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where ζ3,τ3 are defined in Eqs. 11-62, 11-63 ,  Kp = R = 1.0 min/ft2 ,    

and τ = RA = 3.0 min 
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11.3 
 
 
  ma/ma5)( == cc KsG  

 
  Assume τm = 0,  τv = 0,   and K1 = 1,  in Fig 11.7. 
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Using the standard current range of 4-20 ma, 
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Overall material balance for the tank, 
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Subtracting  (3) times 3c  from the above equation gives 
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c) The closed-loop responses for disturbance changes and for setpoint 
 changes can be obtained using block diagram algebra for the block 
 diagram in part (a). Therefore, these responses will change only if any of 
 the transfer functions in the blocks of the diagram change. 

 
i. 2c changes. Then block transfer function )(sG p changes 

due to K1. Hence Gc(s) does need to be changed, and 
retuning is required. 

 
ii. Km changes. Block transfer functions do change. Hence 
 Gc(s) needs to be adjusted to compensate for changes in 
 block transfer functions. The PI controller should be 
 retuned. 

 
iii. Km remains unchanged. No block transfer function changes. 
 The controller does not need to be retuned. 

 
 
 
11.5 
 
 
 a) 
 

One example of a negative gain process that we have seen is the liquid 
level process with the outlet stream flow rate chosen as the manipulated 
variable 

   
With an "air-to-open" valve, w increases if p increases. However, h 
decreases as w increases. Thus Kp <0 since ∆h/∆w is negative. 

 
b) KcKp must be positive. If Kp is negative, so is Kc. See (c) below. 
 
c) If h decreases, p must also decrease. This is a direct acting controller 

whose gain is negative [ )()(()( thtrKtp c ′−′=′  ] 
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11.6 
 
 
  For proportional controller, cc KsG =)(  

 
Assume that the level transmitter and the control valve have negligible 
dynamics. Then, 
 

mm KsG =)(  

  vv KsG =)(  

 
The block diagram for this control system is the same as in Fig.11.8. 
Hence Eqs. 11-26 and 11-29  can be used for closed-loop responses to 
setpoint and load changes, respectively. 
 
The transfer functions )(sG p  and )(sGd  are as given in Eqs. 11-66 and 

11-67, respectively. 
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b) Substituting for Gc, Gm, Gv, Gp , and Gd into (11-29)  gives 
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where τ is given by Eq. 1. 
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For a step change in the disturbance, sMsD /)( =  
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Hence, offset is not eliminated for a step change in disturbance. 
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  Using block diagram algebra 
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11.8 
 
 
  The available information can be translated as follows 
 

1. The outlets of both the tanks have flow rate q0 at all times. 
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3. Since an energy balance would indicate a first-order transfer function 
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  Using these transfer functions, the block diagrams are as follows. 
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c) The control configuration in part a) will provide the better control. As is 
evident from the block diagrams above, the feedback loop contains, in 
addition to Gc, only a first-order process in part a), but a second-order-
plus-time-delay process in part b). Hence the controlled variable responds 
faster to changes in the manipulated variable for part a). 
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The given block diagram is equivalent to 
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11.10 
 
 

a) Derive CLTF: 
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  0)1()114(2 2 =−+−+ cc KsKs  

 
  Necessary conditions: 14/1>cK  and 1>cK  

 
For a 2nd order characteristic equation, these conditions are also sufficient. 

  Therefore,  1>cK  for closed-loop stability. 

 
 
 
 



11-13 

11.11 
 
 
 a) 

 
   
 

c) Transfer Line: 
 

Volume of transfer line =  π /4 (0.5 m)2(20m)= 3.93 m3 
 
Nominal flow rate in the line = min/m5.7 3=+ FA qq  
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process output only. Then, 
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with Kc >0 as the controller should be reverse-acting, since P(t) should 
increase when Cm(t) decreases. 
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  Assume cA is constant for pure A. Material balance for A: 
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  Linearizing and writing in deviation variable form 
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dt

cd
V ′−′+−′+′=

′
)(  

 
  Taking Laplace transform 
 
  [ ] )()()()()( sCqsQccsCqqVs FFAAFA ′+′−=′++    (2) 
 
  From Eq. 1 at steady state, 0/ =dtdc , 
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  Substituting numerical values in Eq. 2, 
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The stability limits are obtained from the characteristic Eq. 11-83. Hence 
if an instrumentation change affects this equation, then the stability limits 
will change and vice-versa. 

 
a) The transmitter gain, Km, changes as the span changes. Thus Gm(s) 

changes and the characteristic equation is affected. Stability limits would 
be expected to change. 

 
b) The zero on the transmitter does not affect its gain Km. Hence Gm(s) 

remains unchanged and stability limits do not change. 
 

c) Changing the control valve trim changes Gv(s). This affects the 
characteristic equation and the stability limits would be expected to 
change as a result. 
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11-17 

  0)1()1( >τ−+ττ++ττ pcpcII KKKK  

 
  [ ] )1()1( +ττ−>τ−+ττ IpcI KK  

 
  Note that RHS is negative for all positive Iτ and τ   
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c) Note that, in either case, the addition of the integral mode decreases the 

range of stable values of Kc. 
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11.14    
 
 
  From the block diagram, the characteristic equation is obtained as 
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Simplifying, 
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KK

KK
K

c

c
CL +

=
1

 

 
 b) If   1−<KK c   and  KK c+1  is negative, 

 
  then CL gain is positive.   ∴  it has the proper sign. 
 
 

c) K = 10  and  τ = 20 
 

 and we want    10
1

=
+

τ−
KK c

 

 
 or cK)10)(10(1020 +=−  

  cK10030 =−  

     3.0−=cK  

 

 Offset:  5.1
2

3

)10)(3.0(1

)10)(3.0( =
−
−=

−+
−=CLK  

 
  ∴  Offset = +1 − 1.5 = − 50% (Note this result implies overshoot) 
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d) 
KKss

KK

ss

KK
ss

KK

sY

sY

cm

c

m

c

m

c

sp ++ττ−
=

+ττ−
+

+ττ−
=

)1)(1(
)1)(1(

1

)1)(1(

)(

)(
 

 

KKss

KK

cmm

c

++τ−τ+ττ−
=

1)(2
 

 
 

1
11

)1/(

2 +
+

τ−τ
+

+
ττ

−

+
=

s
KK

s
KK

KKKK

c

m

c

m

cc     (standard form) 

 
  For stability, 
 

  (1)    0
1

>
+
ττ

−
KK c

m       (2)    0
1

>
+

τ−τ
KK c

m   

 
  From (1) Since    01 <+ KK c   

   1−<KK c  

   
K

K c

1−<  

 
From (2) Since   01 <+ KK c  

   0<τ−τm  

   mτ−<τ−  

          mτ>τ  

  For       K = 10   ,      τ = 20 ,    Kc = –0.3   ,  τm = 5 

 

 

  
15.250

5.1

1
)31(

)205(

31

)5)(20(
5.1

)(

)(
2

2 ++
=

+
−
−+

−
−

=
sssssY

sY

sp

 

 

 

  Underdamped but stable. 
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11.16    
 
 

  





τ

+=
s

KsG
I

cc

1
1)(  

 

  
1167.0

3.1

1)60/10(
)(

+
−=

+
=

ss

K
sG v

v  

 

  
sAs

sG p 4.22

11
)( −=−=  since   

ft

gal
4.22ft3 2 ==A  

 
  4)( == mm KsG  

 
  Characteristic equation is 
 

  





τ

++
s

K
I

c

1
11 0)4(

4.22

1

1167.0

3.1 =




 −








+
−

ss
 

 
  0)2.5()2.5()4.22()73.3( 23 =+τ+τ+τ cIcII KsKss  

 
  The Routh Array is 
 
   Iτ73.3      IcK τ2.5  

 
   Iτ4.22      cK2.5  

 
   cIc KK 867.02.5 −τ  

   
   cK2.5  

  
  For stable system, 
   0>τ I  , 0867.02.5 >−τ cIc KK  0>cK  

 
  That is, 
 
   0>cK  

   min167.0>τ I  
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11.17    
 
  

  
)(

)(

)110(

51
)(

2 sD

sN

ss

s
KsG

I

I
cOL =





+





τ

+τ
=  

  
  0)1(5)120100()()( 2 =+τ+++τ=+ sKssssNsD IcI  

 
           05)51(20100 23 =+τ++τ+τ= cIcII KsKss  

 
a) Analyze characteristic equation for necessary and sufficient conditions 

 
Necessary conditions: 
 
 05 >cK       →      0>cK  

 

 0)51( >τ+ IcK    →      0>τ I  and        
5

1−>cK  

 
Sufficient conditions obtained from Routh array 
 

Iτ100      IcK τ+ )51(  

 
   Iτ20      cK5  

 

   
I

cIcI KK

τ
τ−+τ

20

500)51(20 2

 

   
   cK5  

 
Then, 
 

0500)51(20 2 >τ−+τ cIcI KK  

ccI KK 25)51( >+τ         or          
c

c
I K

K

51

25

+
>τ  

 
b) Sufficient condition is appropriate. Plot is shown below. 
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0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

K
c

τ  I

 Stability region

 
c) Find Iτ    as   ∞→cK  

 

 5
5/1

25
lim

51

25
lim =








+

=







+ ∞→∞→

c
Kc

c

c

Kc KK

K
 

 
∴     5>τ I   guarantees stability for any value of Kc. Appelpolscher is 
wrong yet again. 
 

 
 
11.18    
 
  
  cc KsG =)(  

  
1

)(
+τ

=
s

K
sG

V

V
V  

  
ma

lbm/sec
106.0

4122

6.0

12

=
−

==
=p

s
v dp

dw
K  

  sec205 =τ v  sec4=τ v  

  
110

5.2
)(

+
=

−

s

e
sG

s

p  

  
FF

KsG mm ��

ma
4.0

)120160(

ma)420(
)( =

−
−==  

 
  Characteristic equation is 
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  ( ) 04.0
110

5.2

14

106.0
)(1 =





+








+
+

−

s

e

s
K

s

c      (1) 

 
a) Substituting s=jω in (1) and using Euler's identity 

 

e
-jω

=cosω – j sin ω 
gives 

 

 -40ω2  
+14jω  + 1 +  0.106 Kc (cosω – jsinω)=0 

Thus 

 -40ω2  
+ 1 +  0.106 Kc cosω = 0    (2) 

  

and       14ω - 0.106Kc sinω =0     (3) 

 

From (2) and (3), 

 
140

14
tan

2 −ω
ω=ω       (4) 

 

Solving (4),  ω = 0.579  by trial and error. 

 

Substituting for ω in (3) gives 

 

 Kc = 139.7 = Kcu 

 

Frequency of oscillation is 0.579 rad/sec 

 

b) Substituting the Pade approximation 

 

s

s
e s

5.01

5.01

+
−≈−  

 

into (1) gives 

 

0)106.01()053.05.14(4720 23 =++−++ cc KsKss  

  

  The Routh Array is 

 

20 14.5 –0.053 Kc 

 

47 1+ 0.106 Kc 

 

14.07 – 0.098 Kc 

 

1 +  0.106 Kc 
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  For stability, 
 
   0098.007.14 >− cK   or   Kc < 143.4 

 
  and 0106.01 >+ cK   or   Kc > -9.4 

 
Therefore, the maximum gain, Kcu = 143.4, is a satisfactory approximation 
of the true value of 139.7 in (a) above. 

 
 
 
11.19    
 
 

a) 
)12)(14)(125(

)51(4
)(

+++
−=

sss

s
sG  

 

cc KsG =)(  

 
0)51(4)12)(14)(125()()( =−++++=+ sKssssNsD c  

 
 129100 2 ++ ss  
 12 +s  
 sss 258200 23 ++  
  129100 2 ++ ss  
 

0204131158200 23 =−++++ sKKsss cc  

041)2031(158200 23 =++−++ cc KsKss  

 
  Routh array: 
 

200 31-20 Kc 
 
158 1+4 Kc 
 
158(31-20Kc)-200(1+4Kc)  4898 –3160Kc –200 –800Kc 

    =  

158 158 

 

1+ 4 Kc  

     

∴    4698 –3960 Kc > 0   or          Kc < 1.2 
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b) 04)12)(14)(125( =++++ cKsss  

 
Routh array: 
 

0)41(31158200 23 =++++ cKsss  

 
200 31 

 
158  1 + 4 Kc 
 
158 (31) − 200(1+4Kc)   =  4898 –200 –800Kc 

 

1+ 4 Kc 

 

∴    4698 –800 Kc > 0           or         Kc < 5.87 

 

 

c) Because Kc can be much higher without the RHP zero present, the process 

can be made to respond faster. 
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  The characteristic equation is 

 

   0
110

5.0
1

3

=
+

+
−

s

eK s
c       (1) 

 

a) Using the Pade approximation 

 

s

s
e s

)2/3(1

)2/3(13

+
−≈−  

in (1) gives 

 

0)5.01()75.05.11(15 2 =++−+ cc KsKs  

 

For stability, 

 

 075.05.11 >− cK  or    33.15<cK  

 

and      05.01 >+ cK   or    2−>cK  
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Therefore  33.152 <<− cK  

 
b) Substituting s = jω in (1) and using Euler's identity. 

 

)3sin()3cos(3 ω−ω=ω− je j  

 

gives 

 

 [ ] 0)3sin()3cos(5.0110 =ω−ω++ω jKj c  

 

Then, 

 

 0)3cos(5.01 =ω+ cK       (2) 

 

and      0)3sin(5.010 =ω−ω cK      (3) 

 

 

  From (3), one solution is ω = 0,  which gives Kc = -2 

 

  Thus, for stable operation Kc > -2 

 

  From (2) and (3) 

 

   tan(3ω) = -10ω 

 

Eq. 4 has infinite number of solutions. The solution for the range π/2 < 3ω 

< 3π/2 is found by trial and error to be ω = 0.5805. 

 

  Then from Eq. 2, Kc = 11.78 

 

The other solutions for the range 3ω > 3π/2 occur at values of ω for which 

cos(3ω) is smaller than cos(3×5.805). Thus, for all other solutions of ω, 

Eq. 2 gives values of Kc that are larger than 11.78. Hence, stability is 

ensured when 

 

        -2 < Kc < 11.78 
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11.21    
 
 
 

a) To approximate GOL(s) by a FOPTD model, the Skogestad approximation 
technique in Chapter 6 is used. 
 
Initially, 
 

)12)(13)(15)(160(

3

)12)(13)(15)(160(

3
)(

2)2.03.05.1(

++++
=

++++
=

−++−

ssss

eK

ssss

eK
sG

s
c

s
c

OL  

 
Skogestad approximation method to obtain a 1st -order model: 
 
 Time constant ≈ 60 + (5/2) 
 
 Time delay ≈ 2 +(5/2) + 3 + 2 =9.5 
 
Then  
 

 
15.62

3
)(

5.9

+
≈

−

s

eK
sG

s
c

OL  

 
  

b) The only way to apply the Routh method to a FOPTD transfer function is 
to approximate the delay term. 

 

175.4

175.45.9

+
+−≈−

s

s
e s   (1st order Pade-approximation) 

 
Then 
 

 
)175.4)(15.62(

)175.4(3

)(

)(
)(

++
+−

≈≈
ss

sK

sD

sN
sG c

OL  

 
The characteristic equation is: 
 
 )175.4(3)175.4)(15.62()()( +−+++=+ sKsssNsD c  

 
033.1413.67297 2 =+−++ cc KsKss  

 
0)31()3.143.67(297 2 =++−+ cc KsKs  
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  Necessary conditions: 
 
         03.143.67 >− cK   031 >+ cK   

      3.673.14 −>− cK    13 −>cK  

       71.4<cK    3/1−>cK  

 
Range of stability:    71.43/1 <<− cK  

 
c) Conditional stability occurs when 4.71c cuK K= =  

 
With this value the characteristic equation is: 

 
0)71.431()71.43.143.67(297 2 =×++×−+ ss  

 
013.15297 2 =+s  

 

297

13.152 −=s    

 
  We can find ω by substituting jω → s 
 
   226.0=ω  at the maximum gain. 
 


