
13-1 

��������	
�
 
 
 
 
13.1 
 

  
)()(

)(3
)(

32

1

ωω
ω

=ω=
jGjG

jG
jGAR  

 

         
14

13

1)2(

1)(3
2

2

2

2

+ωω

+ω=
+ωω

+ω−
=  

 
From the statement, we know the period P of the input sinusoid is 0.5 min 
and, thus, 
 

 rad/min4
5.0

22 π=π=π=ω
P

 

 
Substituting the numerical value of the frequency: 
 

 �24.0212.02
1644

1163ˆ
2

2

=×=×
+ππ

+π=×= AARA  

Thus the amplitude of the resulting temperature oscillation is 0.24 degrees. 
 
  

 
13.2 
 
 

First approximate the exponential term as the first two terms in a truncated 
Taylor series 
 

se s θ−≈θ− 1  
 
Then ω−=ω jjG 1)(  

and 222 1)(1 θω+=ωθ−+=termtwoAR  

 
  )(tan)(tan 11 ωθ−=ωθ−=φ −−

termtwo  
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For a first-order Pade approximation 
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from which we obtain 
 
 1=PadeAR  

 




 ωθ−=φ −

2
tan2 1

Pade  

Both approximations represent the original function well in the low 
frequency region. At higher frequencies, the Padé approximation matches 

the amplitude ratio of the time delay element exactly (ARPade = 1), while 

the two-term approximation introduces amplification (ARtwo term >1). For 

the phase angle, the high-frequency representations are: 

 

 �90−→φ termtwo   

 �180−→φPade  

 

Since the angle of ωθ− je is negative and becomes unbounded as ∞→ω , 

we see that the Pade representation also provides the better approximation 

to the time delay element's phase angle, matching φ of the pure time delay 

element to a higher frequency than the two-term representation. 
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  Nominal temperature F123
2

F119F127 �
��

=+=T  

   F4)F119F127(
2

1ˆ ��� =−=A  

  .,sec5.4=τ  rad/s189.0sec)60/8.1(2 =π=ω  

 

  Using Eq. 13-2 with K=1, 

 

   ( ) F25.51)5.4()189.0(41ˆ 2222 �=+=+τω= AA  

 

  Actual maximum air temperature = F25.128 �=+ AT  

  Actual minimum air temperature = F75.117 �=− AT  



13-3 

13.4 
 
 

  
12.0

1

)(

)(

+
=

′
′

ssT

sTm  

 
  )()12.0()( sTssT m′+=′  

 

   amplitude of T ′ =3.464 467.31)2.0( 2 =+ω  

 
   phase angle of T ′ = ϕ + tan-1(0.2ω) = ϕ + 0.04 
 

Since only the maximum error is required, set ϕ = 0 for the comparison of 
T ′  and mT ′ . Then 

 
Error = mT ′  − T ′ =3.464 sin (0.2t) – 3.467sin(0.2t + 0.04) 

         = 3.464 sin(0.2t) –3.467[sin(0.2t) cos 0.04 + cos(0.2t)sin 0.04] 

         = 0.000 sin(0.2t) − 0.1386 cos(0.2t) 
 

Since the maximum absolute value of cos(0.2t) is 1,  

 

maximum absolute error = 0.1386 
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c) 

 

Bode Diagram
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e) 

 

Bode Diagram
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13.6 
 
 

a) Multiply the AR in Eq. 13-41a  by 122 +τω a . Add to the value of ϕ in 

Eq. 13-41b the term  + )(tan 1
aωτ− . 

 

KjG =ω)( 222222 )4.0()1(1 ωτ+τω−+τω a  
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                 Figure S13.6.  Frequency responses for different ratios τa/τ 
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  Using MATLAB 
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            Figure S13.7.  Bode diagram of the third-order transfer function. 
 
 

The value of ω that yields a -180° phase angle and the value of AR at that 
frequency are: 

 
ω = 0.807 rad/sec   
AR = 0.202  
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  Using MATLAB, 
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        Figure S13.8.  Bode diagram  for G(s) and G(s) with Pade approximation. 
 
 
 
13.9 
 
  ω=2πf      where f is in cycles/min 
 
  For the standard thermocouple, using Eq. 13-20b  
 
   ϕ1 = -tan-1(ωτ1) = tan-1(0.15ω) 
 
  Phase difference ∆ϕ = ϕ1 – ϕ2 

 

  Thus, the phase angle for the unknown unit is 

 

   ϕ2 = ϕ1 − ∆ϕ 

 

  and the time constant for the unknown unit is 
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 τ2 = )tan(
1

2ϕ−
ω

 

 
using Eq. 13-20b . The results are tabulated below 
 

f ωωωω ϕϕϕϕ1 ∆∆∆∆ϕϕϕϕ ϕϕϕϕ2 ττττ2 
0.05 0.31 -2.7 4.5 -7.2 0.4023 
0.1 0.63 -5.4 8.7 -14.1 0.4000 
0.2 1.26 -10.7 16 -26.7 0.4004 
0.4 2.51 -26.6 24.5 -45.1 0.3995 
0.8 6.03 -37 26.5 -63.5 0.3992 
1 6.28 -43.3 25 -68.3 0.4001 
2 12.57 -62 16.7 -78.7 0.3984 
4 25.13 -75.1 9.2 -84.3 0.3988 

 
That the unknown unit is first order is indicated by the fact that ∆ϕ→0 as 
ω→∞, so that ϕ2→ϕ1→-90° and ϕ2→-90° for ω→∞ implies a first-order 
system. This is confirmed by the similar values of τ2 calculated for 
different values of ω, implying that a graph of tan(-ϕ2) versus ω is linear 
as expected for a first-order system. Then using linear regression or taking 
the average of above values, τ2 = 0.40 min. 
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  From the solution to Exercise 5-19, for the two-tank system 
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  and for the one-tank system 
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For a sinusoidal input ,sin)(1 tAtq i ω=′ the amplitudes of the heights and 

flow rates are 
  

 [ ] 14//ˆ 22
max +τω=′′ KAhhA     (1) 

 

 [ ] 14/1337.0ˆ 22 +τω=′ AqA      (2) 
 
for the one-tank system, and 
 

 [ ] 1//ˆ 22
max11 +τω=′′ KAhhA      (3) 

 

 [ ] 222
max22 )1(//ˆ +τω=′′ KAhhA     (4) 

 

 [ ] 222
2 )1(/1337.0ˆ +τω=′ AqA     (5) 

 
for the two-tank system. 
 
Comparing (1) and (3), for all ω 
 

 [ ] [ ]maxmax11 /ˆ/ˆ hhAhhA ′′≥′′  

 
Hence, for all ω, the first tank of the two-tank system will overflow for a 
smaller value of A than will the one-tank system. Thus, from the overflow 
consideration, the one-tank system is better for all ω. However, if A is 
small enough so that overflow is not a concern, the two-tank system will 
provide a smaller amplitude in the output flow for those values of ω that 
satisfy 
   

 [ ] [ ]qAqA ′≤′ ˆˆ
2  

 

or    
14

1337.0

)1(

1337.0
22222 +τω

≤
+τω

AA
 

 

or ω ≥ τ/2 = 1.07 
 
Therefore, the two-tank system provides better damping of a sinusoidal 
disturbance for ω  ≥ 1.07 if and only if  
 

 [ ] 1/ˆ
max11 ≤′′ hhA   , that is, 

01.0

132.1 22 +≤ ω
A  
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  Using Eqs. 13-48 , 13-20, and 13-24, 
 

   AR=
141100

12
22

22

+ω+ω

+τω a  

 
   φ = tan-1(ωτa) – tan

-1
(10ω) – tan

-1
(2ω)  

 

  The Bode plots shown below indicate that 

 

i) AR does not depend on the sign of the zero. 

ii) AR exhibits resonance for zeros close to origin. 

iii) All zeros lead to ultimate slope of –1 for AR. 

iv) A left-plane zero yields an ultimate φ  of -90°. 

v) A right-plane zero yields an ultimate φ  of -270°. 

vi) Left-plane zeros close to origin can give phase lead at low ω. 

vii) Left-plane zeros far from the origin lead to a greater lag (i.e., 

smaller phase angle) than the ultimate value. φu 90−= º with a left-

plane zero present. 
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      Figure S13.11.  Bode plot for each of the four cases of numerator dynamics. 
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a) From Eq. 8-14 with τI = 4τD 
 

s

s
K

s

ss
KsG

D

D
c

D

DD
cc τ

+τ=
τ

τ++τ=
4

)12(

4

)414(
)(

222

 

ωτ
+ωτ=

ωτ




 +ωτ
=ω

D

D
c

D

D

cc KKjG
4

14

4

14
)(

22

2
22

 

 
b) From Eq. 8-15 with τI = 4τD  and α = 0.1 
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The differences are significant for 0.25 < ωτD < 1 by a maximum of 0.5 Kc 
at ωτD = 0.5, and for ωτD >10 by an amount increasing with ωτD . 
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          Figure S13.12.   Nominal amplitude ratio for parallel and series controllers. 
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13.13 
 
 

MATLAB does not allow the addition of transfer functions with different 
time delays. Hence the denominator time delay needs to be approximated 
if a MATLAB program is used. However, the use of Mathematica or even 
Excel to evaluate derived expressions for the AR and angle, using various 
values of omega, and to make the plots will yield exact results: 

 
     MATLAB -  Padé approximation: 

 

Substituting the 1/1 Padé approximation gives: 

 

42

)2(

1
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)(
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By using MATLAB, 
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                     Figure S13.13.  Bode plot by using Padé approximation. 
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min

rad
15080

cycle

radians
2

rotation

cycles
4

min

rotations
600 =π××=ω  

 

  psig2=A   psig02.0ˆ =A  
 

  01.0/ˆAR == AA  
   

Volume of the pipe connecting the compressor to the reactor is 
 

32
2

ft982.0ft
12

3

4
ft20 =





π×=pipeV  

 
Two-tank surge system 

 
Using the figure and nomenclature in Exercise 2.5, the 0.02 psig variation 
in Â  refers to the pressure before the valve Rc, namely the pressure P2. 
Hence the transfer function )(/)(2 sPsP d′′ is required in order to use the 

value of AR. Mass balance for the tanks is (referring to the solution for 
Exercise 2.5. 
 

ba ww
dt

dP

RT

MV
−=1

1

1        (1) 

 

cb ww
dt

dP

RT

MV
−=2

2

2        (2) 

 
where the ideal-gas assumption has been used. For linear valves, 
 

a

d
a R

PP
w 1−

=     ,    
b

b R

PP
w 21 −

=    ,    
c

f
c R

PP
w

−
= 2

 

 
  At nominal conditions, 
 
  psig200=dP  

 
  lb/min100lb/hr6000 ==== cba www  

 

  psig10
2

1.0
211 ==−=− d

d

P
PPPP  
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  b
ba

d
a R

w

PP

w

PP
R =

−
===

−
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lb/min

psig
1.0

lb/min100

psig10
 

 
  Assume vac RRR ==     

  Assume R792F30012
�� === TT  

  Given VVV == 21    
 
  Then equations (1) and (2) become 
 

  21211
1 2)( PPPPPPP

dt

dP
R

RT

VM
ddv +−=−−−=







 

 
 

  ffv PPPPPPP
dt

dP
R

RT

VM −−=−−−=






21221
2 2)(  

 
 

Taking deviation variables, Laplace transforming, and noting that fP′  is 

zero since fP is constant, gives 

  

)(
2

1
)()(

2

1
)( 211 sPsPsPsPs d ′+′−′=′τ      (3) 

)()(
2

1
)( 212 sPsPsPs ′−′=′τ        (4) 

 
where 
 

          




=τ vR
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2
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( ) ( )R792
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   = min)10647.1( 4V−×  

   
From Eq. 3 
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Substituting for )(1 sP′ into Eq. 4 
 

  )(
)1(4

1
)(

)1(4

1
)()1( 22 sP

s
sP

s
sPs d ′

+τ
+′

+τ
=′+τ  

 
 
  or 
 

   
384

1

1)1(4

1

)(

)(
222

2

+τ+τ
=
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=

′
′

ssssP

sP

d

 

 

   
ωτ+τω−

=
ω′
ω′

8)43(

1

)(

)(
22

2

jjP

jP

d

 

 
   

   
94016

1

64)43(

1
AR

224422222 +τω+τω
=

τω+τω−
=  

 
  Setting AR = 0.01 gives 
 
   1000094016 2244 =+τω+τω  
 
   099914016 2244 =−τω+τω  
 

  ( ) 77.2399911644040
162

1 222 =××++−
×

=τω  

 

  min10233.3
875.477.23 4−×=
ω

=
ω

=τ  

   

  3
4

ft963.1
10647.1

=
×
τ= −V  

 
  Total surge volume 3ft926.32 == VVsurge  

 
Letting the connecting pipe provide part of this volume, the volume of 

each tank = 3ft472.1)(
2

1 =− pipesurge VV  
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Single-tank system 
 
In the figure for the two-tank system, remove the second tank and the 

valve before it (Rb). Now, Â  refers to P1 and AR refers to )(/)(1 sPsP d′′ . 

 
Mass balance for the tank is 
  

ca ww
dt

dP

RT

MV
−=1

1

1  

 

where          
a

d
a R

PP
w 1−

=     ,        
c

f
c R

PP
w

−
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  At nominal conditions 
 
  psig201.01 ==− dd PPP  
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PP
R  

 
  Assume Rc = Ra = Rv    
 
  Then Eq. 1 becomes 
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dt
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  Using deviation variables and taking the Laplace transform 
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  where  

 

          =





=τ vR

RT

MV

1

1

2

1
 min)10294.3( 1

4V−×  

 

AR = 0.01= 15.0 22 +τω   ,  310315.3 −×=τ min, 3
1 ft06.10=V  

 
  Volume of single tank = 33

1 ft472.14ft084.9)( ×>=− pipeVV  

  Hence, recommend two surge tanks, each with volume 3ft472.1  
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By using MATLAB  
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          Figure S13.15a.  Nyquist diagram. 
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   Figure S13.15b.  Nyquist diagram by using Pade approximation. 
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The two plots are very different in appearance for large values of ω. The 
reason for this is the time delay. If the transfer function contains a time 
delay in addition to poles and zeros, there will be an infinite number of 
encirclements of the origin. This result is a consequence of the unbounded 
phase shift for the time delay. 
 
A subtle difference in the two plots, but an important one for the Nyquist 
design methods of Chapter 14, is that the plot in S13.5a “encircles” the -1, 

0 point while that in S13.5b passes through it exactly. 
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  By using MATLAB, 
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 Figure S3.16.  Bode plot  for Exercise 13.8 Transfer Function multiplied by PID 
 Controller Transfer Function. Two cases: a)Parallel  b) Series with Deriv. 
 Filter (α=0.2). 
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  Amplitude ratios: 
 
   Ideal PID controller: AR= 0.246  at  ω = 0.80 
   Series PID controller: AR=0.294  at ω = 0.74 
 
  There is 19.5% difference in the AR between the two controllers. 
 
 

 
13.17 
 
 

a) Method discussed in Section 6.3: 
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  Visual inspection of the frequency responses: 
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b) Comparison of three models: 

 
Bode plots: 
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    Figure S13.17a.  Bode plots for the exact and approximate models. 
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Impulse responses: 

Impulse Response
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  Figure S13.17b.  Impulse responses for the exact and approximate models 
 
 
 
 

13.18 
 
 
  The original transfer function is 
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  The approximate transfer function obtained using Section 6.3 is: 
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Bode Diagram
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             Figure S13.18.  Bode plots for the exact and approximate models. 

 
 
  As seen in Fig.S13.18, the approximation is good at low frequencies, but  
  not that good at higher frequencies. 


