Chapter 7

-LI

In the absence of more accurate data, use afirst-order transfer function as

T'(5 _Ke™

Q'(s) T1s+1

K = T()-T(0) _(1247-120) _ .0 F.
Ag, 540-500 ga/min

0 =3:09 am — 3:05 am = 4 min

Assuming that the operator logs a 99% complete system response as “no
change after 3:34 am”, 5 time constants elapse between 3:09 and 3:34 am.

5T = 3:34 min — 3:09 min = 25 min
T=25/5 min =5 min

Therefore,

T'(s) _0.188e™
Q'(s) 5s+1

To obtain a better estimate of the transfer function, the operator should log
more data between the first change in T and the new steady state.

h(5.0)—h(0) _ (6.52-5.50) _ 0.336 m; n
Aq 30.4x0.1 ft

Output at 63.2% of the total change

Process gain, K =

=5.50 + 0.632(6.52-5.50) = 6.145 ft

Interpolating between h=6.07ft and h=6.18 ft
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1=0.6+ M(GMS 6.07)min =0.74min
(6.18-6.07)

dhf_h(0.2)-h(0) _ 5.75-5.50 ft _1 25f_t
at |-, 0.2-0 0.2 min min
Using Eq. 7-15,
_ KM _ 0.347x(30.4x0.1) — 0.84min
Udh| O 1.25
O O
0dt -]
The slope of the linear fit betweent and z = Ina—wggivesan
O h(e)-h(0)[
approximation of (-1/1) according to Eq. 7-13.
Using h(e) = h(5.0) = 6 .52, the values of z are
t; Z; {; Z;
0.0 0.00 1.4 -1.92
0.2 -0.28 1.6 -2.14
0.4 -0.55 1.8 -2.43
0.6 -0.82 2.0 -2.68
0.8 -1.10 3.0 -3.93
1.0 -1.37 4.0 -4.62
1.2 -1.63 5.0 - 00
Then the slope of the best-fit line, using EQ. 7-6 is
slope= H-lﬁ 185,735 )
135,-(8)*

where the datum at t; = 5.0 has been ignored.
Using definitions,

S =18.0 S, =404
S, =-235 S, =-51.1

Substituting in (1),
ﬁ—lﬁ_ ~1.213 1= 0.82min
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Figure S7.2. Comparison between models a), b) and c) for step response.

(s _ K T _ K,
Q(s) Tts+l T(s) T,5+1
T,(s) _ KK, _KKe™

= ()
QM ([Ms+YTs+) (1s+)

where the approximation follows from Eq. 6-58 and the fact that 1,>T1, as
revealed by an inspection of the data.

_ T,(50)-T,(0) _18.0-10.0

A 85-82

K = T2(50)~T,(0) _ 26.0-200 _
27 1,(50)-T,(0) 18.0-10.0

K, = 2.667

0.75

Let z;, 7, be the natural log of the fraction incomplete response for Ty, To,
respectively. Then,
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b)

On,(50) - T,(®) 0_, 08-T,()C
5.60-105 "H 8
T, (50) ~Ty(t) O, [26-T,()0
T,60)-T,0H H 6

A graph of z; and z, versust is shown below. The slope of z; versust line
iIS-0.333 ; hence (1/-11)=-0.333 and 1,=3.0

z(t) =In

() =In

From the best-fit line for z, versus t, the projection intersects z, = 0 at
t=1.15. Hence 1,=1.15.

T,'(S) _ 2.667

(2)

T, (5 _ 075
T'(s) 1.15s+1

3)

0.0
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time,t

Figure S7.3a. z; and z, versust

By means of Simulink-MATLAB, the following simulations are obtained

28

26 *_*4@-*-*-*-'*‘*-*--*—*-*— -----
3 3*
P */*"
22 */’
.
18

_____ T,

12 * Tl(experimental) H

* T, (experimental)
T T T

I I I Il Il L T
2 4 6 8 10 12 14 16 18 20 22
time

Figure S7.3b. Comparison of experimental data and models for step change
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b)

2 1.5
X

Y& =69 X(9)= (5s+1)(Bs+1)(s+1) s

Taking the inverse Laplace transform
y(t) =-75/8* exp(-1/5*t)+27/4* exp(-1/3*1)-3/8* exp(-t)+3

Fraction incompl ete response

2(t) = |n§—@§

0.0 oo
1.0 4
2.0
-3.0
-4.0
5.0
-6.0
7.0
8.0
9.0

zZ(t)

z(t) = -0.1791 t + 0.5734

time,t

Figure S7.4a. Fraction incomplete response; linear regression
From the graph, slope =-0.179 and intercept = 3.2

Hence,

-1/t=-0.179 and 1=5.6

8=32

-3.2s
G(s) = 2e
5.6s+1

In order to use Smith’s method, find togand tgg

Y(to)= 0.2 x 3=0.6
Y(teo)= 0.6 x 3 =1.8

Using either Eq. 1 or the plot of this equation, typ=4.2 , tgo = 9.0

Using Fig. 7.7 for ty teo = 0.47
(=0.65, tg/t=1.75,and 1=5.14
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T 26452 +6.68s +1

G(s)

The models are compared in the following graph:
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Figure S7.4b. Comparison of three models for step input

Theintegrator plustime delay model is

G(9) Kee
S
In the time domain,
y(t)=0 t<0
y(t)=K (t-6) t=>0

Thus a straight line tangent to the point of inflection will approximate the
step response. Two parameters must be found: K and 6 (See Fig. S7.5 a)

1.- The process gain K is found by calculating the slope of the straight
line.

K=_1 =0074
135
2.- The time delay is evaluated from the intersection of the straight line

and the time axis (wherey = 0).
6=15



Therefore the model is G(S) = % e

y(t) 4

Figure S7.5a. Integrator plustime delay model; parameter evaluation

From Fig. E7.5, we can read these val ues (approximate):

Time Data Model
0 0 -0.111
2 0.1 0.037
4 0.2 0.185
5 0.3 0.259
7 0.4 0.407
8 0.5 0.481
9 0.6 0.555
11 0.7 0.703
14 0.8 0.925

16.5 0.9 1.184
30 1 2.109

Table.- Output values from Fig. E7.5 and predicted values by model

A graphical comparisonisshowninFig. S7.5b

0.9 1 /

0.8 1
0.7 1
0.6 1
0.5 1

0.4 1 / = Experimental data
0.3 1 — — Integrator plus time delay model

0z /

0.1 1

Output

Time

Figure S7.5b. Comparison between experimental data and integrator plus time
delay model.
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a) Drawing a tangent at the inflection point which is roughly at t =5, the
intersection with y(t)=0 lineis at t =1 and with the y(t)=1 line at t =14.
Hence0=1 , t1=14-1=13

e—S
13s+1

Gy(s) =

b)  Smith’s method
From the graph, txp=3.9,1t5=9.6 ; using Fig 7.7 for tay teo = 0.41
(=10, te/1=2.0 , hencet=4.8 andT1=T,=T1=4.8

1

(9= (4.8s+1)°

Nonlinear regression

From Figure E7.5, we can read these values (approximated):

Time Output
0.0 0.0
2.0 0.1
4.0 0.2
5.0 0.3
7.0 0.4
8.0 0.5
9.0 0.6
11.0 0.7
14.0 0.8
17.5 0.9
30.0 1.0

Table.- Output values from Figure E7.5
In accounting for Eq. 5-48, the time constants were selected to minimize

the sum of the squares of the errors between data and model predictions.
Use Excel Solver for this Optimization problem:

T1=6.76 and T1,=06.95

_ 1
" (6.95s +1)(6.765 +1))

G(s)

The models are compared in the following graph:



b)
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Figure S7.6. Comparison of three models for unit step input

From the graph, time delay 6 = 4.0 min

Using Smith’s method,

from the graph, t,,+0=56 , t,+6=9.1

to =16, tgu =51, t,y/ts, =1.6/5.1=0.314
From Fig.7.7, (=163 ,t,/1=310 , 1=1.645

Using Eqgs. 5-45, 5-46, 1,=4.81, 1,=0.56

Overall transfer function

-4s
G(s) = 10e 1>,

S (s+D(Ts+l)

Assuming plug-flow in the pipe with constant-velocity,

50



b)

3 1 .
DEL R , 8 =—x— =0.1min
p"’e() P 05 60

Assuming that the thermocouple has unit gain and no time delay

= since 1,<<T
G oy oD 2 <<T,
Then
—3s
Ge(S)="——= 10e , SO that
(t,;s+1)
(M0e*0 o1s

G(S) = GHE (S)Gpipe(S)GTC (S) D— (

lj'[ S+E

To find the form of the process response, we can see that

K K M_ K M
s(ts+1) s(ts+1) s (ts+1) §°

Y(s) =

Hence the response of this system is similar to a first-order system with a
ramp input: the ramp input yields a ramp output that will ultimately cause
some process component to saturate.

By applying partial fraction expansion technique, the domain response for
thissystemis

Y(s) = é+E+
s s T1s+1

In order to evaluate the parameters K and 1, important properties of the
above expression are noted:

hence y(t) = -KMT + KMt — KMte""

1.- For large values of time (t>>1) y(t) = y'(t) = KM (t-1)
2-Fort=0, Yy(0)=-KMrt

These equations imply that after an initial transient period, the ramp input
yields a ramp output with slope equal to KM. That way, the gain K is
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obtained. Moreover, the time constant 1 is obtained from the intercept in
Fig. S7.8
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Figure S7.8. Time domain response and parameter evaluation

For underdamped responses,

0 [1_72 _ 72
y(t) = KM %—e‘“”@:os 1-¢ tH+ ¢ —sin 1-¢ t% (5-51)
5 5 H Tt Hy-¢ Hr

At the response peaks,

2 D 0. j1-¢2 0
Q—KM %Z—e“” E:os Z t —si 1 Z
dt ET 4/

t+co
5o o R
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where n is the number of peak.
Timetothefirst peak, t,= i

1-77

Graphical approach:

Process gain,
_ Wy (%) —w;, (0) _9890-9650 _

APs 95-92 h
Asg

Overshoot = & = 997079890 _ ) 5oq

b~ 9890 -9650

FromFig.5.11, (=0.33

t, can be calculated by interpolating Fig. 5.8
For (=033, t,=3.251
Sincetpisknowntobe 1.75 hr, 1 = 0.54

K _ 80

G(s) = =
(s ’s?+2{ts+1 0.295°+ 0.36s+1

Analytical approach

Thegain K doesn’t change: K =80——+——

%sg

To obtain the { and T values, Egs. 5-52 and 5-53 are used:

a  9970-9890 )
Overshoot = & = 2270790 _ a0 exp(zru(l-
Vo0t = = 9800 - 9650 exp(-CTv(1-¢)™)

Resolving, { =0.33
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7.10

Tt
1-C°

_ K B 80
G(S) ) - 2
1°s°+2(1ts+1 0.278s°+ 0.35s+1

=1.754 hence 1=0.527 hr

~—+
I

Graphical approach

FromFig. 5.8, tJ1=13 s0 ts =2hr (very crude estimation)

Analytical approach

From settling time definition,

y=%5% KM SO 9395.5<y<10384.5
(KM = 5% KM) = KM[ 1-€"%¢*3[cos(1.793t,)+0.353sin(1.793ty)]]

1+0.05=1-e%839 ¢05(1.793 t) + 0.353e (%5839 in(1.7973 1)

Solve by trial and error........................ ts= 6.9 hrs

T _ K
W'(s) T1°s®+20t+1

K _T(»)-T(0) _156-140 ~02 C_
Aw 80 Kg/min

From Egs. 5-53 and 5-55,

Overshoot = a_ M =0.344 = exp(-(mt (I—ZZ)H2
b 156-140
By either solving the previous equation or from Figure 5.11, {= 0.322

(dimensionless)
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There are two aternatives to find the time constant T :

1.- From the time of the first peak, t, = 33 min.
One could find an expression for t, by differentiating Eq. 5-51 and
solving for t at the first zero. However, a method that should work

(within required engineering accuracy) is to interpolate a value of
¢=0.35in Figure 5.8 and note that t,/t = 3

Hencet =§ =9.5-10min
35

2.- From the plot of the output,

Period =P = 2 =67 min and hencet =10 min

N-z

Therefore the transfer function is

T'(s) _ 0.2
W'(s) 100s® +6.44s+1

G(s) =

b) After an initial period of oscillation, the ramp input yields a ramp output
with slope equal to KB. The MATLAB simulation is shown below:

Output

160

158

156 -

154 -

152

148 -

146

144+

142

140
0

L L L L L L L L
10 20 30 40 50 60 70 80 90 100
time

Figure S7.10. Process output for a ramp input
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b)

We know the response will come from product of G(s) and Xamp = B/S’

KB
Then Y(s) =
(s s*(1%s” + 2L1s+1)
From the ramp response of afirst-order system we know that the response
will asymptotically approach a straight line with slope = KB. Need to find
the intercept. By using partial fraction expansion:

Y(s) = KB _a

S (TPSP+ 20Ts+ 1)

_1+%+—G3S+a4
s & 1%+ 2Atstl

Again by analogy to the first-order system, we need to find only a; and
a. Multiply both sidesby s and let s— 0, 0, = KB (as expected)

Can’t use Heaviside for aj, so equate coefficients
KB = 0,S(1°s° + 2{1s+ 1)+ 0, (1°s*+ A1s+ D+ s°+a ,§°

We can get an expression for 0 in terms of Oz by looking at terms
containing S.

S 0=0a+02(t - ay=-KB2(t

and we see that the intercept with the time axis is at t = 2(t. Finally,
presuming that there must be some oscillatory behavior in the response,
we sketch the probable response (See Fig. S7.10)

Replacing T by 5, and K by 6 in Eq. 7-34
y(k) = e *°y(k -1) +[1-e™*'*16u(k -1

Replacing T by 5, and K by 6 in Eq. 7-32
At At
y(k) = (1—€)y(k -1 +€6U(k -1)

In the integrated results tabulated below, the values for At = 0.1 are shown
only at integer values of t, for comparison.
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y(k) y(k) y(k)

(exact) (At=1) (At=0.1)
0 3 3 3
1 2.456 2.400 2.451
2 5.274 5.520 5.296
3 6.493 6.816 6.522
4 6.404 6.653 6.427
5 5.243 5.322 5.251
6 4.293 4.258 4.290
7 3.514 3.408 3.505
8 2.877 2.725 2.864
9 2.356 2.180 2.340
10 1.929 1.744 1.912

Table S7.11. Integrated results for the first order differential equation

Thus At = 0.1 does improve the finite difference model bringing it closer
to the exact mode!.

7.12

Tofind & and b, usethe given first order model to minimize

J= Z(y(k) -ay(k -1) ~bx(k -1)’

g—i =) 2y(k) ayk -1 -bx(k-D)(=y(k-1) =0
aJ

% :gizw(k) ~ay(k 1) ~bx(k -D)(x(k 1) =0

Solving simultaneously for a and b, gives

i y(k)y(k-1) —bli y(k ~x(k -1
o= £
S yk-1°

10

> Xk —1)y(k)§ y(k-1)? - Z y(k -Dx(k —1)2 y(k <)y(K)

bl = 10 10 10
Z x(k —1)2 Z y(k —1)2 —E; y(k ~Dx(k —1)@2
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Using the given data,

10

Z x(k —Dy(k) =35.212 |, i y(k —1)y(k) =188.749

10

10
Zx(k—1)2:14 , Zy(k—1)2=198.112

10
Z y(k —D)x(k 1) = 24.409

Substituting into expressionsfor a, and b, gives
a=08187 , b=10876

Fitted modd is y(k +1) =0.8187y(k) +1.0876x(k)

or y(k) =0.8187y(k —1) +1.0876x(k —1)

Let the first-order continuous transfer function be

Y@ o K
X(S)_TS+1

From Eq. 7-34, the discrete model should be

y(k) =™ y(k ~1) +[1-e *""]Kx(k 1)

Comparing Egs. 1 and 2, for At=1, gives
T=5 and K=6

Hence the continuous transfer function is 6/(5s+1)
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7.13

T T
— actual data
--~ fitted model

s 4

y(t)

time,t

Figure S7.12. Response of the fitted model and the actual data

To fit afirst-order discrete model
y(k) =a y(k -1) + b x(k -1)

Using the expressions for a, and b; from the solutions to Exercise 7.12,
with the datain Table E7.12 gives

a =0918 ,b =0.133
Using the graphical (tangent) method of Fig.7.5 .
K=1, 6=0.68,and 1=6.8
The response to unit step change for the first-order model given by

-0.68s
e

6.8s+1

iS y(t) =1- e—(t—0.68)/6.8
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—e— actual data
—— fitted model
—— graphical method

0 2 4 timet 6 8 10

Figure S7.13- Response of the fitted model, actual data and graphical method
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