_, and of
the steam pressure P..

T —q transfer function is second-order due to the interaction with liquid
level; it isthe product of an integrator and afirst-order process.
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T —q: transfer function is second-order due to the interaction with liquid
level and has numerator dynamics since q. affects T directly aswell if
T 2T.

T -T, transfer function is simple first-order because there is no interaction
with liquid level.

h-q. : hincreases continuously at a constant rate.
h-q: hdecreases continuously at a constant rate.
h-T,: h stays constant.

T-q.:for T. <T, T decreasesinitialy (inverse response) and then
increases. After long times, T increases like aramp function.

T —q: T decreases, eventually at a constant rate.

T -T,: T increases with afirst-order response and attains a new steady
State.

The two-tank processis described by the following equations in deviation
variables:

L S R
m pAaN‘ R(h hz% 1)
d_ 10l 0
" pAz%_i(h' th 2
Laplace transforming
PARSH, () = RW (s) —H,(s) +H,(9) ©)
PARSH, (s) =H,(s) —H,(9) 4)
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From (4)

(PARs+1)H, (s) =H,(s)

or
Hs)_ 1 _ 1
H,(s) pARs+l 1,5+1

where 1, = pAR
Returning to (3)

(PARs+DH, (s) —H,(s) =RW(s)
Substituting (6) with T, = pAR

1 0, o
M O=RY

§T1S+1) -
0]

or

HTT,)s + (11,)sgH, (9)= R(T,s+ YW (s)

H(s) __ R(,s+)
W (s) B S[Tszs"' (T, + '[2)]

()

(6)

(1)

(8)

(9)

(10)

Dividing numerator and denominator by (t,+T,) to put into standard form

H (s) _[R/A(T +1)I(T,5+7)

Wi (s) sD UL S"‘l}%
1T, ]
Note that
L,+T, PAR+pAR p(A+A) pA
since A=A +A
Also, let
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_ 1T, _ p’RPAA _pRAA (13)
*ou+T, PR(A+A) A

so that
H1:(s) _ K(t,5+) (14)
W(s)  s(t,s+1)
and
Hy(s) _H,(9 Hi(9 - 1  K(t,s+))
W(S) H(9W (9 (T,5+1) s(T,5+1)
_ K
- S(1,5+1) (19

Transfer functions (6), (14) and (15) define the operation of the two-tank
process.

The single-tank process is described by the following equation in
deviation variables:

da pA

Note that @, which is constant, subtracts out.

Laplace transforming and rearranging:

H(s) _1/pA

: a7
W(s) s
Again
-1
= oA
H .(S) _K (18)
W(s) s

which is the expected integral relationship with no zero.
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For A=A =A/2

1, =pAR/ 20

19
T,=pAR/ 40 (19)

Thus 1, = 21,

We have two sets of transfer functions:

One-Tank Process Two-Tank Process

H(s) _K Hi(9) _ K(21,5+))

W(s) s W(s)  s(t,s+])
Hy(s) . K

W (s)  s(t,s+1)
Remarks:

- Thegan (K =1/pA) is the same for all TF’s.
- Also, each TF contains an integrating element.
- However, the two-tank TF’s contain a pole (1,5+1) that will “filter

out” changes in level caused by changing wi(t).
- On the other hand, for this special case we see that the zero in the first

tank transfer function (H,(S)/W (s)) is larger than the pole

21,> 1,
and we should make sure that amplification of changes in h;(t) caused
by the zero do not more than cancel the beneficial filtering of the pole

so as to cause the first compartment to overflow easily.
Now look at more general situations of the two-tank case:

Hi(9) . K(PARs+) _K(Ts+])

W(s) PRAA _ .0 sT,s+])
Sﬁ'%“la

Ho(s) . K
W (s)  s(t,s+1)

(20)

1)

For either A - 0 or A - 0,

PRAA

;= A
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Thus the beneficial effect of the poleislost as the process tends to
“look” more like the first-order process.

The optimum filtering can be found by maximizing T, with respect
to A1 (or Ap)

. = PRAA _pRA(A-A)
3 A A

) 0T, _ PRp A ~
Find max Ts.a— A[(A A)+A( 1)]

Set to 0: A-A-A=0
2A=A
A=Al2

Thus the maximum filtering action is obtained when A = A, = A/ 2.

The ratio of T,/T1, determines the “amplification effect” of the zero on

h (t).

L,_ PAR _A
1, PRA A
A

T
As A goesto 0, -2 - o
T3

Therefore the influence of changes in W (t) on h(t) will be very large,
leading to the possibility of overflow in the first tank.

Summing up:

The process designer would like to have A = A, = A/2 in order to obtain
the maximum filtering of h(t) and h,(t). However, the process response
should be checked for typical changes in W (t) to make sure that h, does

not overflow. If it does, the area A needs to be increased until that is not

problem.

Note that T, =1, when A = A, thus someone must make a careful study
(simulations) before designing the partitioned tank. Otherwise, leave well

enough alone and use the non-partitioned tank.
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b)

d)

The process transfer function is

Y(s) G(s) = K
U(s) (0.1s+1)%(4s® + 2s+1)

where K = K;1K5

We note that the quadratic term describes an underdamped 2™-order
system since

1°=4 - 1=2
20t =2 - (=05

For the second-order process element with 1, = 2 and this degree of
underdamping ( = 0.5) , the small time constant, critically damped 2"-

order process element (11 = 0.1 ) will havelittle effect.

In fact, since 0.1 << 1, (= 2) we can approximate the critically damped
element as e”" so that

Ke—O.ZS

G(s)=————
() 4s® +2s+1

From Fig. 5.11for ( =0.5, OS=0.15 or from Eq. 5-53

Overshoot = exp ] —me H— 0.163

H/le

Hence Y = 0.163 KM + KM = 0.163 (1) (3) +3=35

From Fig. 5.4, Ymax OCCUrS a t/T = 3K Or tyex = 6.8 for underdamped 2"-
order processwith ¢ =0.5.

Adding in effect of timedelay t'=6.8+0.2=7.0

By using Simulink-MATLAB

6-40



T = 0.1

35

25 B

0.5

— Exact model
-=-- Approximate model
.05 I I I I T
0

5 10 15 20 25 30
Time

Fig S6.23a. Step response for exact and approximate model ; 1, = 0.1

Output

— Exact model
-=-- Approximate model
.05 I I I I T
0

5 10 15 20 25 30

Time

Fig S6.23b. Sep response for exact and approximate model ; 1, = 1
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3 |-
25F
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5
g 15-
=1
(]
1k
0.5
0 -
—— Exact model
--= Approximate model
-0.5 L L L L T
0 5 10 15 20 25 30
Time

Fig S6.23c. Sep response for exact and approximate model ; 1, =5
As noted in plots above, the smaller 1, is, the better the quality of the

approximation. For large values of 11 (on the order of the underdamped
element's time scale), the approximate model fails.

6.24

024 4
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Figure S6.24. Unit step response in blood pressure.
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The Simulink-MATLAB block diagram is shown below

-1
TH{= P&
40st+1
Step Transfer Fcn Transport ]

Delayl=30s
Scope
-0.4
40s+1
Stepl Transfer Fen1 ~ Transport
Delay =75s

It appears to respond approx. as afirst-order or overdamped second-order
process with time delay.
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