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Chapter 14

14.2

(a)

(b)

Let Gor(jo,) =R +jI

where . is the critical frequency. Then, according to the Bode stability
criterion

| GOL(jO)C)| =1= \/RZ +1°

ZGoi(jo,)=-n= tan ' (I/R)

Solving for Rand I: R =-1and /=0

Substituting s = jo,. into the characteristic equation gives,
1+ Gor(jo) =0
I+R+jI=0 or R=-1, I=0

Hence, the two approaches are equivalent.

Because sustained oscillations occur at the critical frequency

2z
© 10 min
Using Eq. 14-7,

—0.628 min~"

1 =(K)(0.5)(1)(1.0) or K.=2
Using Eq. 14-8,

— =0+ 0 +(-00.) + 0

V3 )
or 0= —=5min
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14.3

14.4

(a)

(b)

From inspection of the Bode diagrams in Tables 13.4 and 13.5, the
transfer function is selected to be of the following form

K(t,s+1)
s(ts+1)(T,s+1)

G(s) =
where 1,, T, T2 correspond to frequencies of ® = 0.1, 2, 20 rad/min,
respectively.

Therefore, 1,=1/0.1 =10 min
1;=1/2 =0.5 min
T,= 1/20 = 0.05 min
For low frequencies, AR = |K/s| = K/®
At®=0.01, AR =3.2,s0 that K= (®)(AR)=0.032

Therefore,

G(s) = 0.032(10s +1)
5(0.55 +1)(0.05s +1)

Because the phase angle does not cross -180°, the concept of GM is
meaningless.

The following process transfer can be derived in analogy with Eq. 6-71:

Hi(s) _ R,
Ql (S) (AIRIAZRZ )S2 + (AlRl + Ale + A2R2 )S +1

For R1=0.5, R, =2,4,=10,4,=0.8:
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0.5

G,(8) = ————M— 1
o5) 8s> +7s+1 @)
0.5
For R,=0.5: G,(8)= —m— 2
? o(s) 2s% +5.85+1 @
(a) For R;=2
-7
£G,= tan”! (DCZ , |Gyl = 0.5
1-80, J1-80.2) +(70,)?

For G,=K,=2.5, 0,=0, |G,|=2.5

1.5
05s+1°

1.5

J0.50,)% +1

For G,,= o= -tan (0.50) , |G, =

K., and o, are obtained using Eqgs. 14-7 and 14-8:

2180° =0+ 0+ tan" | — 2| — tan"(0.50,)
1—80)62

Solving, ®.= 1.369 rad/min.

1= (K. )(2.5) 0.5 1.5
V=80, + (70,0 ) ({050, +1

Substituting o, = 1.369 rad/min, K., =10.96, ©.K., =15.0

For R,=0.5

G tan” -5.8m, , G| = 0.5
P 2 P 2
1-20, J1=20.2) +(5.80,)°

180°= 0+ 0+ tan| =25 | _ tan(0.500)
1-20,°

c

Solving, ®.=2.51 rad/min.

Substituting o, = 2.51 rad/min, K., =15.93, ©.K., =40.0
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(a) From part (a), for R,=2,

o.=1.369 rad/min, K., =10.96

P,= 2_7r: 4.59 min
o)

c

Using Table 12.6, the Ziegler-Nichols PI settings are
K. = 045K, = 4932 , 1~=P,/1.2=3.825 min
Using Egs. 13-63 and 13-62

®.=-tan"'(-1/3.8250)

2
|GC|=4.932( ! j+1
3.8250

Then, from Eq. 14-7

1-8w

c

-180° = tan'{ } +0+ tan'll: — 7‘1%2 }— tan™(0.50,)

3.8250,

Solving, ®.= 1.086 rad/min.
Using Eq. 14-8,

A, = AROL|w:wc =

1Y 0.5
=| 4.932 +1((2.5)
\/[3.825ij {J(lsmcz)z +(To,)° ]

1.5
{,/(0.50)6)2 +1]

=0.7362

Therefore, gain margin GM =1/4. = 1.358.
Solving Eq.(14-16) for m,

ARorfo=0c =1 at  ®,=0.925

14-4



(a)

(b)

Substituting into Eq. 14-7 gives @g=@|p=og = —172.7°.

Therefore, phase margin PM = 180+ ¢, = 7.3°.

K=2, 1t=1,0=02, 1~03
Using Eq. 12-11, the PI settings are

_1 =
¢ KO+rt,

=1 ;=71 =1 min,
Using Eq. 14-8 ,

-180° = tan'l[_—lj —0.20 — tan™ (®.) =-90° — 0.2,
()

c

or o, = n—/zz 7.85 rad/min

0.2

Using Eq. 14-7,

A, =AR,| = +1 =—=0255

=0, 2

From Eq. 14-11, GM = 1/4. = 3.93.

Using Eq. 14-12,
@y = PM —180° = — 140 ° = tan™ (-1/0.5m5) — 0.200, — tan™ ()

Solving by trial and error, ®, = 3.04 rad/min

Substituting for w, gives K. = 1.34. Then from Eq. 14-8
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J -020. - tan'l(ooc)

~180° = tan™ | —
0.50m,
Solving by trial and error, ®w,=7.19 rad/min.

From Eq. 14-7,
1
A. =AR =1.34
T

2
J +1 # =0.383
o +1

c

From Eq. 14-11, GM = 1/4. = 2.61

By using Simulink-MATLAB, these two control systems are compared for

a unit step change in the set point.
14 ‘
12} :
1} ! -
08 | |
v /
I — part(a) i
oer i part (b)
04f | -
0.2F | i
O 1 1 1
1 2 3 4 5
time

Fig S14.5. Closed-loop response for a unit step change in set point

The controller designed in part a) (Direct Synthesis) provides better
performance giving a first-order response. Part b) controller yields a large

overshoot.
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14.6

(a) Using Egs. 14-7 and 14-8,

ARgp =

Y, M[ 2 J(wOA

m | K,
Yy J0.010% +1 )\ V02502 +1

o= tan"' (2m) — tan'(0.1w) — tan(0.50) — (1/2) — tan” (50)

Bode Diagram

V2507 +1

J(m)

10°

AR/K

']0_ Lol Lol

-90

-135

-180

Phase (deg)

-225

270 | Ll | Ll | Ll

10 10" 10° 10°
Frequency (rad/sec)
Figure S14.6a. Bode plot
(b)  Using Eq.14-12
¢y = PM —180° = 30°- 180° = —150°

From the plot of ¢ vs. : @g=-150° at ®,= 1.72 rad/min
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(©)

AR AR
From the plot of TOL vso:  —2 =0.144
Because AR,,| =1, K.= L 6.94
O™ 0.144
From the phase angle plot:
¢ =-180° at ®.= 4.05 rad/min
A AR
From the plot of TOL vso, —2%  =0.0326
A.= AR, | =0.326

From Eq. 14-11, GM = 1/4.=3.07.

) Bode Diagram
10 R oy

10°

AR/K

107

10
-90

-135

-180

Phase (deg)

-225

-270
10

Frequency (rad/sec)

Figure S14.6b. Solution for part (b) using Bode plot.
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14.7

Cc

AR/K

Phase (deg)

10°

Bode Diagram

10°

107

10"

-90

-135

-180

-225

-270

107

(a)

10"

Figure S14.6¢. Solution for part (c) using Bode plot.

10°
Frequency (rad/sec)

For a PI controller, the |G| and £ G, from Eqgs. 13.62 and 13.63 need to
be included in the AR and ¢ given for G,G,G,, to obtain AR, and @o.
The results are tabulated below

AR

® |Gel/K. ARo/Ke o £G, QoL

0.01 2.40 250 600 -3 -89.8 -92.8
0.10 1.25 25.020 31.270 -12 -87.7 -99.7
0.20 0.90 12.540 11.290 -22 -85.4 -107.4
0.50 0.50 5.100 2.550 -41 -78.7 -119.7
1.00 0.29 2.690 0.781 -60 -68.2 -128.2
2.00 0.15 1.601 0.240 -82 -51.3 -133.3
5.00 0.05 1.118 0.055 -122 -26.6 -148.6
10.00 0.02 1.031 0.018 -173 -14.0 -187.0
15.00 0.01 1.014 0.008 -230 9.5 -239.5

From Eq. 14-12, ¢,=PM —180° = 45°- 180° = -135°.

Interpolating the above table, ¢o;=-135° at ®, = 2.5 rad/min and
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ARy, =0.165
K‘ ®=0
Because AR, | =1, K.= 1 606
O=0% 0.165
(b) From the table above,
. AR,
oor=-180° at ., =9.0 rad/min and K— =0.021

Ac= AR, | =0021 K.=0.127

From Eq. 14-11,

GM =1/4.= 1/0.127 =7.86

(©) From the table in part (a),

@or=-180° at ®.= 10.5 rad/min and AR|(H) =(0.016.

=0.598 min and K, = ; =62.5.

| =0,

Therefore, P, = Z_n
Q)C
Using Table 12.6, the Ziegler-Nichols PI settings are

K.= 045K, =28.1, 7=P,/1.2=0.50min

Tabulating ARg, and @¢; as in part (a) and the corresponding values of M
using Eq. 14-18 gives:

® |Gl £G, ARo, QoL m
0.01 5620 -89.7 13488 -92.7 1.00
0.10 563.0 -87.1 703 -99.1 1.00
0.20 282.0 -84.3 254 -106.3 1.00
0.50 116.0 -76.0 57.9 -117.0 1.01
1.00 62.8 -63.4 18.2 -123.4 1.03
2.00 39.7 -45.0 5.96 -127.0 1.10
5.00 30.3 -21.8 1.51 -143.8 1.64
10.00 28.7 -11.3 0.487 -184.3 0.94
15.00 28.3 -7.6 0.227 -237.6 0.25

Therefore, the estimated value is M, =1.64.
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14.8

14.9

(a)

K., and o, are obtained using Eqgs. 14-7 and 14-8. Including the filter G
into these equations gives

-180° =0 + [-0.20, — tan™ (c) ][ *[-tan (t7,)]
Solving,

.= 8.443 for =0
.= 5.985 for t7=0.1

Then from Eq. 14-8,

2 1
1=(K
( " \/0302+1 \/ero)chrl

Solving for K., gives,

K.,=4.251 for =0

K.,=3.536 for tr=0.1
Therefore,

o.K.,= 359 for =0

0. K.~=21.2 for tr=0.1

Because o K., is lower for t7= 0.1, filtering the measurement results in
worse control performance.

Using Egs. 14-7 and 14-8,

1 5 1
AR, =| K, \|——+1 1.0
( 2507 | J(\/IOOOJZHJL/O)ZH]( )

@ =tan(-1/50) + 0 + (20 — tan™ (10w)) + (- tan™())
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(b)

(©)

(d)

AR/K

Phase (deg)

Bode Diagram
10 = _— e

10 L |

10 L |

107
-100

-150

-200

-250

-300

-350 I | Ll L L
10 10 10° 10 10°
Frequency (rad/sec)

Figure S14.9a. Bode plot

Set ¢ = 180° and solve for m to obtain w, = 0.4695.

Then AR, o = 1 =K.(1.025)

Therefore, K., = 1/1.025 = 0.976 and the closed-loop system is stable for
K.<0.976.

For K.=0.2, set ARp; = 1 and solve for  to obtain w, = 0.1404.

Then ¢g= ¢| _  =-133.6°

From Eq. 14-12, PM = 180° + ¢, = 46.4°

From Eq. 14-11
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GM=1.7=

I
A, AR,

D=0,

From part (b), AROL|0):OJ‘ =1.025 K,

Therefore, 1.025K.=1/1.7 or K.=0.574

c

AR/K

Phase (deg)

c

AR/K

Phase (deg)

-250
-300

-350
10"

Bode Diagram

10 10°
Frequency (rad/sec)

Figure S14.9b. Solution for part b) using Bode plot.

Bode Diagram

-250

-300

-350

10° 10 10° 10 10°

Frequency (rad/sec)

Figure S14.9¢c. Solution for part c) using Bode plot.
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14.10

0.047 112 5.264

a G S)=——X e —
@ /() 0.083s +1 0.083s +1
2
G,(s)=
(0.4325 +1)(0.017s +1)
0.12
G, (s)=——
m(s) 0.024s +1

Using Eq. 14-8

-180° = 0 — tan™'(0.083®,) — tan™'(0.4320.) — tan'(0.017®,)
— tan”'(0.024w,)

Solving by trial and error, o, = 18.19 rad/min.

Using Eq. 14-7,

. 5.624 _ 2
“N0.0830,)7 +1 ) {(0.4320,) +14/(0.017w,)* +1
0.12

J(0.0240,)% +1

Substituting ®,~18.19 rad/min, K., =12.97.

X

P,=2n/®.= 0.345 min
Using Table 12.6, the Ziegler-Nichols PI settings are

K.=045K., =584 , 1~=P,/1.2=0.288 min

(b) Using Eqgs.13-62 and 13-63

0.= £ G.= tan'(-1/0.288w)= -(1/2) + tan™'(0.288w)

2
G| = 5.84 : +1
0.288w

Then, from Eq. 14-8,
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14.11

(a)

- =—(1/2) + tan”'(0.288,) — tan™'(0.083w,) — tan™'(0.432.)

—tan(0.0170,) — tan'(0.0240,)

Solving by trial and error, ®.= 15.11 rad/min.

Using Eq. 14-7,

2
AC = AR0L| —oe 5.84 ; +1]- o204
w=oc 0.2880, (0.083w,)* +1

2 0.12
X .
J(0.4320,)* +1(0.0170,)2 +1 | | /(0.02400,)% +1

=0.651
Using Eq. 14-11, GM =1/4.=1.54.
Solving Eq. 14-7 for w, gives

AR0L| =1 at ,=11.78 rad/min

u)=wg

Substituting into Eq. 14-8 gives

Pg= @ =—(m/2)+tan"(0.288ay) — tan™ (0.083eg) —
tan™(0.4320) — tan” (0.017w,) — tan™'(0.024w,) = -166.8°
Using Eq. 14-12,

PM=180°+ ¢, = 13.2°

10 1.5
|G |= @
[\/a)z+1}£\/100a)2+1J

¢ =—tan"(w) — tan" (100) — 0.50
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Bode Diagram

AR
3
T
L

-90

Phase (deg)

-180

-270
10

Frequency (rad/sec)

Figure S14.11a. Bode plot for the transfer function G=G,G,G.
(b) From the plots in part (a)
ZG=-180°at .= 1.4 and |G|y=epc=0.62

AR0L| =1= (' Kcu) |G|w=mc

=,

Therefore, K., =-1/0.62 =-1.61 and
P,=21/w.=4.49

Using Table 12.6, the Ziegler-Nichols PI-controller settings are:
K.=045K.,=-0.72 , 1,=P,/1.2=3.74

Including the |G| and £G, from Eqgs. 13-62 and 13-63 into the results of
part (a) gives

1Y 15
AR,, =072,/ —— | +1
3.740 Vo +141000> +1
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2.894/14.00° +1

Vo +1310007 +1 o
Q= tan'(-1/3.740) — tan (w) — tan™ (100) — 0.50

Bode Diagram

AR

Phase (deg)

360
! 10

10
Frequency (rad/sec)

Figure S14.11b. Bode plot for the open-loop transfer function Go,=G.G.

(©) From the graphs in part (b),

¢ =-180° at o.=1.15
AR, o = 0.63<1

Hence, the closed-loop system is stable.
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(d)

(e)

®

Bode Diagram

AR

Phase (deg)

-270 ‘ B

Frequency (rad/sec)

Figure S14.11c¢. Solution for part (c) using Bode plot.

From the graph in part b),

AR,,| . =2.14= 2mplitude of 7, ()
0=0.5 amplitude of y_ (¥)

Therefore, the amplitude of y,(t) = 2.14x1.5 =3.21.

From the graphs in part (b), AROLLD:Q5 =2.14 and (p|m:0_5 =-147.7°.
Substituting into Eq. 14-18 gives M = 1.528. Therefore, the amplitude of
y(f) = 1.528x1.5 = 2.29 which is the same as the amplitude of y,(t)
because G, is a time delay.

The closed-loop system produces a slightly smaller amplitude for » = 0.5.

As o approaches zero, the amplitude approaches one due to the integral
control action.

14-18



14.12

(a) Schematic diagram:

Cold fluid |

o
Mixing Point Sensor
Block diagram:
Mixing Transmitter
Controller Valve Process line

Tq T

G, - G, ~ G, > Gy >
G, |

()  G,G,Gn=K,=6mA/mA
GTL — e-SS

Gor = G,G,G,,Gr.= 6

If Gor = 66_8‘?,
| Gor(jo) | =6

Z Gor (jo) =-8w rad

Find ®.: Crossover frequency generates — 180° phase angle = —r radians

8w.,=-1 or .= mn/8rad/s
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2 2n 16

Find P, P,=—=
/8

(DC

) 1 1

Find K0 Kepy= ———=—=10.167
|G, (jo,)| 6

Ziegler-Nichols 74 decay ratio settings:

PI controller:

K.=0.45 K., = (0.45)(0.167) = 0.075
7=P,/1.2=16/1.2=13.33 sec

PID controller:

K.=0.6 K., = (0.6)(0.167) = 0.100
1, =P/2=162=8s
Tp=PJ/8=16/8=2s

150

(c)
1.4
1.2+
I
ogl [\ [ -7 |
y
—— PID control
i L M Pl control
04 | |
0.2+ |
O |
: » o0 90 120
t

Fig. S14.12. Set-point responses for PI and PID control.
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(d) Derivative control action reduces the settling time but results in a more

oscillatory response.
14.13

(a) From Exercise 14.10,

G (s)= 3204
0.083s +1
2
G,(s)=
P2 (0.4325 +1)(0.017s +1)
G (5= 012
(0.024s +1)

The PI controlleris G, (s) = 5(1 + Lj
0.3s

Hence the open-loop transfer function is

G, =G.G,G,G

cov_pTm
Rearranging,

B 6.317s +21.06
1.46x107°s” +0.00168s* +0.05738s> +0.556s> + s

GOL
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By using MATLAB, the Nyquist diagram for this open-loop system is

Nyquist Diagram

Imaginary Axis

-4 L L L L 1 1
- - -1.5 -1 -0.5

Real Axis

w
N
3
N

Figure S14.13a. The Nyquist diagram for the open-loop system.

1
b Gain margin = GM = ——
(b) g AR

where AR, is the value of the open-loop amplitude ratio at the critical
frequency .. By using the Nyquist plot,

Nyquist Diagram

Imaginary Axis

w
N
3
N

-1.5 -1 -0.5
Real Axis

Figure S14.13b. Graphical solution for part (b).
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14.14

0=-180 = AR.=|G(o,) =0.5

Therefore the gain margin is GM = 1/0.5 =2.

To determine max | e, | < ML’ we must calculate M, based on the CLTF
P

with IMC controller design. In order to determine a reference M,, we

assume a perfect process model (i.e. G—-G = 0 ) for the IMC controller

design.

ngc*G
R
Factoring,
G=G,G
G =e* , G =22
25 +1
« 25+1
G =
T A

Filter Design: Because t=2s, let 1. =1/3=2/3s.

1
f_2/3s+1
+ 2s+1 1 25 +1

© 7710 2/3s+1 20/3s5+10

. 2s+1 10e”* 10e”*
:GC G: =
20/3s+10 ) 2s +1 20/3s+10

M =1

=19

The relative model error with K as the actual process gain is:
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Ke™ B 10e”°
G-G |2s+1 2s+1| K —10

e = =

" G 10e”* 10
2s +1
Since M, =1, max|e,, |:‘K_10‘ <1
= K-10 <1 = K<20
10
K-10 = K>0
10
0<K <20 for guaranteed closed-loop stability.

14.15

Denote the process model as,

26—0.2&

s+1

G =

and the actual process as:

26—0.25

s +1

G =

The relative model error is:

_G(s)=G(s) _(1-D)s

A(s)

(N}(s) s +1
Lets = jo. Then,
|A|:|(1—r>jw|:|<1—r)w| O
| o+l | |go+l]|
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or

Because | A | in (1) increases monotonically with o,

[1-1]

2)

max |A|=1lim|A|=
Substituting (2) and M, = 1.25 into Eq. 14-34 gives:

u<o.8
T

This inequality implies that
-1

—<0.8 = 1<187 = t>0.556

and

- <08 = 027<1 = 1<5

Thus, closed-loop stability is guaranteed if

0.556 <t <5
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