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Chapter 12 
 
 
 
 
 12.1 
 

 
For K = 1.0, τ1=10, τ2=5, the PID controller settings are obtained using 
Eq.(12-14): 
 

1 2τ τ1 15
τ τc

c c
K

K
+

= =       ,     τI = τ1+τ2=15       , 
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1 2

τ ττ 3.33
τ τD = =
+

 

 
  The characteristic equation for the closed-loop system is 
 

   1 1.0 α1 1 τ 0
τ (10 1)(5 1)c D

I
K s

s s s
    +

+ + + =    + +   
 

 
  Substituting for Kc, τI, and τD, and simplifying gives 
 
   τ (1 α) 0cs + + =  
 
  Hence, for the closed-loop system to be stable, 
  
   τc > 0   
 
  and     (1+α) > 0    or    α > −1. 
 

(a) Closed-loop system is stable for α > −1 
 

(b) Choose τc > 0 
 

(c) The choice of τc does not affect the robustness of the system to changes in 
α. For τc ≤0, the system is unstable regardless of the value of α. For τc > 0, 
the system is stable in the range α > −1 regardless of the value of τc. 
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 12.2 
 

   1.6(1 0.5 )
(3 1)v p m
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− −
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The process transfer function contains a zero at s = +2. Because the 
controller in the Direct Synthesis method contains the inverse of the 
process model, the controller will contain an unstable pole. Thus, Eqs. 
(12-4) and (12-5) give: 
 

 ( )
( )
3 11 1

τ 2τ 1 0.5c
c c

s
G

G s s
+

= = −
−

 

 
Modeling errors and the unstable controller pole at s = +2 would render 
the closed-loop system unstable. 
 
Modify the specification of Y/Ysp such that Gc will not contain the 
offending (1-0.5s) factor in the denominator. The obvious choice is 
 

 1 0.5
τ 1sp cd

Y s
Y s

  −
=   + 

 

 
Then using Eq.(12-3b), 
 

 3 1
2τ 1c

c

sG +
= −

+
 

 
which is not physically realizable because it requires ideal derivative 
action. Modify Y/Ysp, 
 

 2
1 0.5
(τ 1)

  −
=   + sp cd

Y s
Y

 

 
Then Eq.(12-3b) gives 
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2τ 4τ 1
c

c c

sG
s
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  which is physically realizable. 
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 12.3 
 
 
   K = 2 ,   τ = 1,    θ = 0.2 
 

(a) Using Eq.(12-11) for τc = 0.2 
 

Kc = 1.25   ,  τI = 1 
 

(b) Using Eq.(12-11) for τc = 1.0 
 

Kc = 0.42   ,  τI = 1 
 

(c) From Table 12.3  for a disturbance change 
 

KKc = 0.859(θ/τ)-0.977   or     Kc = 2.07 
τ/τI = 0.674(θ/τ)-0.680     or     τI = 0.49 

 
(d) From Table 12.3 for a setpoint change 
 

KKc = 0.586(θ/τ)-0.916     or     Kc = 1.28 
τ/τI = 1.03 −0.165(θ/τ)  or     τI = 1.00 

 

(e) Conservative settings correspond to low values of Kc and high values of τI. 
Clearly, the Direct Synthesis method (τc = 1.0) of part (b) gives the most 
conservative settings; ITAE of part (c) gives the least conservative 
settings.  

 
(f) A comparison for a unit step disturbance is shown in Fig. S12.3. 
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  Fig S12.3.  Comparison of part (e) PI controllers for unit step disturbance. 
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12.4  
 
 
  The process model is, 
 

   
θ

( )
sKeG s

s

−
=        (1) 

 
  Approximate the time delay by Eq. 12-24b, 
 
   θ 1 θse s− = −        (2) 
 
  Substitute into (1): 
 

   (1 θ )( ) K sG s
s
−

=       (3) 

 
  Factoring (3) gives ( ) 1 θG s s+ = −      and       sKsG /)(~

=− . 
 

The DS and IMC design methods give identical controllers if, 
  

   fG
Y
Y

dsp
+=


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




 ~            (12-23) 

 
  For integrating process, f is specified by Eq. 12-32: 
 

   
0

θ
s

dGC
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+

=

= = −       (4) 

 

   2 2
(2τ ) 1 (2τ θ) 1

(τ 1) (τ 1)
c c

c c

C s sf
s s
− + + +

= =
+ +

    (5) 

 
  Substitute +G~  and f into (12-23): 
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sp d

Y s
Y

 
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2
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c
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  The Direct Synthesis design equation is: 
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  Substitute (3) and (6) into (12-3b): 
 

   
2

2
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c
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c
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  or  
 

   
[ ]2
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c
c
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ssG
K s s s

+ +
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  Rearranging, 
 

   2 2 2
(2τ θ) 1 (2τ θ) 11 1

τ 2τ θ θ (τ θ)
c c

c
c c c

s sG
Ks Kss

+ + + +
= =

+ + +
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  The standard PI controller can be written as 
 

   τ 1
τ
I

c c
I

sG K
s
+

=       (10) 

 
  Comparing (9) and (10) gives: 
 

   τ 2τ θI c= +        (11) 
 

   
( )2

1 1
τ τ θ

c

I c

K
K

=
+

      (12) 

 
  Substitute (11) into (12) and rearrange gives: 
 

   
( )2
2τ θ1

τ θ
c

c
c

K
K

+
=

+
      (13) 

 
Controller M in Table 12.1 has the PI controller settings of Eqs. (11) and 
(13). 
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 12.5 
 
 

Assume that the process can be modeled adequately by a first-order-plus- 
time-delay model as in Eq. 12-10.  Then using the given step response 
data, the model fitted graphically is shown in Fig. S12.5, 

Figure S12.5  Process data; first order model estimation. 
 
 
  This gives the following model parameters: 
 

  K = KIP Kv Kp Km = psi psi 16.9 12.0 mA0.75 0.9
mA psi 20 18 psi

   − 
     −     

= 1.65 

   θ = 1.7 min 
  
   θ + τ = 7.2 min    or     τ = 5.5 min 
 

(a) Because θ/τ is greater than 0.25, a conservative choice of τc = τ / 2  is 
used. Thus τc = 2.75 min. 

 
Settling θc = θ and using the approximation e-θs ≈ 1 -θs, Eq. 12-11 gives 

 

   1 τ 0.75
θ τc

c
K

K
= =

+
 , τI = τ = 5.5 min,  τD = 0 

 
 (b) From Table 12.3 for PID settings for set-point change, 

 
KKc = 0.965(θ/τ)-0.85                     or      Kc = 1.58 
τ/τI   = 0.796 − 0.1465 (θ/τ)   or      τI  = 7.33 min 
τD/τ  = 0.308 (θ/τ)0.929            or      τD = 0.57 min 
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(c) From Table 12.3 for PID settings for disturbance input, 
 

KKc = 1.357(θ/τ)-0.947     or     Kc = 2.50 
τ/τI   = 0.842 (θ/τ)-0.738  or     τI  =  2.75 min 
τD/τ  = 0.381 (θ/τ)0.995    or     τD = 0.65 min 

 
 
 
12.6 
 
 

Let G be the open-loop unstable process. First, stabilize the process by 
using proportional-only feedback control, as shown below. 

    
Then, 

  
GG
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where 
GK

GK
G

c

c

1

1

1+
=′  

Then Gc is designed using the Direct Synthesis approach for the stabilized, 
modified process G′ . 

 
 
 
12.7 
 
 

(a.i) The model reduction approach of Skogestad gives the following 
approximate model: 
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  Applying the controller settings of Table 12.5 (notice that τ1 ≥ 8θ) 
 
   Kc = 35.40 
   τI = 0.444 
   τD = 0.111 
  
 (a.ii) By using Simulink, the ultimate gain and ultimate period are found: 
 
   Kcu = 30.24   
   Pu = 0.565 
 
  From Table 12.6:  
 
   Kc = 0.45Kcu = 13.6 
   τI   =  2.2Pu =  1.24 
   τD  = Pu/6.3 = 0.089 
   
 (b)  
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  Figure S12.7. Closed-loop responses to a unit step change in a disturbance. 
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  From Eq.12-39: 

   
0

1( ) ( ) ( ) ( *) * τ
τ

t m
c sp m c D

I

dyp t p K by t y t K e t dt
dt

  = + − + −    
∫  
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  This control law can be implemented with Simulink as follows: 

 
 
Closed-loop responses are compared for b = 1, b = 0.7, b = 0.5 and  
b = 0.3: 
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                       Figure S12.8. Closed-loop responses for different values of b. 

 
As shown in Figure E12.8, as b increases, the set-point response becomes 
faster but exhibits more overshoot. The value of b = 0.5 seems to be a 
good choice. The disturbance response is independent of the value of b. 
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12.9   
 
   

In order to implement the series form using the standard Simulink form of 
PID control (the expanded form in Eq. 8-16), we first convert the series 
controller settings to the equivalent parallel settings. 

  
(a) From Table 12.2, the controller settings for series form are: 

 
τ1 0.971
τ
D

c c
I

K K
 ′
′= + = ′ 

 

 
τ τ τ 26.52I I D′ ′= + =  
 

τ ττ 2.753
τ τ

I D
D

I D

′ ′
= =

′ ′+
 

 
  By using Simulink, closed-loop responses are shown in Fig. S12.9: 

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

Time

y

Parallel form
Series form

 
 

      Figure S12.9. Closed-loop responses for parallel and series form. 
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The closed-loop responses to the set-point change are significantly 
different. On the other hand, the responses to the disturbance are slightly 
closer. 
 

(b) By changing the derivative term in the controller block, Simulink shows 
that the system becomes more oscillatory as τD increases. For the parallel 
form, system becomes unstable for τD ≥5.4; for the series form, system 
becomes unstable for τD ≥4.5. 

 
 
 
12.10  
 
 
  

(a) 

 
 
 
 

(b) Process and disturbance transfer functions: 
 
 

Overall material balance:  021 =−+ www     (1) 

Component material balance: 1 1 2 2 ρ dxw x w x wx V
dt

+ − =   (2) 

 
  
  Substituting (1) into (2) and introducing deviation variables: 
 

GC Gp-+
E ++GvKm

X'sp

Gm

Gd

X'P'

X'm

(mA) (mA)

X1'

(mA)

X'sp W'2
(Kg/min)(mA)
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   1 1 2 2 1 2 2 ρ dxw x w x w x w x w x V
dt
′

′ ′ ′ ′+ − − − =  

 
  Taking the Laplace transform, 
 
   1 1 2 2 1 2w X (s) (x x)W (s) (w w ρVs)X (s)′ ′ ′+ − = + +  
 
  Finally: 

   

2

2 1 2

2 1 2

( )( )
( ) ρ 1 τp

x x
x x w wX sG s

W s w w Vs s

−
′ − +

= = =
′ + + +

 

 

   

1

1 1 2

1 1 2

( )( )
( ) ρ 1 τd

w
w w wX sG s

X s w w Vs s
′ +

= = =
′ + + +

 

   

    where  
1 2

ρτ
+
V

w w
 

 
  Substituting numerical values: 
 

   
s

sGp 71.41
106.2)(

4

+
×

=
−

 

 

   
s

sGd 71.41
65.0)(

+
=  

 
  Composition measurement transfer function: 
 

   ss
m eesG −− =

−
= 32

5.0
420)(  

 
  Final control element transfer function: 
 

   
10833.0

5.187
10833.0

2.1/300
420
315)(

+
=

+
×

−
−

=
ss

sGv  

   
  Controller: 
 

    Let       == mpv GGGG
10833.0

5.187
+s s71.41

106.2 4

+
× −

se−32     
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  then  
)10833.0)(171.4(

56.1
++

=
−

ss
eG

s

 

 
For a process with a dominant time constant, τ τ / 3c dom=  is 
recommended.  
 
Hence τ 1.57.c =  From Table 12.1, 
 
 Kc = 1.92 
 τI = 4.71 
 

(c) By using Simulink, 
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                 Figure S12.10c. Closed-loop response for step disturbance. 
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(d) By using Simulink 
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         Figure S12.10d. Closed-loop response for a set-point change. 

 
The recommended value of τ 1.57c =  gives very good results. 

 
(e) Improved control can be obtained by adding derivative action: τ 0.4D = . 
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       Figure S12.10e. Closed-loop response by adding derivative action. 
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(e) For θ =3 min, the closed-loop response becomes unstable. It's well known 
that the presence of a large process time delay limits the performance of a 
conventional feedback control system. In fact, a time delay adds phase lag 
to the feedback loop which adversely affects closed-loop stability (cf. Ch. 
14). Consequently, the controller gain must be reduced below the value 
that could be used if smaller time delay were present. 
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                 Figure S12.10f. Closed-loop response for θ =3min. 
 

 
12.11   
 
 

The controller tuning is based on the characteristic equation for standard 
feedback control. 
 
 1 + GcGI/PGvGpGm = 0 
 
Thus, the PID controller will have to be retuned only if any of the transfer 
functions, GI/P, Gv, Gp or Gm, change. 

 
(a) Km changes. The controller may have to be retuned. 

 
(b) The zero does not affect Gm. Thus, the controller does not require retuning. 

 
(c) Kv changes. Retuning may be necessary. 

 
(d) Gp changes. Controller may have to be retuned. 
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12.12   
 
 

(a) Using Table 12.4, 
 

   0.14 0.28τ
θcK

K K
= +   

 

τI = 6.8θ0.33θ
10θ+τ

+  

 
(b) Comparing to the Z-N settings, the H-A settings give much smaller Kc and 

slightly smaller τI, and are therefore more conservative. 
  

(c) The Simulink responses for the two controllers are compared in  
Fig. S12.12. The controller settings are: 

 
H-A:                 Kc = 0.49 ,   τI =1.90 

   Cohen-Coon:   Kc = 1.39 ,   τI =1.98   
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 Fig. S12.12. Comparison of Häggland-Åström and Cohen-Coon 

 controller settings. 
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From Fig. S12.12, it is clear that the H-A parameters provide a better set-
point response, although they produce a more sluggish disturbance 
response. 
 
 

 
12.13   
 
 

From the solution to Exercise 12.5, the process reaction curve method 
yields 

   K = 1.65 
   θ = 1.7 min 
   τ = 5.5 min 
 

(a) Direct Synthesis method: 
 

From Table 12.1, Controller G: 
 

1 τ 1 5.5 0.94
τ θ 1.65 (5.5 / 3) 1.7c

c
K

K
= = =

+ +
 

 
 τI  = τ  = 5.5 min 
 

(b) Ziegler-Nichols settings: 
 

      
1 71 65( )

5 5 1

. s. eG s
. s

−
=

+
 

 
In order to find the stability limits, consider the characteristic equation 

  
1 + GcG = 0 

 

Substituting the Padé approximation, 1 0 85
1 0 85

s . se
. s

− −
≈

+
, gives: 

2
1 65 (1 0 85 )1 1
4 675 6 35 1

c
c

. K . sG G
. s . s

−
+ = +

+ +
 

or 
 4.675s2 + (6.35 –1.403Kc)s + 1 + 1.65Kc = 0 
 
Substitute s = jωu and Kc = Kcu, 
 

− 4.675 ωu
2 + j(6.35 − 1.403Kcu)ωu + 1 +1.65Kcu = 0 + j0 

 
Equating real and imaginary coefficients gives, 
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 (6.35 − 1.403Kcu)ωu = 0  ,  1+ 1.65Kcu − 4.675 ωu

2 = 0 
 
Ignoring ωu = 0,  Kcu = 4.526  and ωu = 1.346 rad/min. Thus, 
 

 2 4 67 minu
u

P .π
= =
ω

 

 
ThePI settings from Table 12.6 are: 
 

Kc τI (min) 
Ziegler-
Nichols 2.04 3.89 

 
 
The ultimate gain and ultimate period can also be obtained using 
Simulink. For this case, no Padé approximation is needed and the results 
are: 
 
 Kcu = 3.76 Pu = 5.9 min 
 
The PI settings from Table 12.6 are: 
 

Kc τI (min) 
Ziegler-
Nichols 1.69 4.92 

 
Compared to the Z-N settings, the Direct Synthesis settings result in 
smaller Kc and larger τI. Therefore, they are more conservative. 
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   2
5 1

s

v p m
eG G G
s

−
=

+
 

 
  To find stability limits, consider the characteristic equation: 
 

1 + GcGvGpGm = 0 
  or 

   2
2 (1 0.5 )

1 0
2.5 5.5 1

−
+ =

+ +
cK s

s s
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  Substituting a Padé approximation, 1 0.5
1 0.5

s se
s

− −
≈

+
, gives: 

 
   2.5s2 + (5.5 –Kc)s + 1 + 2Kc = 0 
 
  Substituting s = jωu and Kc = Kcu. 
 
   − 2.5 ωu

2 + j(5.5 − Kcu)ωu + 1 +2Kcu = 0 + j0 
 
  Equating real and imaginary coefficients, 
 
   (5.5 − Kcu)ωu = 0  ,  1+ 2Kcu − 2.5 ωu

2 = 0 
 
  Ignoring ωu= 0,  Kcu = 5.5  and ωu= 2.19. Thus, 
 

   2π 2.87
ωu

u
P = =  

 
  Controller settings (for the Padé approximation): 
 

Kc τI τD 

Ziegler-Nichols 3.30 1.43 0.36 

Tyreus-Luyben 2.48 6.31 0.46 
 
 

The ultimate gain and ultimate period could also be found using Simulink. 
For this approach, no Padé approximation is needed and: 
 

Ku = 4.26 Pu = 3.7  
  

  Controller settings (exact method): 
 

Kc τI τD 

Ziegler-Nichols 2.56 1.85 0.46 

Tyreus-Luyben 1.92 8.14 0.59 
 

 
The set-point responses of the closed-loop systems for these controller 
settings are shown in Fig. S12.14. 
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Figure S12.14. Closed-loop responses for a unit step change in the set point. 
 
 

12.15   
 
 

Eliminate the effect of the feedback control loop by opening the loop. That 
is, operate temporarily in open loop by switching the controller to the 
manual mode. This action provides a constant controller output signal. If 
oscillations persist, they must be due to external disturbances. If the 
oscillations vanish, they were caused by the feedback loop. 
 

 
 

12.16   
 
 

The sight glass observation confirms that the liquid level is actually rising. 
Since the controller output is saturated in response to the rising level, the 
controller is working properly. Thus, either the actual feed flow is higher 
than recorded, or the actual liquid flow is lower than recorded, or both. 
Because the flow transmitters consist of orifice plates and differential 
pressure transmitters, a plugged orifice plate could lead to a higher 
recorded flow. Thus, the liquid-flow-transmitter orifice plate would be the 
prime suspect. 
 


