Chapter 11
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11.2

G.(9) = Kc§+iﬁ
T,s

The closed-loop transfer function for set-point changesis given by Eq. 11-

36 with K, replaced by K%+i%
1,S

’ KCK"K"K’"%-F]-E(L
H'(s) _ T,s(ts+])
H, (s

»(9) 1+ K K K K, s 11

T,s(ts+1)

H'(s) _  (ts+)
Ho(s) T1,8° +20,1,5+1

where 3,13 are defined in Egs. 11-62, 11-63 , K, = R = 1.0 min/ft*
andt=RA=3.0min
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. | |
Ko = KKK K, = (@02 MY oMY 7PS L 56
psi ft* m ftQoO

> _TT, _(3min)(3min)
KoL 1.36

2(3T3= g Ko, | = 2'36><3:5.21min
H K, 1.36

H'(s) _ 3s+1 1
Ho(s) (3.0s+1)+(221s+1) 221s+1

=6.62 min?

3

. _(3-2 _1
For Hg(s) = . s
h!(t) :1_e—t/2..21

t =-2.21In[1-h'(t)]
h() =25ft h'(t)=05ft t=1.53min
h(t)=3.0ft h'(t)=1.0ft t - o
Therefore,

h(t =1.53min) = 2.5ft

h(t — o) =3.0ft
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11.3

b)

G.(s) =K, =5 maima
Assumet,=0, 1,=0, andK; =1, inFig1l1.7.

Offset = T_ () —T'(0) =5'F -4.14'F =0.86'F

o KKKk, R B
T'(s) _ qis+10
5 14k kk kB[

Ts+10

Using the standard current range of 4-20 ma,

_20ma-4ma

. =0.32malF
50 F

Vv

7.20K,
S(5s+1+1.440K )

T'(s) =

7.20K,
(1+1.440K ,)

T'() = IirgsT’(s) =
T'(0) =4.14°F K, =3.34'F/psi
FromFig. 11-7,since T =0

P/(0)K,K, =T'() , P/(®0) =1.03 psi

and PKK,+TK, =T , P=374ps

P(®) =R —PR/(«) =4.77 psi

11-3
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114

a)
C’y(s)
24; Gd
Ib sol
fe
C'3p(S)___ C'5(s)__E(s) P'(s) P’(s) Q'y(s)
- K, |— G, G, — G, - G,
Ibf;ol ma ma ma psi USGPM
C’.(s) C's(s)
ma G’" Ib sol
ft3
b) G, (s) =K, e assuming Tm =10
G.(9) = (20-4)ma N N ma : 2s
_ . bsol Ib sol/ft
9-3 i3
t
O
T,S
G (s) =K, =0.3psi/ma
G,(s) =K, = (10-20) USQPM 167 USG!DM
(12-6) ps psi
Overal material balance for the tank,
USgallons], dh
A4A8l———[A—=0q,+q, -C,+/h 1
4B A =g+, ~C,h &)
Component balance for the solute,
7481 A% = g + a0, - (€ Ve, @)

Linearizing (1) and (2) gives
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7.481 A% =q, - <, @ ©)

Jh
v  ~de, ., _HC, H, =l
7'481A%3E+hd_%§: C,0, + 0,C, —%%% —(Cvx/ﬁ)c3

Subtracting (3) times €, from the above equation gives
7.481 Aﬁ% =(C,-GC,) g, +T,C, — (Cv x/ﬁ)ce,

Taking Laplace transform and rearranging gives

] K]_ ] K2 ]
= +
Cy(9 = Q%O+ Ci(9)
where
_C,-C, _ b sol/ft®
K,=22=0.
c,vh USGPM
_ 9 _
K, = —=0.6
2 Cv\/ﬁ
'[:MSCﬂ:lSmin

since A =mD?/4=12.6ft* , and

Therefore,

0.08

G =
(9 155 +1

0.6

Ga(9) = 155 +1
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115

b)

The closed-loop responses for disturbance changes and for setpoint
changes can be obtained using block diagram algebra for the block
diagram in part (a). Therefore, these responses will change only if any of
the transfer functionsin the blocks of the diagram change.

I C,changes. Then block transfer function G (s)changes

due to K;. Hence G(s) does need to be changed, and
retuning is required.

I. Km changes. Block transfer functions do change. Hence
G¢(s) needs to be adjusted to compensate for changes in
block transfer functions. The PI controller should be
retuned.

iii. Kmremains unchanged. No block transfer function changes.
The controller does not need to be retuned.

One example of a negative gain process that we have seen is the liquid
level process with the outlet stream flow rate chosen as the manipul ated
variable

—————— P~ C
A ( )
A\

@

With an "air-to-open” vave, w increases if p increases. However, h
decreases as W increases. Thus K, <0 since Ah/Aw is negative.

KKy must be positive. If Ky is negative, so is K. See (c) below.
If h decreases, p must also decrease. Thisisadirect acting controller

whose gainis negative [ p'(t) = K (r'(t) —h'(t) ]
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11.6

b)

For proportional controller, G,(s) = K,

Assume that the level transmitter and the control valve have negligible
dynamics. Then,

Gn(s) =K,

G,(s) =K,

The block diagram for this control system is the same as in Fig.11.8.
Hence Egs. 11-26 and 11-29 can be used for closed-loop responses to
setpoint and load changes, respectively.

The transfer functions G, (s) and G,(s) are as given in Egs. 11-66 and
11-67, respectively.

Substituting for G¢, Gm, Gy, and G, into Eq. 11-26 gives

K, KK, 0
0

Y _ AsO _ 1
Yo 1k L, ™t
O As[
where 7 = —— 2 1)
KCKVKm

For astep change in the setpoint, Y, (s) =M /s

L _ . M /sO_
Y(t - o) = LIIT()]SY(S) = ISIITO]SEIS—+1E_ M

Off%t:Ysp(t - 00)_Y(t —>0°):M -M :O

Substituting for G¢, Gm, Gy, Gp , and Gy into (11-29) gives

1 -1
vo. Bl Bk

D(S) 4, KCKv@iHﬂn ~ s+l
0 Ash

where T isgiven by Eq. 1.
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For a step change in the disturbance, D(s) =M /s

Y(t - o) =limsy(s) = limso /KK Kn) D~ M
s-0 =00 s(ts+1) O KKK,

-M
Offset = Y_ (t - -Y(t - =0- Zz0
R e

Hence, offset is not eliminated for a step change in disturbance.

Using block diagram algebra

Y=G,D+G,U

U=Glv, -(y-Gu

p

From (2), u=—>__°_

Substituting for U in Eq. 1
h+G.(G, -G, =6,0-G.G,)D+G,G.Y,
Therefore,

Y G,G,
Yo 1+G.(G,-G,)

and
Y _ G,(1-GG,)

D 1+G,(G,-G,)

11-8
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The available information can be translated as follows
1. Theoutlets of both the tanks have flow rate qo at all times.
2. T,(5)=0

3. Since an energy balance would indicate a first-order transfer function
between T, and Qg

T (t) - 1_e‘t/T1 or E :1—6_12”1 , 11 =10 min
T'(0) S

Therefore
T.(s) _3F/(-0.75gpm) __ 4
Q,(9) 10s+1 10s+1

T:(s) _ (6-3) F/(-0.75gpm) _ _ 2.67 for Ty(9)=0
Q,(9) r,s+1 r,s+1

T(s) _ (78-70)F/12-10)V _ 4
V,(9) 10s+1 10s+1

T,(9) _(90-85"F/(12-10)V _ 25
V,(s) 10s+1 10s+1

5. 51, =50 min or T, =10 min

Sinceinlet and outlet flow rates for tank 2 are g

To(9) _ G/ _ 1
T,(s) Tt1,s+1 10.0s+1

Va(8)
To(9)

_ 300
7. Tz(t)—T1§ 60@ T,(t - 0.5)

=0.15
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Using these transfer functions, the block diagrams are as follows.

a)
Qo
y
1
\
V1 -2.67
4 Tl ol E05s T2 0’%
10s+1 S
T3Sp V3sp V2 1 T3
— 015 |—» G 25 (X) -
c S 10s+1
V3
0.15
b)
V2
™ 25
Qo
»-2.67
T3Sp V3sp '|'1 T
—— 015 G 4 > o055
z 10s+1 10s+1
V3
0.15
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The control configuration in part @) will provide the better control. Asis
evident from the block diagrams above, the feedback loop contains, in
addition to G, only a first-order process in part @), but a second-order-
plus-time-delay process in part b). Hence the controlled variable responds
faster to changes in the manipulated variable for part a).

The given block diagram is equivalent to

G >4 G

c

G*(1-e)

C

1+G.G (1-e™®)

In the outer loop, we have

1+G.G
Substitute for G,
G,G

G.G
1+G,G" (1-e™®)

ol <

1+

v _ G,6l+GG (1-e™))

D 1+G,G (1-e%)+G.G
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11.10

b)

Derive CLTF:

Y =Y, +Y, =G,Z +G,P

Y =G,(D+Y,)+G,K_E

Y =G,D+G,G K _E+G,K.E

Y =G,D +(G,GK, +G,K_)E E=-K,Y
Y =G,D-K, (GG, +G,)K .Y

G,
1+ Ko (GG, + G,)K,,

Y
D

Characteristic Equation:

1+K, (GG, +G,)K,, =0

05 4 O
1+ K + =0
°H-1 2s+1H

[B(2s+1) +4(s-1) U _
c[d = 0
0 (s-D(2s+) [

(s-1)(2s+1) + K [5(2s+1) +4(s-1)]=0
25 —s—1+K_(10s+5+4s-4)=0

2s* + (14K, -Ds+ (K, -1) =0

Necessary conditions: K, >1/14 and K_ >1

For a2 order characteristic equation, these conditions are also sufficient.
Therefore, K_ >1 for closed-loop stability.
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11.11

a)

CL'(s)
Kg/m?3
Cals) _Cyls) E P__P/ Q' C'(s)
— K, _’("g)_' Gp, Ke 1 G, " G, "
Kg/m? ma "~ ma ma psig m3/min
> GD
C’ (s) (oa c’
G G
ma - Kg/m?3 n Kg/m?3

Transfer Line:
Volume of transfer line= 11/4 (0.5 m)?(20m)= 3.93 m*

Nominal flow rateintheline= @, +g- =7.5m*/min

3
Timedelay intheline= _398m” =0.52min

7.5 m3/min

GTL (S) = e—0.525

Composition Transmitter:

™~ (200-0) kgm® - kg/m’®

G, (s =K (20-4) ma ~008 ma

Controller

From the ideal controller in Eq. 8.14

P9 = KCE+T—1S%(s) FK T8G9 -C(9

In the above equation, set 6;3 (s) =0 in order to get the derivative on the
process output only. Then,
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Gp () = Kc%"'iﬁ
T,

Gy (s) =-K, 1,5

with K¢ >0 as the controller should be reverse-acting, since P(t) should
increase when C,(t) decreases.

I/P transducer

=273 PSG _ 75PS0
(20-4) ma ma

Control valve

K
G,(s)=—"
/() 1,5+1
5Tv =1 v L= 0.2 min
_dq, - 3
K, = e =0.03(1/12)(In20)(20) *
Vip,=p,

p-3

g, =0.5=0.17 +0.03(20) ©

p3

0.03(20) 2 =05-0.17=0.33

3 .
K, = (1/12)(In20)(0.33) = 0.082 m /mun
psig
0.2s+1
Process

Assume cp is constant for pure A. Material balance for A:

dc - —
VE = 0aCa T 0:Cr — (a5 +Te)C D
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11.12

Linearizing and writing in deviation variable form

I

dC —_ ] — I — — I =
VE =Ca0a T Qe Ce _(qA +QF)C —CQ,
Taking Laplace transform

[Vs+ (@, +:)IC'(8) = (€4 —T)Q4(S) +TrCr (9)

From Eq. 1 at steady state, dc/dt =0,

C = (TaCx +T:C¢ ) /(T4 + G ) =100 kg/m®
Substituting numerical valuesin Eg. 2,
[5s+7.5]C'(s) = 700Q), (s) + 7CL (s)
[0.67s+1]C'(s) = 93.3Q,(s) + 0.93C_ (s)

93.3

0.67s+1
0.93

0.67s+1

G,(s) =

Gy (s) =

The stability limits are obtained from the characteristic Eg. 11-83. Hence
If an instrumentation change affects this equation, then the stability limits

will change and vice-versa.

The transmitter gain, Ky, changes as the span changes. Thus Gy(S)
changes and the characteristic equation is affected. Stability limits would

be expected to change.

The zero on the transmitter does not affect its gain Kp,. Hence Gp(S)
remains unchanged and stability limits do not change.

Changing the control valve trim changes G,(s). This affects the
characteristic equation and the stability limits would be expected to

change as aresult.

11-15
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11.13

—_— KCK
A GO e
b) G, (5) = K.K(t,s+1)
i T,5(ts+1)(s+1)
For @)

D(s) + N(s) = (ts+1)(s+1) + K K = 18* + (T +)s+1+ K K
Stability requirements:

1+K.K, >0 o w>KK, >-1

For b)

D(s)+ N(s) =1, (ts+D)(s+1) + K_K(t,s+1)

=1, 187+ 7, (T+D)s* + 1, 1+ K K )s+ K K

Necessary condition: K _K >0
Sufficient conditions (Routh array):

1T T, (1+K.K)

T,(1+) K.K

c™p

T2 (T+DA+ KK ) -1, TK K,
T,(1+1)

KK

c'tp
Additiona conditionis:

T (T+)A+ K K))-1(K.K,)>0

(since 1, and tare both positive)
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T (T+)+ 1, (T+DK K, —TK K >0
[Tl(T+1)—T]KCKp >-1,(1+)
Note that RHS is negative for al positive T, and t

(O RHS isaways negative)

Case 1.
L T O
If T,(t+)-1t>0 e, T >—
| ( ) % | 1 +1E
- +1) O
then KcKp>0> T (t+]) 0
(t+D) -1
In other words, this condition is less restrictive than KK, >0 and doesn't
apply.
Case 2:
O T O
If t1(t+)-1t<0 e, 17 <—
| ( ) % | I +1E
0 -r(r+1) 0
then KKp< #D
O n{+)-7Q
In other words, there would be an upper limit on KcKp so the
controller gain is bounded on both sides
— + l
0 < KKy< 0D
T, (t+)-1
c) Note that, in either case, the addition of the integral mode decreases the

range of stable values of K.
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11.14

From the block diagram, the characteristic equation is obtained as

S0 0B

1+K O [s+3[ M1 0O_

§+ ©05H-% 15&“0 g
[s+3

that is,

02 M2 m1 O

g sHE 1108

Simplifying,

s’ +14s” +35s+ (4K, —50) =0

The Routh Array is
1 35
14 4K-50
490 - (4K, —50)

14
4K - 50

For the system to be stable,

490- (4K, ~50) _

or K.<135
14

and 4K, -50>0 or Kc>12.5

Therefore 12.5 <K.< 135
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11.15

K K
a) Y(S) _ 1-18 _ KCK — KCK/(1+ KCK)
Yo(9) KK 1-ts+KK T .
1-1s 1+K_K
. T
For stability - >0
1+ K K

Since T is positive, the denominator must be negative, i.e.,
1+K K <0
K.K<-1
K. <-1/K

K.K
1+K K

Note that Ke =

b) If K.K<-1and 1+K_K isnegative,

then CL gainispositive. [ it hasthe proper sign.

C) K=10 and T=20

andwewant - =10
1+ K K
or -20=10+ (10)(10)K
-30=100K,
K. =-03

(03010 _-3_,.
1+(-0.3)(10) -2

0 Offset = +1 — 1.5 = — 50% (Note this result implies overshoot)
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d)

K.K
Y(s) _ (@-t9)(t,s+D) _ K.K
Ysp(s)_1+ K K T (1-Ts)(T,5+]) +K K
@-t9)(t,s+)

K.K
-1,8" +(1,, —T)s+1+K_K

K.K/1+K_K
= HILKK) (standard form)
w, o, T.-T
- S s+1
1+K K~ 1+K.K
For stability,
(D) ——m >0 @2 -2 'so
1+ K K 1+ K K

From (1) Since 1+K.K <0

K.K<-1
(<1
K

From (2) Since 1+K_K <0
T,-1<0
-1<-T1,
T>71,
For K=10 , t1=20, K.;=-03 , tT=5

Y(s) _ 15 _ 15
Yols) _(00O) ., (5-20)  , 50s®+25s+1
1-3 @-3
Underdamped but stable.
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11.16

GJ$:m§fJEE
T,s

K . -13

G,(s) = . =
(10/60)s+1 0.167s+1
G,(=-—=-_1 snce A=3ft? =224%
As 22.4s ft
Gu(9) =K,y =4

Characteristic equation is

1+Kc%+iEH -13 1 -1 @4):0

T,S[0.167s+1[1R2.4s

(3.731,)s° +(22.41,)s? +(5.2K T, )s+(5.2K,) =0
The Routh Array is

3.731, 5.2K.T,

22.41, 5.2K

5.2K,T, —0.867K,

5.2K

C

For stable system,
T, >0, 52K T, —-0.867K_, >0

That is,

K.>0
T, >0.167min

11-21
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11.17

Go (9 =K HT'SH%( > E—N(S)

H1,s H{10s+12H D(s)
D(s) + N(s) = 1,5(100s” + 20s+1) +5K (1,5+1) =0

=100t,s® + 20t,s* + (1+5K_)T,s+5K_ =0

a) Analyze characteristic equation for necessary and sufficient conditions
Necessary conditions:
5K, >0 - K,>0
1+5K )T, >0 - 1,50 ad K, >—%
Sufficient conditions obtained from Routh array
100r, (1+5K,)T,
20T, 5K,
20t,?(1+5K ) — 5001, K
20T,
5K
Then,
20t,?(1+5K_) —500t,K_ >0
T,(1+5K,) > 25K, or T, > 1i5:ch
b) Sufficient condition is appropriate. Plot is shown below.
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DZSD

K'lfrlg 5K D_ K‘;mg/K

O 1, >5 guarantees stability for any value of K. Appelpolscher is

wrong yet again.
G.(s) =
s) =
G, (9 = Tvs+1
= dw _ 06 _ O.106Ibm/sec
dp |, 2v12-4 ma
51, =20sec T, =4seC
25e°
G, ()=
() 10s+1
Gm(s) = Km :M = 04@
(160-120)"F F

Characteristic equation is
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b)

1+ (Kc)Ep'l% %‘E’e_ %0.4) =0
MAs+110s+1

Substituting s=jwin (1) and using Euler's identity

e?’®=cosw—j sin w

gives

406 +14jw + 1 + 0.106 K¢ (cosw — jsinw)=0

Thus

406 + 1 + 0.106 Kccosw= 0

and 14w- 0.106K; sinw =0

From (2) and (3),
14w

tanw:—z
40w -1

Solving (4), w=0.579 by trial and error.

Substituting for win (3) gives

KC= 139.7 = Kcu

Frequency of oscillation is

0.579 rad/sec

Substituting the Pade approximation

s _1-0.5s

e =
1+0.5s

into (1) gives

20s° + 475 + (14.5-0.053K )s+ (1+0.106K_) =0

The Routh Array is
20
47
14.07 - 0.098 K.

1+ 0.106 K¢

14.5 -0.053 K.

1+ 0.106 K¢

11-24
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11.19

For stability,
14.07-0.098K . >0 or K:;<1434
and 1+0.106K_>0 or Kc>-94

Therefore, the maximum gain, K¢, = 143.4, is a satisfactory approximation
of the true value of 139.7 in (a) above.

G(s) = 4(1-5s)
(25s+1(4s+1)(2s+1])

G (s) =K,
D(s) + N(s) = (25s+1)(4s+1(2s+1) +4K . (1-5s) =0

100s? +29s+1
2s+1

200s® +58s” + 2s
100s? +29s+1

200s® +158s” +31s+1+4K_-20K_s=0
200s® +158s” + (31— 20K )s+1+4K_=0

Routh array:
200 31-20 K¢
158 1+4 K.
158(31-20K)-200(1+4K,) 4898 —3160K —200 —800K
158 i 158
1+ 4 K¢
0 4698 -3960 K> 0 or Ke< 1.2
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b)

(25s+1D(4s+1)(2s+D)+4K_=0

Routh array:

200s° +158s2 +31s+ (1+4K_) =0

200 31

158 1+4K.

158 (31) — 200(1+4K) = 4898 —200 800K
1+4 K

U 4698 -800 Kc>0 or Kc<5.87

Because K can be much higher without the RHP zero present, the process
can be made to respond faster.

The characteristic equation is

-3s
1+ 05Ke® "
10s+1

Using the Pade approximation

6% = 1-(3/2)s
1+(3/2)s
in (1) gives
15s” + (11.5-0.75K )s+(1+0.5K ) =0
For stability,

115-0.75K, >0 or K, <1533

and 1+0.5K,>0 or K. >-2
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b)

Therefore —2< K, <15.33
Substituting s=jwin (1) and using Euler's identity.

€% = cos(3w) - j sin(3w)

gives

10jw+1+0.5K [cos(3w) - j sin(3w)] = 0
Then,

1+0.5K cos(3w) =0 (2)
and  10w-0.5K_ sin(3w) =0 (3)

From (3), one solution is w= 0, which gives K¢ =-2
Thus, for stable operation K¢> -2
From (2) and (3)

tan(3w) = -10w

Eq. 4 has infinite number of solutions. The solution for the range V2 < 3w

< 3172 is found by trial and error to be w= 0.5805.

Then from Eq. 2, K¢ =11.78

The other solutions for the range 3w > 3102 occur at values of w for which
cos(3w) is smaller than cos(3%5.805). Thus, for all other solutions of w,
Eq. 2 gives values of K. that are larger than 11.78. Hence, stability is

ensured when

2<Ke<11.78
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11.21

b)

To approximate Goy (S) by a FOPTD model, the Skogestad approximation
technique in Chapter 6 is used.

Initialy,

3K . e—(1.5+o.3+o.2)s 3Kc e—zs
(60s+1(5s+1(3s+1(2s+1) - (60s+1(5s+1(3s+1(2s+))

Go. (9) =

Skogestad approximation method to obtain a 1% -order mode!:
Time constant = 60 + (5/2)
Timedelay =2 +(5/2) + 3+2=9.5

Then

3K e

GoL(5) = —62 Bc+1l

The only way to apply the Routh method to a FOPTD transfer function is
to approximate the delay term.

goss . ~ATBS+1

1% order Pade-approximation
475s+1 ( P )

Then

N(s) _ 3K (—4.75s+1)
D(s) (62.55+1)(4.755+1)

Go. (9) =

The characteristic equation is:
D(s) + N(s) = (62.5s+1)(4.75s+1) + 3K (—4.75s +1)
297s” +67.3s+1-14.3K _s+3K_=0

297s” +(67.3-14.3K_)s+(1+3K_) =0
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Necessary conditions:

67.3-14.3K, >0 1+3K, >0
-14.3K, >-67.3 3K, >-1
K, <471 K.,>-1/3

Range of stability: -1/3<K_<4.71
Conditional stability occurswhen K, =K_ =4.71
With this value the characteristic equation is:
2975 +(67.3-14.3x4.71)s+ (1+3x4.71) =0
297s* +15.13=0

o - 1513
297

We can find w by substituting jo - s

w=0.226 at the maximum gain.
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