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 7.1 
 
 

In the absence of more accurate data, use a first-order transfer function as   
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  θ = 3:09 am – 3:05 am = 4 min 

 

Assuming that the operator logs a 99% complete system response as “no 

change after 3:34 am”, 5 time constants elapse between 3:09 and 3:34 am. 

   

5τ = 3:34 min − 3:09 min = 25 min 

  τ = 25/5 min = 5 min 

 

Therefore, 
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To obtain a better estimate of the transfer function, the operator should log 

more data between the first change in T and the new steady state. 

 

 

7.2 
 

  Process gain, 
2
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a)       Output at 63.2% of the total change 

 

       = 5.50 + 0.632(6.52-5.50) = 6.145 ft 

 

      Interpolating between   h = 6.07 ft      and    h = 6.18 ft 
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  Using Eq. 7-15, 
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c) The slope of the linear fit between ti and 
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 approximation of (-1/τ) according to Eq. 7-13. 
 

Using h(∞) = h(5.0) = 6 .52, the values of zi are 
 

ti zi  ti zi 
0.0 0.00  1.4 -1.92 
0.2 -0.28  1.6 -2.14 
0.4 -0.55  1.8 -2.43 
0.6 -0.82  2.0 -2.68 
0.8 -1.10  3.0 -3.93 
1.0 -1.37  4.0 -4.62 
1.2 -1.63  5.0 - ∞  

 
Then the slope of the best-fit line, using Eq. 7-6 is 
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where the datum at ti = 5.0 has been ignored. 

  
        Using definitions, 
 
  0.18=tS    4.40=ttS  

  5.23−=zS    1.51−=tzS  

 
         Substituting in (1), 
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1.213
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  0.82 minτ =   
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 d)       
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         Figure S7.2.  Comparison between models a), b) and c) for step response. 

 
 
 
 7.3 
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where the approximation follows from Eq. 6-58 and the fact that τ1>τ2 as 
revealed by an inspection of the data. 
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Let z1, z2 be the natural log of the fraction incomplete response for T1,T2, 
respectively. Then, 
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A graph of z1 and z2 versus t is shown below. The slope of z1 versus t line 
is –0.333 ;  hence (1/-τ1)=-0.333   and τ1=3.0 

 

From the best-fit line for z2 versus t, the projection intersects z2 = 0 at 

t≈1.15. Hence τ2 =1.15. 
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                                 Figure S7.3a.  z1 and z2 versus t 
 

b)  By means of  Simulink-MATLAB, the following simulations are obtained 
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  Figure S7.3b.  Comparison of experimental data and models for step change 
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7.4 
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Taking the inverse Laplace transform 

 
( ) -75/8*exp(-1/5*t)+27/4*exp(-1/3*t)-3/8*exp(-t)+3y t =   (1) 

 
a) Fraction incomplete response 
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Figure S7.4a.  Fraction incomplete response; linear regression 
 
  From the graph, slope = -0.179 and intercept ≈ 3.2 
 
  Hence, 
 
  -1/τ = -0.179  and  τ = 5.6 
 

θ = 3.2 
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 b)   In order to use Smith’s method, find t20 and t60 

 

  y(t20)=  0.2 ×  3 =0.6 

  y(t60)=  0.6 ×  3 =1.8 

  

  Using either Eq. 1 or the plot of this equation, t20 = 4.2 , t60 = 9.0 

  Using Fig. 7.7 for t20/ t60 = 0.47 

  ζ= 0.65  ,     t60/τ= 1.75, and  τ = 5.14 

z(t) = -0.1791 t + 0.5734
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  The models are compared in the following graph:
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      Figure S7.4b.  Comparison of three models for step input 
 
 
7.5 
 
 
  The integrator plus time delay model is    

G(s) sK
e

s
−θ  

  In the time domain, 
   y(t) = 0   t < 0 

y(t)= K (t-θ)  t ≥ 0 
 

Thus a straight line tangent to the point of inflection will approximate the 
step response. Two parameters must be found: K and θ (See Fig. S7.5 a) 

 
1.- The process gain K is found by calculating the slope of the straight 
line. 

  K = 074.0
5.13

1 =  

 
2.- The time delay is evaluated from the intersection of the straight line 
and the time axis (where y = 0). 
  θ = 1.5   
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Therefore the model is G(s) = se
s

5.1074.0 −  

 

 
 Figure S7.5a.  Integrator plus time delay model; parameter evaluation 
   
From Fig. E7.5, we can read these values (approximate): 
 

Time Data Model 
0 0 -0.111 
2 0.1 0.037 
4 0.2 0.185 
5 0.3 0.259 
7 0.4 0.407 
8 0.5 0.481 
9 0.6 0.555 
11 0.7 0.703 
14 0.8 0.925 

16.5 0.9 1.184 
30 1 2.109 

 
Table.- Output values from Fig. E7.5 and predicted values by model 

 
  A graphical comparison is shown in Fig. S7.5 b 

 
Figure S7.5b.  Comparison between experimental data and integrator plus  time 

delay model. 
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 7.6 
 
 

a) Drawing a tangent at the inflection point which is roughly at t ≈5, the 
intersection with y(t)=0 line is at t ≈1 and with the y(t)=1 line at t ≈14.  

 Hence θ =1   ,    τ = 14−1=13 
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b)      Smith’s method 

  

 From the graph,  t20 = 3.9 , t60 = 9.6  ;  using Fig 7.7 for t20/ t60 = 0.41  

 

   ζ = 1.0  ,     t60/τ= 2.0   ,     hence τ = 4.8  and τ1 = τ2 = τ = 4.8 
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 Nonlinear regression 

 

From Figure E7.5, we can read these values (approximated): 

 

 

 

 

 

 

 

 

 
Table.- Output values from Figure E7.5 
 
In accounting for Eq. 5-48, the time constants were selected to minimize 

the sum of the squares of the errors between data and model predictions. 

Use Excel Solver for this Optimization problem: 

 

τ1 =6.76   and    τ2 = 6.95 
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The models are compared in the following graph: 

 

Time Output
0.0 0.0
2.0 0.1
4.0 0.2
5.0 0.3
7.0 0.4
8.0 0.5
9.0 0.6
11.0 0.7
14.0 0.8
17.5 0.9
30.0 1.0
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         Figure S7.6.  Comparison of three models for unit step input 

 
 
 
 7.7 
 
 

a)  From the graph, time delay θ = 4.0 min 
 

 Using Smith’s method, 

 

 from the graph,  20 5.6t + θ ≈   ,   60 9.1t + θ ≈  

 

 6.120 =t  ,  1.560 =t   ,  314.01.5/6.1/ 6020 ==tt  

 

 From Fig.7.7 ,  1.63ζ =   , 60 / 3.10t τ =   ,   1.645τ =  

 

 Using Eqs. 5-45, 5-46,  1 4.81τ =  , 2 0.56τ =  

 

 

b)  Overall transfer function 
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       Assuming plug-flow in the pipe with constant-velocity, 

 



7-10 

       ( ) ps
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  Assuming that the thermocouple has unit gain and no time delay 
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 7.8 
 

 
a) To find the form of the process response, we can see that 

 

2
( ) ( )

( 1) ( 1) ( 1)

K K M K M
Y s U s

s s s s s s s
= = =

τ + τ + τ +
 

 
Hence the response of this system is similar to a first-order system with a 
ramp input: the ramp input yields a ramp output that will ultimately cause 
some process component to saturate.  
 

b) By applying partial fraction expansion technique, the domain response for 
this system is 
 

Y(s) = 
2 1

A B C

s s s
+ +

τ +
     hence y(t) = -KMτ + KMt − KMτe-t/τ 

In order to evaluate the parameters K and τ, important properties of the 
above expression are noted:   

 
1.- For large values of time (t>>τ)  ,              y(t) ≈ ( )y t′  = KM (t-τ)  

2.- For t = 0,  (0)y′ = −KMτ 
 
These equations imply that after an initial transient period, the ramp input 
yields a ramp output with slope equal to KM. That way, the gain K is 
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obtained. Moreover, the time constant τ is obtained from the intercept in 
Fig. S7.8 
 

 

 Figure S7.8.  Time domain response and parameter evaluation 
     
 
 
 
7.9 
 

 
 For underdamped responses, 
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a) At the response peaks, 
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  π=
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    ,     t
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  where n is the number of peak. 
 

  Time to the first peak,     
21 ζ−

πτ=pt  

 
b)       Graphical approach: 
 

Process gain,   
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  Overshoot =  333.0
96509890

98909970 =
−
−=

b

a
   

 
   From Fig. 5.11,    ζ ≈ 0.33  
 
   
  tp can be calculated by interpolating Fig. 5.8  
 
  For ζ ≈ 0.33 ,  tp ≈ 3.25 τ 
 
  Since tp is known to be 1.75 hr , τ = 0.54 
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Analytical approach  
 

The gain K doesn’t change: 
lb

80
hr

psig

K =     

  To obtain the ζ and τ values, Eqs. 5-52 and 5-53 are used: 

 

  Overshoot =  333.0
96509890
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−
−=

b

a
  =   exp(-ζπ/(1-ζ2

)
1/2

)  

   

Resolving, ζ = 0.33  
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2
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c)         Graphical approach 
 

From Fig. 5.8,  ts/τ = 13   so    ts  = 2 hr    (very crude estimation)     
 

 
Analytical approach 
 
 From settling time definition, 

 
 y = ± 5% KM             so                  9395.5 < y < 10384.5 
 
 
 (KM ± 5% KM) = KM[ 1-e(-0.633)[cos(1.793ts)+0.353sin(1.793ts)]] 
 
 

1 ± 0.05 = 1 – e
(0.633 ts)  cos(1.793 ts)  +  0.353e 

(-0.633 ts)  sin(1.7973 ts) 

 

 

 

  Solve by trial and error……………………      ts ≈ 6.9 hrs 
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From Eqs. 5-53 and  5-55, 

 

Overshoot =  344.0
140156

1565.161 =
−
−=

b

a
  =   exp(-ζπ (1-ζ2

)
1/2

 

By either solving the previous equation or from Figure 5.11, ζ= 0.322    

(dimensionless)  
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There are two alternatives to find the time constant τ : 
 
 1.- From the time of the first peak, tp ≈ 33 min.  

 
One could find an expression for tp by differentiating Eq. 5-51 and 
solving for t at the first zero. However, a method that should work 
(within required engineering accuracy) is to interpolate a value of 
ζ=0.35 in Figure 5.8 and note that tp/τ ≈ 3 

 

 Hence τ ≈ min105.9
5.3

33 −≈  

 
2.- From the plot of the output, 
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2

2

1
P

πτ=
− ζ

= 67 min   and hence τ =10 min 

 
Therefore the transfer function is 
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b) After an initial period of oscillation, the ramp input yields a ramp output 

with slope equal to KB.  The MATLAB simulation is shown below: 
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     Figure S7.10.  Process output for a ramp input  
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  We know the response will come from product of G(s) and Xramp = B/s2 

Then 
2 2 2

( )
( 2 1)

KB
Y s

s s s
=

τ + ζτ +
 

From the ramp response of a first-order system we know that the response 
will asymptotically approach a straight line with slope = KB. Need to find 
the intercept. By using partial fraction expansion: 
 

3 41 2
2 2 2 2 2 2

( )
( 2 1) 2 1

sKB
Y s

s s s s s s s

α + αα α= = + +
τ + ζτ + τ + ζτ +

 

 
Again by analogy to the first-order system, we need to find only α1 and 
α2. Multiply both sides by s2 and let s→ 0,  α2 = KB  (as expected) 
 
Can’t use Heaviside for α1, so equate coefficients 

 
2 2 2 2 3 2

1 2 3 4( 2 1) ( 2 1)KB s s s s s s s= α τ + ζτ + + α τ + ζτ + + α + α  

 

We can get an expression for α1 in terms of α2 by looking at terms 

containing s. 

  

s:  0 = α1+α22ζτ      →  α1 = -KB2ζτ   

 

and we see that the intercept with the time axis is at t = 2ζτ . Finally, 

presuming that there must be some oscillatory behavior in the response, 

we sketch the probable response (See Fig. S7.10) 
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a) Replacing τ by 5, and K by 6 in Eq. 7-34  

 
/ 5 /5( ) ( 1) [1 ]6 ( 1)t ty k e y k e u k−∆ −∆= − + − −  

 

b) Replacing τ  by 5, and K by 6 in Eq. 7-32  

 

( ) (1 ) ( 1) 6 ( 1)
5 5

t t
y k y k u k

∆ ∆= − − + −  

    

In the integrated results tabulated below, the values for ∆t = 0.1 are shown 

only at integer values of t, for comparison.  
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t y(k) 
(exact) 

y(k) 
(�t=1) 

y(k)  
(�t=0.1) 

0 3 3 3 
1 2.456 2.400 2.451 
2 5.274 5.520 5.296 
3 6.493 6.816 6.522 
4 6.404 6.653 6.427 
5 5.243 5.322 5.251 
6 4.293 4.258 4.290 
7 3.514 3.408 3.505 
8 2.877 2.725 2.864 
9 2.356 2.180 2.340 
10 1.929 1.744 1.912 

   
Table S7.11. Integrated results for the first order differential equation 

  

Thus ∆t = 0.1 does improve the finite difference model bringing it closer 
to the exact model. 
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  To find 1a′  and 1b , use the given first order model to minimize 
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Solving simultaneously for 1a′  and 1b  gives 
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  Using the given data, 
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  14)1(
10

1

2 =−∑
=n

kx      ,     112.198)1(
10

1

2 =−∑
=n

ky  

 

  409.24)1()1(
10

1

=−−∑
=n

kxky  

 
  Substituting into expressions for 1a′  and 1b  gives 

 
   1a′ = 0.8187        ,       1b = 1.0876 

 
Fitted model is )(0876.1)(8187.0)1( kxkyky +=+     
 
or                         )1(0876.1)1(8187.0)( −+−= kxkyky   (1) 

 
  Let the first-order continuous transfer function be 
 

   
( )

( ) 1

Y s K

X s s
=

τ +
 

 
From Eq. 7-34, the discrete model should be 
 

  / /( ) ( 1) [1 ] ( 1)t ty k e y k e Kx k−∆ τ −∆ τ= − + − −     (2) 
   

 
Comparing Eqs. 1 and 2, for ∆t=1, gives  
 

   τ = 5       and    K = 6 
 
  Hence the continuous transfer function is 6/(5s+1) 
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     Figure S7.12.  Response of the fitted model and the actual data 
 
 
 
7.13 
 
 
  To fit a first-order discrete model 

 
)1()1()( 11 −+−′= kxbkyaky  

   
Using the expressions for 1a′  and b1 from the solutions to Exercise 7.12, 

with the data in Table E7.12 gives 
 
  918.01 =′a  , 133.01 =b  
 
Using the graphical (tangent) method of Fig.7.5 . 
 

1=K  ,  0.68θ = , and  6.8τ =  
 
The response to unit step change for the first-order model given by  
 

0.68

6.8 1

se

s

−

+
      is           8.6/)68.0(1)( −−−= tety  



7-19 

 
   Figure S7.13- Response of the fitted model, actual data and graphical method  
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