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 9.1 
 
 

a) Flowrate pneumatic transmitter: 
 

qm(psig)=
15 psig - 3 psig

( gpm - 0 gpm) 3 psig
400 gpm-0 gpm

q
 

+ 
 

 

    = 
psig

0.03 (gpm) 3 psig
gpm

q
 

+ 
 

 

 
  Pressure current transmitter: 
 

Pm(mA)=
20 mA - 4 mA

( in.Hg 10 in.Hg) 4 mA
30 in.Hg -10 in.Hg

p
 

− + 
 

 

    = 
mA

0.8 (in.Hg) 4 mA
in.Hg

p
 

− 
 

 

 
  Level voltage transmitter: 
   

hm(VDC)=
5 VDC -1 VDC

( (m) - 0.5m) 1 VDC
20 m - 0.5 m

h
 

+ 
 

 

      = 
VDC

0.205 (m) 0.897 VDC
m

h
  +  

 

 
  Concentration transmitter: 

Cm(VDC)=
10 VDC -1 VDC

( (g/L)-2 g/L)+1 VDC
20 g/L - 2 g/L

C
 
 
 

 

      = 
VDC

0.5 (g/L)
g/L

C
 
 
 

 

 
b) The gains, zeros and spans are: 
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 PNEUMATIC CURRENT VOLTAGE VOLTAGE 
GAIN 0.03psig/gpm 0.8mA/in.Hg 0.205 VDC/m 0.5VDC/g/L 
ZERO 0gal/min 10 in.Hg 0.5m 2g/L 
SPAN 400gal/min 20 in.Hg 19.5m 18g/L 
*The gain is a constant quantity 
 
 

 9.2 
 
 

a) The safest conditions are achieved by the lowest temperatures and 
pressures in the flash vessel. 
 
VALVE 1.- Fail close 
VALVE 2.- Fail open 
VALVE 3.- Fail open 
VALVE 4.- Fail open 
VALVE 5.- Fail close 
 
Setting valve 1 as fail close prevents more heat from going to flash drum 
and setting valve 3 as fail open to allow the steam chest to drain. Setting 
valve 3 as fail open prevents pressure build up in the vessel. Valve 4 
should be fail-open to evacuate the system and help keep pressure low. 
Valve 5 should be fail-close to prevent any additional pressure build-up. 

 
b)      Vapor flow to downstream equipment can cause a hazardous situation 
 

VALVE 1.- Fail close 
VALVE 2.- Fail open 
VALVE 3.- Fail close 
VALVE 4.- Fail open 
VALVE 5.- Fail close 
 
Setting valve 1 as fail close prevents more heat from entering flash drum 
and minimizes future vapor production. Setting valve 2 as fail open will 
allow the steam chest to be evacuated, setting valve 3 as fail close prevents 
vapor from escaping the vessel. Setting valve 4 as fail open allows liquid 
to leave, preventing vapor build up. Setting valve 4 as fail-close prevents 
pressure buildup. 

 
c)      Liquid flow to downstream equipment can cause a hazardous situation 
 

VALVE 1.- Fail close 
VALVE 2.- Fail open 
VALVE 3.- Fail open 
VALVE 4.- Fail close 
VALVE 5.- Fail close 
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Set valve 1 as fail close to prevent all the liquid from being vaporized 
(This would cause the flash drum to overheat). Setting valve 2 as fail open 
will allow the steam chest to be evacuated. Setting valve 3 as fail open 
prevents pressure buildup in drum. Setting valve 4 as fail close prevents 
liquid from escaping. Setting valve 5 as fail close prevents liquid build-up 
in drum 

 
 
 9.3 
 
 

a) Assume that the differential-pressure transmitter has the standard range of 
3 psig to 15 psig for flow rates of 0 gpm to qm(gpm). Then, the pressure 
signal of the transmitter is 

 

PT = 3 + 2
2

12
q

qm






 

KT = 
2

24T

m

dP
q

dq q

 
=  

 
 

 
     2.4/qm      ,   q = 10% of qm 

 
     12/qm ,  q = 50% of qm 

KT =  
         18/qm ,  q = 75% of qm  
 
          21.6/qm ,  q = 90% of qm 
   
 

b) Eq. 9-2 gives 
1/ 2

( ) ( )v
v m

s

P
q C f q f

g

 ∆= = 
 
� �  

 
For a linear valve, 
 
 ( )f P= = α� �   , where α is a constant. 
 

 KV = m

dq
q

dP
= α  

 
Hence, linear valve gain is same for all flowrates 
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  For a square-root valve, 
 

   ( )f P= = α� �  

 KV = 
1 1

2 22
m m m

m

q q qdq
q

dP qp

α α= α = =
�

 

 
     5qmα      ,   q = 10% of qm 

 
     qmα      ,  q = 50% of qm 

KV =  
         0.67qmα      ,  q = 75% of qm  
 
          0.56qmα     ,  q = 90% of qm 
 
  For an equal-percentage valve, 
 
   11)( −− == PRRf α�

�  
 

 KV = 1 ln lnm m
m

dq q
q R R q R

dP q
−  

= α = α  
 

�  

  
     0.1qmαlnR      ,   q = 10% of qm 

 
     0.5qmαlnR      ,  q = 50% of qm 

KV =  
         0.75qmαlnR     ,  q = 75% of qm  
 
         0.9qmαlnR       ,  q = 90% of qm 
 

c) The overall gain is  
 

KTV = KTKV 
 
  Using results in parts a) and b) 
 
  For a linear valve 

  
     2.4α      ,   q = 10% of qm 

 
     12α      ,  q = 50% of qm 

KTV =  
         18α      ,  q = 75% of qm  
 
          21.6α   ,  q = 90% of qm 
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  For a square-root valve 
 
   KTV = 12α  for all values of q 
 
  For an equal-percentage valve 
 
    

     0.24αlnR      ,   q = 10% of qm 

 
     6.0αlnR       ,  q = 50% of qm 

KTV =  
         13.5αlnR     ,  q = 75% of qm  
 
         19.4αlnR       ,  q = 90% of qm 
 
 

The combination with a square-root valve gives linear characteristics over 
the full range of flow rate. For R = 50 and α = 0.067 values, a graphical 
comparison is shown in Fig. S9.3 
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Linear valve
Square valve
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 K
TV 

 
      Fig. S9.3.- Graphical comparison of the gains for the three valves  
 

d) In a real situation, the square-root valve combination will not give an 
exactly linear form of the overall characteristics, but it will still be the 
combination that gives the most linear characteristics. 
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 9.4 
 
 
  Nominal pressure drop over the condenser is 30 psi 
 
   ∆Pc = Kq2 
    

   30 = K (200)2   , K = 
2

3 psi

4000 gpm
 

   ∆Pc =
2

4000

3
q  

 

Let ∆Pv be the pressure drop across the valve and cv PP ∆∆ , be the 

nominal values of ∆Pv ,  ∆Pc, respectively. Then, 
 

 ∆Pv = ( )v cP P∆ + ∆ −∆Pc   = ( ) 23
30

4000
vP q+ ∆ −   (1) 

 
  Using Eq. 9-2 
 

   
2/1

)( 




 ∆
=

s

v
v g

P
fCq �       (2) 

  and  
 

   

1/ 2 1/ 2
200

0.5 1.11( )

v v

v
s

q P P
C

gf l

− −
   ∆ ∆= =   
   

   (3) 

 
  Substituting for ∆Pv  from(1) and Cv from(3) into (2) , 
 

   

1/ 2
21/ 2

3
30

4000400 ( )
1.11 1.11

v
v

P qP
q f

−

−  + ∆ −  ∆=    
   

 

�   (4) 

 

a) vP∆  = 5 
 

Linear valve: �� =)(f  , and Eq. 4 becomes 
 

2/12

11.1

00075.035

5.188

−






 −= qq
l  
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Equal % valve: 11 20)( −− == ��
� Rf  assuming R=20 

 

20ln

11.1

00075.035

5.188
ln

1

2/12

















 −

+=

−
qq

l  
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    Figure S9.4a.  Control valve characteristics for vP∆  = 5 
 
 

b) vP∆  = 30 
 

Linear valve: �� =)(f  , and Eq. 4 becomes 
 

2/12

11.1

00075.060

94.76

−






 −= qq
l  

 
Equal % valve: 120)( −= �

�f  ; Eq. 4 gives 
 

20ln

11.1

00075.060

94.76
ln

1

2/12

















 −

+=

−
qq

l  
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    Figure S9.4b.  Control valve characteristics for vP∆  = 30 

 
 
 

c) vP∆  = 90 
 

Linear valve: �� =)(f  , and Eq. 4 becomes 
 

2/12

11.1

00075.0120

42.44

−






 −= qq
l  

 
Equal % valve: 120)( −= �

�f  ; Eq. 4 gives 
 
 

20ln

11.1

00075.0120

42.44
ln

1

2/12

















 −

+=

−
qq

l  
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 Figure S9.4c.  Control valve characteristics for vP∆  = 90 

 
 
  Conclusions from the above plots: 
 

1) Linearity of the valve 
 

For vP∆  = 5, the linear valve is not linear and the equal % valve is 
linear over a narrow range. 
 

For vP∆  = 30, the linear valve is linear for very low �  and equal 
% valve is linear over a wider range of � . 
 

For vP∆  = 90, the linear valve is linear for � <0.5 approx., equal % 
valve is linear for � >0.5 approx. 

 

2) Ability to handle flowrates greater than nominal increases as vP∆  
increases, and is higher for the equal % valve compared to that for the 

linear valve for each vP∆  . 
 

3)  The pumping costs are higher for larger vP∆  . This offsets the 

advantage of large vP∆  in part 1) and 2) 
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 9.5 
 
 

  Let ∆Pv/∆Ps = 0.33 at the nominal 320 gpmq =  
 
  ∆Ps = ∆PB + ∆Po = 40 + 1.953×10-4 q2 
 
  ∆Pv= PD - ∆Ps = (1 –2.44×10

-6
 q2

)PDE – (40 + 1.953×10
-4

 q2
) 

 

  33.0
)32010 1.953 + (40

)32010 1.953 + (40 - )P32010 2.44- (1
2 4-

2 -4
DE

2 -6

=
××

××××
 

 

  PDE = 106.4 psi 

 

  Let qdes = 320 gpmq =  

 

For rated Cv, valve is completely open at 110% qdes i.e., at 352 gpm or the 

upper limit of 350 gpm 

 

2

1−






 ∆
=

s

v
v q

p
qC  

                             
2

1
2426

9.0

)35010953.140(4.106)3501044.21(
350

−−−








 ××+−××−=  

 

Then using Eq. 9-11 

 

50ln

9.0

1055.44.66

6.101
ln

1

2/124

















 ×−

+=

−− qq

l  

 

 

 

 



9-11 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

400

l (valve lift)

q 
(g

pm
)

Cv = 101.6
Cv = 133.5

 
              Figure S9.5.  Control valve characteristics  
 
 
From the plot of valve characteristic for the rated Cv of 101.6, it is evident 
that the characteristic is reasonably linear in the operating region 250 ≤ q 
≤ 350. 
 
The pumping cost could be further reduced by lowering the PDE to a value 

that would make ∆Pv/∆Ps = 0.25 at  320=q  gpm. Then PDE = 100.0 and 
for qdes = 320 gpm, the rated Cv = 133.5. However, as the plot shows, the 
valve characteristic for this design is more nonlinear in the operating 
region. Hence the selected valve is Cv = 101.6 
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 9.6 
 
 
 a) 

 
            The "square" valve appears similar to the equal percentage valve in Fig. 9.8 
 
 
 b)  

Valve Gain ( �ddf / ) � =0 � =0.5 � =1 

Quick open �2/1     ∞  0.707 0.5 

Linear 1 1 1 1 

Slow open �2  0 1 2 

 
 

The largest gain for quick opening is at � =0 (gain = ∞), while largest for 
slow opening is at � =1 (gain = 2). A linear valve has constant gain. 

 

c) 
s

v
v g

P
fCq

∆
= )(�  

 
For       gs = 1    ,   ∆Pv = 64   ,   q = 1024 

 
  Cv is found when )(�f =1 (maximum flow): 
 

0
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   =
∆

=
sv

v
gP

q
C

1/22

1024 gal/min 1024 gal.in
= =128

8 min.(lb)64 lb/in
 

 
d) � in terms of applied pressure 

 
� =0 when   p = 3 psig 
� =1     when   p = 15 psig 

 

  Then 25.0
12

1
)3(

)315(

)01( −=−
−

−= pp�  

 

 e) q = 128 vP∆2
�      for slow opening ("square") valve 

     = 128
2

25.0
12

1





 −∆ pPv  

     = ( ) 22 )3(8889.03
144

128 −∆=−∆ pPpP vv  

 
  p = 3        ,   q  = 0 for all ∆Pv 
  

  p =15       ,   q  = 128 vP∆  

 
          =  0  for ∆Pv = 0 
 
          = 1024 for ∆Pv = 64 
 
 
  looks O.K 
 
 
 
 
 9.7 
 
 

Because the system dynamic behavior would be described using deviation 
variables, all that is important are the terms involving x, dx/dt and d2x/dt2. 
Using the values for M, K and R and solving the homogeneous o.d.e: 

 

  03600000,153.0
2

2

=++ x
dt

dx

dt

xd
 

 
This yields a strongly overdamped solution, with ζ=228, which can be 
approximated by a first order model by ignoring the d2x/dt2 ter 
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 9.8 
 
 

A control system can incorporate valve sequencing for wide range along 
with compensation for the nonlinear curve (Shinskey, 1996). It features a 
small equal-percentage valve driven by a proportional pH controller. The 
output of the pH controller also operates a large linear valve through a 
proportional-plus-reset controller with a dead zone. The system is shown 
in Fig. E9.8 
 

 

    
 
  Figure S9.8.   Schematic diagram for pH control 
 
 

Equal-percentage valves have an exponential characteristic, similar to the 
pH curve. As pH deviates from neutrality, the gain of the curve decreases; 
but increasing deviation will open the valve farther, increasing its gain in a 
compensating manner. As the output of the proportional controller drives 
the small valve to either of its limits, the dead zone of the two-mode 
controller is exceeded. The large valve is moved at a rate determined by 
the departure of the control signal from the dead zone and by the values of 
proportional and reset. When the control signal reenters the dead zone, the 
large valve is held in its last position. The large valve is of linear 
characteristic, because the process gain does not vary with flow, as some 
gains do. 

 
 
 

pHC

Percent

Linear

Influent

Reagent
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 9.9  Note: in the book’s second printing, the transient response in this problem will be  

  modified by adding 5 minutes to the time at which each temperature reading was taken. 
 
  We wish to find the model: 
 

   
( )

( ) 1
m m

m

T s K

T s s

′
=

′ τ +
  

 
where  Tm is the measurement 
 T is liquid temperature 
 
From Eq. 9-1, 

 

   
o o o o

range of instrument output 20 mA - 4 mA 16 mA mA
= = =0.04

range of instrument input 400 C - 0 C 400 C CmK =  

 
From Fig. 5.5,  τ can be found by plotting the thermometer reading vs. 
time and the transmitter reading vs. time and drawing a horizontal line 
between the two ramps to find the time constant. This is shown in Fig. 
S9.9. 

 
Hence, ∆τ = 1.33 min = 80 sec 
 
To get τ, add the time constant of the thermometer (20 sec) to ∆τ  to get  
 

τ = 100 sec. 
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T
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F
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      Figure S9.9.   Data test from the Thermometer and the Transmitter 
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 9.10 
 
 
 

  precision = 
0.1 psig

0.5%
20 psig

=  of full scale 

 
  accuracy is unknown since the "true" pressure in the tank is unknown 
 

  resolution = 
0.1 psig

0.5%
20 psig

=  of full scale 

 

  repeatability = 
±0.1 psig

=±0.5%
20 psig

 of full scale 

 
 
 
9.11 
 
 
  Assume that the gain of the sensor/transmitter is unity. Then,  
 

   
)11.0)(1(

1

)(

)(

++
=

′
′

sssT

sTm  

 
 
  where T is the quantity being measured 
             Tm is the measured value 
 

  T ′ (t) = 0.1 t  °C/s   ,  T ′ (s) =
2

1.0

s
 

  
2

1.0

)11.0)(1(

1
)(

sss
sTm ×

++
=′  

 
  11.01.0111.00011.0)( 10 −++−=′ −− teetT tt

m  

 
  Maximum error occurs as t→∞ and equals |0.1t  − (0.1t − 0.11)| = 0.11 °C 
 

If the smaller time constant is neglected, the time domain response is a bit 
different for small values of time, although the maximum error (t→∞) 
doesn't change. 

 

 



9-17 

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t(s)

T
',
 T

m
' 
(C

)

Tm'(t)

T'(t)

 
         Figure S9.11.  Response for process temperature sensor/transmitter 

 


