Chapter 13
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13.2

3G, (jo)
G, (jw)|G,(jo)

:&/(—w)2+1: W’ +1
/(202 +1  ondw? +1

From the statement, we know the period P of the input sinusoid is 0.5 min
and, thus,

AR=|G(jw)| =

Substituting the numerical value of the frequency:

A _ 3y161 +1

A=ARXA=
4T/64TT +1
Thus the amplitude of the resulting temperature oscillation is 0.24 degrees.

x2=012x2=0.24

First approximate the exponential term as the first two termsin atruncated
Taylor series

e®=1-6s

Then G(jw) =1- jw
and AR, o =1+ (~w6)? =1 +w’6?

Prvo tarm = 1N (-008) = —tan™ (w6)
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13.3

For afirst-order Pade approximation

from which we obtain

ARPade =1
1[0
(pPade =—2tan léﬂzg

Both approximations represent the origina function well in the low
frequency region. At higher frequencies, the Padé approximation matches
the amplitude ratio of the time delay element exactly (ARpage = 1), while
the two-term approximation introduces amplification (AR term >1). For
the phase angle, the high-frequency representations are:

Puotem — =90’
Prage — -180°

Since the angle of e *is negative and becomes unbounded as « — o,
we see that the Pade representation also provides the better approximation
to the time delay element's phase angle, matching ¢ of the pure time delay

element to a higher frequency than the two-term representation.

Nominal temperature T = 127 F ; 119 F =123 'F

A

—%(127 ‘F-119 'F)=4"F
T=45sec., «=2n(1.8/60sec)=0.189rad/s

Using Eq. 13-2 with K=1,

A= A(Joﬁz +1)= 4,/(0.189)2(4.5)2 +1=5.25 'F

Actual maximum air temperature = T + A=128.25 °F

Actual minimum air temperature = T — A=117.75 °F
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Ta(s)_ 1
T'(s) 0.2s+1

T'(s) =(0.2s+1)T, (9)

amplitude of T'=3.464 ,/(0.2w)* +1 = 3.467
phase angle of T'= ¢ + tan™(0.2w) = ¢ + 0.04

Since only the maximum error is required, set ¢ = O for the comparison of
T and T, . Then

Error = T, — T'=3.464 sin (0.2t) — 3.467sin(0.2t + 0.04)
= 3.464 sin(0.2t) -3.467[sin(0.2t) cos 0.04 + cos(0.2t)sin 0.04]
=0.000 sin(0.2t) — 0.1386 cos(0.2t)

Since the maximum absolute value of cos(0.2t) is 1,

maximum absolute error = 0.1386
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b)

Magnitude (abs)

Phase (deg)

Magnitude (abs)

Phase (deg)

Bode Diagram

10 F 4

Frequency (rad/sec)

@ AR (absolute) ¢

0.1 4.44 -32.4°
1 0.69 -124°
10 0.005 -173°

Bode Diagram

0
10 - 3

270 . L L . Loy
107 10" 10° 10"

Frequency (rad/sec)

w AR (absolute) ¢

0.1 4.42 -38.2°
1 0.49 -169°
10 0.001 -257°
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d)

Magnitude (abs)

Phase (deg)

Magnitude (abs)

Phase (deg)

Bode Diagram

Frequency (rad/sec)

w AR (absolute)

0.1 4.48
1 1.36
10 0.04

13-5

-33.6°
-136°
-266°

10”1
10+ E
0
,45 — -
o0k . L | Ll m
10° 10" 10° 10" 10°
Frequency (rad/sec)
w AR (absolute) ¢
0.1 4.48 -22.1°
1 2.14 -44.9°
10 0.003 -87.6°
Bode Diagram
10° = |
10
_270L R | Ll Lol
10° 107 10° 10 10°



Magnitude (abs)

Phase (deg)

Magnitude (abs)

(deg)

Phase

Bode Diagram

180= L L

Fraquery (adsss)
@ AR (absolute) [}
0.1 44.6 -117°
1 0.97 -169°
10 0.01 -179°

Bode Diagram

-180 L 1
o |
10 10 10

Frequency (rad/sec)

w AR (absolute) [}

0.1 44.8 -112°
1 1.36 -135°
10 0.04 -158°
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13.6

b)

Normalized Ampltude ratio (abs)

Phase (deg)

Multiply the AR in Eqg. 13-41a by w/wzraz +1. Addtothevalueof ¢ in
Eq. 13-41b theterm + tan™(wrt,).

G(j0)| = K {2 +1/{(1-0"T%) +(0.4001)?

0G(jw) = tm‘lm5+ tan ™ (wt,).
A-wTt° 0

Bode Diagram

2
10 i
,--.,\
’.ﬂ"" . = ~ ~eo
0 ___.—"" .'0. = -
10 - S 1
............... ".-.~-~._

10-27 ~~~~~ ......... o

~~~~-

10-4 I | L Lol | Lol
90 -
451 "’__.—--- \.\‘ |

- - \
PR Tttt
-45 - :
= Ratio=0
-90 - —== Ratio =0.1
----- Ratio =1
-135+ =-= Ratio =10
-180 = [ N R L Ll T o
-2 -1 0 1 2
10 10 10 10 10

wT
Figure S13.6. Frequency responses for different ratios 7./
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Using MATLAB

Bode Diagram

10°

0
10

-5
10

Magnitude (abs)

-10

10
-45
-90
=)
§ -135
(]
8 -180
=
o
-225
270 L Lo =

-1
10

Figure S13.7. Bode diagram of the third-order transfer function.

The value of wthat yields a-180° phase angle and the value of AR at that

frequency are:

w = 0.807 rad/sec
AR =0.202

0
10

1
10

Frequency (rad/sec)
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139

Magnitude (abs)

Phase (deg)

Using MATLAB,
Bode Diagram
— G(s)
=== (G(s) with Pade approx.
0
10 5 1
-1
10 ¢ o
O T

-50

-100

-150

-200

-250

Lol L L L L
107 107 10’ 10"
Frequency (rad/sec)

Figure S13.8. Bode diagram for G(s) and G(s) with Pade approximation.

w=21f  wherefisincyclessmin

For the standard thermocouple, using Eq. 13-20b
$1 = -tan™ (1) = tan™(0.15w)

Phase difference A = 1 — ¢-

Thus, the phase angle for the unknown unit is
b2=01-Ad

and the time constant for the unknown unit is
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13.10

1= Ltan(-9,)
w

using Eq. 13-20b . The results are tabulated below

f @ 6. A [P T
0.05 0.31 2.7 45 -7.2 0.4023
0.1 0.63 -5.4 8.7 -14.1 0.4000
0.2 1.26 -10.7 16 -26.7 0.4004
0.4 2.51 -26.6 24.5 -45.1 0.3995
0.8 6.03 -37 26.5 -63.5 0.3992

1 6.28 -43.3 25 -68.3 0.4001

2 12.57 -62 16.7 -78.7 0.3984

4 25.13 -75.1 9.2 -84.3 0.3988

That the unknown unit is first order is indicated by the fact that Adp - O as
W - 00, SO that ¢ - ¢ --90° and ¢, - -90° for w — o implies a first-order
system. This is confirmed by the similar values of 1, calculated for
different values of w, implying that a graph of tan(-¢,) versus wis linear
as expected for afirst-order system. Then using linear regression or taking
the average of above values, 1, = 0.40 min.

From the solution to Exercise 5-19, for the two-tank system

Hi(s)/h,,, _ 001 _ K
Q.(s)  132s+1 1s+1
Hy(s)/h,,,, 001 _ K
Q.(s)  (1.32s+1)? (1s+1)?

Q(s) _ 01337 _ 01337
Q,(s) (1.32s+1)?* (1s+1)?

and for the one-tank system

H'(s)/h,, = 001 _ K
Q; (9) 2.64s+1 2ts+1

Q'(s) _ 0.1337 _ 0.1337
Q;(s) 264s+1 2ts+1
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For a sinusoidal input gy (t) = Asinwt, the amplitudes of the heights and
flow rates are

A, | = KAIY 4wt +1 (1)

A =0.1337A/ V4w?T? +1 )
for the one-tank system, and

A b ]= KAINw? T2 +1 ®)

Al 7h, = KA/ (@?T% +1)? ()
Aa,] = 0.1337 A7 (0?12 +1)? (5)

for the two-tank system.

Comparing (1) and (3), for all w
At ]2 AR T, ]

Hence, for al « the first tank of the two-tank system will overflow for a
smaller value of A than will the one-tank system. Thus, from the overflow
consideration, the one-tank system is better for all w However, if A is
small enough so that overflow is not a concern, the two-tank system will
provide a smaller amplitude in the output flow for those values of w that
satisfy

Aay]< Al |

or 0.1337A < 0.1337A
\/(002'[2+1)2 VAwT® +1

or w=+/2/1=1.07

Therefore, the two-tank system provides better damping of a sinusoidal
disturbance for w = 1.07 if and only if

V1.32°w* +1

Ahrh <1 thatis, As< or
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Using Egs. 13-48, 13-20, and 13-24,

2w’1,” +1

AR=
V1000? +14/46? +1

@ = tan(wTy) — tan™(10w) — tan™(20)

The Bode plots shown below indicate that

Magnitude (abs)

Phase (deg)

)
ii)
1ii)
iv)
V)
vi)
vii)

10"

10

2
10
90

-180

-270

: — -—- Case ii(a)
0 I -—-n-n..,."."#n, ..... Case ||(b)
£ ""q.

10"

AR does not depend on the sign of the zero.

AR exhibits resonance for zeros close to origin.

All zeros lead to ultimate slope of —1 for AR.

A left-plane zero yields an ultimate @ of -90°.

A right-plane zero yields an ultimate @ of -270°.

Left-plane zeros close to origin can give phase lead at low w.
Left-plane zeros far from the origin lead to a greater lag (i.e.,
smaller phase angle) than the ultimate value. @,= —90° with a left-
plane zero present.

Bode Diagram

— Casei

=== Case iii

1
1

1
]
/4
[
I
/

.
0
",
0
L

L T L ["re

",
ekl TP -

E L L | L Lo | I I

-2 -1 0 1
10 10 10 10

Frequency (rad/sec)

FigureS13.11. Bode plot for each of the four cases of numerator dynamics.
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13.12

a) From EqQ. 8-14 with 1, = 41p

(41,5 +1+41,°s%) _ K (21,5+1)?

G.(s) =K ¢
4t,s 41,s
%/M 2ooz+1§ 41,767 +1
Geliw =K, K=o
T,0

b) From EqQ. 8-15withy =41, anda =0.1

(41,5+1)(1,5+1)
° 41,5(0.11,5+1)

%/1& 20" +1%/r 20 +1ﬁ
41, wy0.01T . 2’ +1

The differences are significant for 0.25 < wtp < 1 by a maximum of 0.5 K¢
a wtp = 0.5, and for wtp >10 by an amount increasing with wtp .

G.(s) =K

G, (jod) =K

2
10 ¢
Series controller with filter (asymptote)
1
lo L "'"_'_.'.'-'-'-";"’"_""“““"
-
"
J”
’/
j&)
X
<
N
\:\~‘~ _/,'
0 AN~ A
10 - ]
Parallel controller (asymptote)
— Parallel controller (actual)
-=-= Series controller (actual)
lo'l . SR | . L i ! | P L
-2 -1 0 1 2
10 10 10 10 10

(1] 1)
FigureS13.12. Nominal amplituderatio for parallel and series controllers.
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13.13

MATLAB does not allow the addition of transfer functions with different
time delays. Hence the denominator time delay needs to be approximated
if aMATLAB program is used. However, the use of Mathematica or even
Excel to evaluate derived expressions for the AR and angle, using various
values of omega, and to make the plots will yield exact results:

MATLAB - Padé approximation:

Substituting the 1/1 Padé approximation gives:

K K(Bs+2)
G(s) = = (1)
—GSH+ 01s” + 215+ 4
S+ 1
R +6s[
By using MATLAB,
N Bode Diagram
10" ¢ ————— S
%1007
(0]
©
2
510"
=
107
0
B
el
S 451
8
o
90 L Ll
-2 -1 0 1 2
10 10 10 10 10

Frequency (rad/sec)

FigureS13.13. Bode plot by using Padé approximation.
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13.14

w= 600 rotat.lons>< 4 cycl.es N anadlans 15080 @
min rotation cycle min
A=2psig A=0.02 psig

AR=A/A=0.01

Volume of the pipe connecting the compressor to the reactor is

T3
V. :20ft><—B—gft2:0.982ft3
pipe 4|:ﬂ-2|:|

Two-tank surge system

Using the figure and nomenclature in Exercise 2.5, the 0.02 psig variation

in A refers to the pressure before the valve R, namely the pressure P,.
Hence the transfer function P,(s)/P,(s)is required in order to use the

value of AR. Mass balance for the tanks is (referring to the solution for
Exercise 2.5.

VM dP, _

—— =W, —W 1
RT, dt a b @)
VM P -, -, @
RT, dt

where the ideal -gas assumption has been used. For linear valves,

At nomina conditions,
P, =200 psig

W,

a

=w, =w, = 6000 Ib/hr =100 Ib/min

AP
P -R =P =

=10 psig
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Ra:Pd_Pl: 1OpS|g :01 pSI_g:F?L_PZZRb

W, 100 Ib/min Ilb/min W,

Assume R, =R, = R,
Assume T, =T, =300 ‘F=792 'R
GivenV, =V, =V

Then equations (1) and (2) become

QLR“ECLT P,-P-(P,-P,)=P, -2P +P,

R%P P,-(P,-P,)=P,-2P, - P,

Taking deviation variables, Laplace transforming, and noting that P; is
zero since P, is constant, gives

SHORESACRL{CRELAD 3

(9 = RS - PA(9 4

where

:1(\,ft3) g b 1 PS9 H ft°psig 792 R)
2 Ibmole Ib/mm Ibmoe

= (1.647x10™*V) min

From Eqg. 3

1
P(s) = 2(ts+1 )d() oS )2()
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Substituting for B/(s) into Eq. 4

1
(ts+DP,(s) = a(ts+1 )d() ats )2()

or

P (s) _ 1 _ 1
Pi(s) 4(ts+1)*-1 41°s*+81s+3

P(jw) _ 1
Pi(jo) (3—4w’T?)+ j8wt

1 _ 1
J(3-4w’1%)? + 640’12 V16W'T* +406T? +9

AR =

Setting AR = 0.01 gives
160w'1* +400°1° +9=10000

16w*t* + 40?12 - 9991 =0

o=t (— 40+ +/40? +4x16x9991): 23.77
2x16
= N2 A8T5 _ 3233x107 min
w w
=L =1063ft°
1.647x10
Total surgevolume V. = 2V = 3.926 ft°

L etting the connecting pipe provide part of this volume, the volume of

1
each tank = E(\/Surge ~V;pe) = 14721t
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Single-tank system

In the figure for the two-tank system, remove the second tank and the
valve beforeit (Ry). Now, A refersto Py and AR refersto P/(s)/ P;(s).

Mass balance for thetank is

ViIMdR _ -
RT, d¢ ° °

- P-P
where w, = h =1 1

a Ra ! Cc RC

At nomina conditions
P,-PF =01P, =20 psig

I:)d_F)l_ Zopsg :02 pgg
W

R =W T 10010min > ib/min

AssumeR.=R; =R,

Then Eq. 1 becomes

M P
He R =R -R-(RP)=R 2R+,

Using deviation variables and taking the Laplace transform

Pl(s) _ 1/2
Pi(s) Tts+l
where

1[Vv,M 4 .
T=— = (3.294x107°V,) min
ZE/—RTIRE ( )

AR =0.01= 05/v/w’t® +1 , 1=3.315x10"min, V, =10.06 ft°®

npe) = 9.084 ft* > 4x1.472 ft?
Hence, recommend two surge tanks, each with volume 1.472 ft®

Volume of singletank = (V, -V
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13.15

By using MATLAB

Nyquist Diagram

T T T

Imaginary Axis
o
T

Real Axis

FigureS13.15a. Nyquist diagram.

Nyquist Diagram

Imaginary Axis
o
T

Real Axis

FigureS13.15b. Nyquist diagram by using Pade approximation.
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13.16

The two plots are very different in appearance for large values of w. The
reason for this is the time delay. If the transfer function contains a time
delay in addition to poles and zeros, there will be an infinite number of
encirclements of the origin. This result is a consequence of the unbounded
phase shift for the time delay.

A subtle difference in the two plots, but an important one for the Nyquist

design methods of Chapter 14, is that the plot in S13.5a “encircles” the -1,
0 point while that in S13.5b passes through it exactly.

By using MATLAB,

5 Bode Diagram
10" ¢ ‘ e :

o
107 ¢

o
10 ©

Magnitude (abs)

1l
10",

,27
10 L L T R S B I I I S T S S |
0 R ‘ S S

— Parallel i
=== Series w ith filter

-90 -

-135

-180 -

Phase (deg)

-225

-270 , -
-2 -1 0
10 10 10
Frequency (rad/sec)
FigureS3.16. Bode plot for Exercise 13.8 Transfer Function multiplied by PID
Controller Transfer Function. Two cases. a)Parallel b) Series with Deriv.
Filter (a=0.2).

13-20



13.17

b)

Amplitude ratios:

Ideal PID controller: AR=0.246 a& w=0.80
Series PID controller: AR=0.294 at w=0.74

Thereis 19.5% difference in the AR between the two controllers.

M ethod discussed in Section 6.3:

12e—0.33
8s+1)(2.25+1)

é‘l (s) =

Visual inspection of the frequency responses:

12 e—O.4S

é‘z(s) =
(5.64s+1)(2.85s+1)

Comparison of three models:

Bode plots:

Bode Diagram

10°

10

10° |

Magnitude (abs)

-360 -

Phase (deg)

-720

Frequency (rad/sec)

Figure S13.17a. Bode plots for the exact and approximate models.
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Impul se responses:

Impulse Response

— G(s)
—=- Gy(s)
..... G,(s)
12t e
1k i
)
A
W
08 -
o q k
]
2
2
£
<
0.6 -
0.4 1 e
0.2 -
0 I I I | TRl Do erTrerre
0 5 10 15 20 25 30 35 40 45

Time (sec)

Figure S13.17b. Impulse responses for the exact and approximate models

13.18 I

The original transfer function is

G(s) = 10(2s+1)e™*
(20s+1)(4s+D(s+1)

The approximate transfer function obtained using Section 6.3 is:

_10(2s+ e

&
== 22+
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Magnitude (abs)

Phase (deg)

Bode Diagram

1
10

107 |
— G(s)

--- Gl(s)

| L | L L LN

-360 -
-720 -
-1080 |-
-1440 +
-1800 -
-2160 |-
-2520
-2880 | L
10° 10™ 10° 10"
Frequency (rad/sec)

Figure S13.18. Bode plots for the exact and approximate models.

Asseen in Fig.S13.18, the approximation is good at low frequencies, but
not that good at higher frequencies.
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