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Chapter 14 
 
 
 
14.1 
 
 
  Let GOL(jωc) = R + jI 
 

where ωc is the critical frequency. Then, according to the Bode stability 
criterion 
 

   | GOL(jωc)| = 1 = 22 IR +  
   ∠GOL(jωc) = -π =  tan –1 (I/R) 
 
  Solving for R and I:  R  = -1 and  I = 0 
 

Substituting s = jωc into the characteristic equation gives, 
 
   1 + GOL(jωc) = 0 
 
   I + R + jI  = 0      or    R = -1   ,    I = 0 
 
  Hence, the two approaches are equivalent. 
 
 
14.2 
 
 
  Because sustained oscillations occur at the critical frequency 
 

   12ω 0.628min
10 minc

π −= =  

(a) Using Eq. 14-7,  
 

1 = (Kc)(0.5)(1)(1.0)    or   Kc = 2 
 

(b) Using Eq. 14-8, 
 
   – π= 0 + 0 +(-θωc) + 0 

   or  θ = 5 min
ωc

π
=  

 
Solution Manual for Process Dynamics and Control, 2nd edition, 

Copyright © 2004  by Dale E. Seborg, Thomas F. Edgar and Duncan A. Mellichamp 

Revised: 1-3-04



14-2 

 
 
14.3 
 
 

(a) From inspection of the Bode diagrams in Tables 13.4 and 13.5, the 
transfer function is selected to be of the following form 

 

G(s) = 
)1)(1(

)1(

21 +τ+τ
+τ

sss
sK a   

 
where τa, τ1, τ2 correspond to frequencies of ω = 0.1, 2, 20 rad/min, 
respectively. 

 
  Therefore,    τa = 1/0.1 = 10 min 
 
            τ1=1/2 = 0.5 min 
 
            τ2= 1/20 = 0.05 min 
 
  For low frequencies, AR ≈ |K/s| = K/ω 
 
  At ω = 0.01,   AR = 3.2, so that K = (ω)(AR) = 0.032 
 
  Therefore,  
 

                                               G(s) = 
)105.0)(15.0(

)110(032.0
++

+
sss

s  

 
(b) Because the phase angle does not cross -180°, the concept of GM is 

meaningless. 
 
 
14.4 
 
 

The following process transfer can be derived in analogy with Eq. 6-71: 
 

   
2

1 1

1 1 1 2 2 1 1 2 1 2 2

( )
( ) ( ) ( ) 1

=
+ + + +

H s R
Q s A R A R s A R A R A R s

 

 
  For R1=0.5, R2 = 2, A1 = 10, A2 = 0.8: 
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   Gp(s) = 
178

5.0
2 ++ ss

      (1) 

 

For R2 = 0.5:  Gp(s) = 
18.52

5.0
2 ++ ss

   (2) 

 
 (a) For R2 = 2 

 

∠Gp= tan-1
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For Gv = Kv = 2.5,  ϕv=0,      |Gv| = 2.5 

 

For Gm = 
15.0

5.1
+s

,     ϕm= -tan-1(0.5ω)  ,    |Gm| = 
1)5.0(

5.1
2 +ωc

 

 

Kcu and ωc are obtained using Eqs. 14-7 and 14-8: 
 

   -180° = 0 + 0 + tan-1













ω−

ω−
281

7

c

c  − tan-1(0.5ωc) 

   
Solving,  ωc = 1.369 rad/min. 
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  Substituting ωc = 1.369 rad/min,  Kcu = 10.96,  ωcKcu = 15.0 
 

For R2=0.5 
 

   ∠Gp = tan-1
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   -180° = 0 + 0 + tan-1
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c

c  − tan-1(0.5ωc) 

 

Solving,  ωc = 2.51 rad/min. 
 

  Substituting ωc = 2.51 rad/min,  Kcu = 15.93,  ωcKcu = 40.0 
 



14-4 

(a) From part (a), for R2=2, 
 

ωc = 1.369 rad/min,     Kcu = 10.96 

Pu = 
cω
π2 = 4.59 min 

 
Using Table 12.6, the Ziegler-Nichols PI settings are 
 

Kc  =   0.45 Kcu  =   4.932     ,    τI= Pu/1.2 = 3.825 min 
 
Using Eqs. 13-63 and 13-62 , 

 
ϕc= -tan-1(-1/3.825ω) 

 

|Gc| = 4.932 1
825.3
1 2

+







ω
 

 
Then, from Eq. 14-7  

 

-180° =  tan-1

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Solving,  ωc = 1.086 rad/min. 

 
  Using Eq. 14-8, 
 
   Ac  =  AROL|ω=ωc  = 
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= 0.7362 

 
Therefore, gain margin GM =1/Ac = 1.358. 
 
Solving Eq.(14-16) for ωg  
 

  AROL|ω=ωc  = 1     at     ωg = 0.925 
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 Substituting into Eq. 14-7 gives ϕg=ϕ|ω=ωg  = −172.7°. 
 
 Therefore, phase margin  PM = 180+ ϕg  = 7.3°. 
 

 
 
14.5 
 
 
 (a) K=2  ,   τ = 1  ,  θ = 0.2  ,  τc=0.3 
 
  Using Eq. 12-11, the PI settings are 
 

11
=

τ+θ
τ

=
c

c K
K  , τI = τ = 1 min,   

   
Using Eq. 14-8 , 

 

   -180° =  tan-1








ω
−

c

1  − 0.2ωc − tan-1(ωc)  = -90° − 0.2ωc 

 

  or  ωc = 
2.0
2/π = 7.85 rad/min 

 
  Using Eq. 14-7, 
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  From Eq. 14-11, GM = 1/Ac = 3.93. 
 
 

(b)  Using Eq. 14-12,   
 
   ϕg = PM − 180° = − 140 ° = tan-1(-1/0.5ωg) − 0.2ωg − tan-1(ωg) 

 
Solving by trial and error,  ωg = 3.04 rad/min 
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Substituting for ωg gives Kc = 1.34.  Then from Eq. 14-8 
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−180° =  tan-1

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−

c5.0
1  − 0.2ωc − tan-1(ωc)   

 
Solving by trial and error, ωc =7.19 rad/min. 
 
From Eq. 14-7, 
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From Eq. 14-11, GM = 1/Ac = 2.61 
 

 
(c) By using Simulink-MATLAB, these two control systems are compared for 

a unit step change in the set point. 
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   Fig S14.5. Closed-loop response for a unit step change in set point. 
 

The controller designed in part a) (Direct Synthesis) provides better 
performance giving a first-order response. Part b) controller yields a large 
overshoot. 
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14.6 
 
 

(a) Using Eqs. 14-7 and 14-8, 
 

2

2 2 2
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ϕ= tan-1(2ω) − tan-1(0.1ω) − tan-1(0.5ω) – (π/2) − tan-1(5ω) 
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   Figure S14.6a.  Bode plot  

 
(b) Using Eq.14-12 

 
ϕg = PM – 180° = 30°− 180° = −150° 

 
From the plot of ϕ vs. ω:               ϕg = -150° at ωg = 1.72 rad/min 
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From the plot of 
c

OL

K
AR

 vs ω:      
g

c

OL

K
ω=ω

AR
= 0.144 

Because 
g

OL ω=ω
AR = 1  ,     Kc = 

144.0
1 = 6.94 

 
 (c) From the phase angle plot:   
 

 ϕ = -180° at ωc = 4.05 rad/min 
 

From the plot of 
c

OL

K
AR

 vs ω,     
c

c

OL

K
ω=ω

AR
= 0.0326 

Ac = 
c

OL ω=ω
AR = 0.326 

 
From Eq. 14-11,  GM = 1/Ac = 3.07. 
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            Figure S14.6b.  Solution for part (b) using Bode plot. 
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          Figure S14.6c.  Solution for part (c) using Bode plot. 
 
 
 
14.7 
 
 

(a) For a PI controller, the  |Gc| and ∠ Gc from Eqs. 13.62 and 13.63 need to 
be included in the AR and ϕ given for GvGpGm to obtain AROL and ϕOL. 
The results are tabulated below 

 
ω AR |Gc|/Kc AROL/Kc ϕ ∠Gc ϕOL 

0.01 2.40 250 600 -3 -89.8 -92.8 
0.10 1.25 25.020 31.270 -12 -87.7 -99.7 
0.20 0.90 12.540 11.290 -22 -85.4 -107.4 
0.50 0.50 5.100 2.550 -41 -78.7 -119.7 
1.00 0.29 2.690 0.781 -60 -68.2 -128.2 
2.00 0.15 1.601 0.240 -82 -51.3 -133.3 
5.00 0.05 1.118 0.055 -122 -26.6 -148.6 
10.00 0.02 1.031 0.018 -173 -14.0 -187.0 
15.00 0.01 1.014 0.008 -230 -9.5 -239.5 

 
 

From Eq. 14-12,   ϕg = PM – 180° = 45°− 180° = -135°. 
 

Interpolating the above table, ϕOL= -135°  at  ωg = 2.5 rad/min  and  
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g
c

OL

K
ω=ω

AR
= 0.165 

 

Because 
g

OL ω=ω
AR = 1  ,     Kc = 

165.0
1 = 6.06 

 
 

(b) From the table above, 

  ϕOL= -180°  at  ωc = 9.0 rad/min  and   
c

c

OL

K
ω=ω

AR
= 0.021 

   Ac = 
c

OL ω=ω
AR = 0.021     Kc = 0.127 

 
  From Eq. 14-11, 
 
   GM = 1/Ac =  1/0.127 = 7.86 
 
 

(c) From the table in part (a), 
 

ϕOL= -180°  at  ωc = 10.5 rad/min  and  
cω=ω

AR = 0.016. 

 

Therefore,   Pu = 
cω
π2 = 0.598 min  and Kcu = 

c
AR

ω=ω

1  = 62.5. 

 
Using Table 12.6, the Ziegler-Nichols PI settings are 
 

Kc =   0.45 Kcu = 28.1,    τI = Pu/1.2 = 0.50 min 
 
Tabulating AROL and ϕOL as in part (a) and the corresponding values of M 
using Eq. 14-18 gives: 
 

ω |Gc| ∠Gc AROL ϕOL M 
0.01 5620 -89.7 13488 -92.7 1.00 
0.10 563.0 -87.1 703 -99.1 1.00 
0.20 282.0 -84.3 254 -106.3 1.00 
0.50 116.0 -76.0 57.9 -117.0 1.01 
1.00 62.8 -63.4 18.2 -123.4 1.03 
2.00 39.7 -45.0 5.96 -127.0 1.10 
5.00 30.3 -21.8 1.51 -143.8 1.64 
10.00 28.7 -11.3 0.487 -184.3 0.94 
15.00 28.3 -7.6 0.227 -237.6 0.25 

 
Therefore, the estimated value is Mp =1.64. 
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14.8 
 
   

Kcu and ωc are obtained using Eqs. 14-7 and 14-8. Including the filter GF 
into these equations gives 

 
-180° = 0 + [-0.2ωc − tan-1(ωc)]+[-tan-1(τFωc)]  

 
  Solving, 
 
   ωc = 8.443    for  τF = 0 
   ωc = 5.985  for τF = 0.1 

 
Then from Eq. 14-8,  
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Solving for Kcu gives, 

 
   Kcu = 4.251     for  τF = 0 
   Kcu = 3.536   for τF = 0.1 
 

Therefore, 
   
   ωcKcu = 35.9     for  τF = 0 
   ωc Kcu= 21.2   for τF = 0.1 
 

Because ωcKcu  is lower for τF = 0.1, filtering the measurement results in 
worse control performance. 

 
 
14.9 
 
  

(a) Using Eqs. 14-7 and 14-8, 
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ϕ = tan-1(-1/5ω) + 0   + (-2ω − tan-1(10ω)) + (- tan-1(ω)) 
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         Figure S14.9a.   Bode plot  

 
 

(b) Set ϕ = 180° and solve for ω to obtain ωc = 0.4695. 
 

Then 
c

OL ω=ω
AR = 1 = Kcu(1.025) 

 
Therefore, Kcu = 1/1.025 = 0.976 and the closed-loop system is stable for 
Kc ≤ 0.976. 

 
 

(c) For Kc = 0.2, set AROL = 1 and solve for ω to obtain ωg = 0.1404. 
 

Then ϕg = 
gω=ω

ϕ = -133.6° 

 
From Eq. 14-12,  PM = 180° + ϕg = 46.4° 

 
 

(d) From Eq. 14-11 
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GM = 1.7 = 
cA

1  = 
c

OL ω=ω
AR

1  

 
From part (b),     

c
OL ω=ω

AR = 1.025 Kc 

 
Therefore,        1.025 Kc = 1/1.7      or        Kc = 0.574 
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         Figure S14.9b.  Solution for part b) using Bode plot. 
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         Figure S14.9c.  Solution for part c) using Bode plot. 
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14.10 
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  Using  Eq. 14-8 
 
   -180° = 0 − tan-1(0.083ωc) − tan-1(0.432ωc) − tan-1(0.017ωc)  

− tan-1(0.024ωc) 
 

  Solving by trial and error, ωc = 18.19 rad/min. 
 
  Using Eq. 14-7, 
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  Substituting ωc=18.19 rad/min,    Kcu = 12.97. 
   

Pu = 2π/ωc = 0.345 min 
 
  Using Table 12.6, the Ziegler-Nichols PI settings are 
 
   Kc = 0.45 Kcu = 5.84    ,     τI=Pu/1.2 = 0.288 min 
  
 

(b) Using Eqs.13-62 and 13-63 
 

ϕc = ∠ Gc =  tan-1(-1/0.288ω)= -(π/2) +  tan-1(0.288ω) 
 

|Gc| = 5.84 1
288.0
1 2
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  Then, from Eq. 14-8, 
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-π = − (π/2) + tan-1(0.288ωc) − tan-1(0.083ωc) − tan-1(0.432ωc)  

 
         − tan-1(0.017ωc) − tan-1(0.024ωc) 
 
 
Solving by trial and error, ωc = 15.11 rad/min. 
 
Using Eq. 14-7, 
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= 0.651 
 

Using Eq. 14-11,  GM = 1/Ac = 1.54. 
 
Solving Eq. 14-7 for ωg gives 

 

g
OL ω=ω

AR = 1       at    ωg = 11.78 rad/min 

  Substituting into Eq. 14-8 gives 
 

ϕg = 
gω=ω

ϕ = − (π/2) + tan-1(0.288ωg) − tan-1(0.083ωg) −  

tan-1(0.432ωg) − tan-1(0.017ωg) − tan-1(0.024ωg) = -166.8° 
 
Using Eq. 14-12, 
 
 PM = 180° + ϕg = 13.2 ° 

 
 
14.11 
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ϕ = − tan-1(ω) − tan-1(10ω) − 0.5ω 
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 Figure S14.11a.   Bode plot for the transfer function G=GvGpGm. 

 
(b) From the plots in part (a) 

 
∠G = -180° at ωc = 1.4   and  |G|ω=ωc = 0.62 

 

c
OL ω=ω

AR = 1= (- Kcu) |G|ω=ωc 

 
Therefore, Kcu = -1/0.62 = -1.61 and 

 
Pu = 2π/ωc = 4.49 

 
Using Table 12.6, the Ziegler-Nichols  PI-controller settings are: 

 
Kc = 0.45Kcu = -0.72     ,   τI = Pu/1.2 = 3.74 

 
Including the |Gc| and ∠Gc from Eqs. 13-62 and 13-63 into the results of 
part (a) gives  
 

   








+ω+ω
+








ω
=

11001
151

74.3
172.0AR

22

2

OL  



14-17 

                       
ω+ω+ω
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ϕ = tan-1(-1/3.74ω) − tan-1(ω) − tan-1(10ω) − 0.5ω 
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Figure S14.11b.   Bode plot for the open-loop transfer function GOL=GcG. 

 
(c) From the graphs in part (b), 

 
ϕ = -180° at ωc=1.15 

 

c
OL ω=ω

AR = 0.63 < 1 

 
Hence, the closed-loop system is stable. 
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 Figure S14.11c.  Solution for part (c) using Bode plot. 

 
 

(d) From the graph in part b), 
 

5.0
AR

=ωOL = 2.14 = amplitude of ( )
amplitude of ( )

m

sp

y t
y t

   

Therefore, the amplitude of ym(t) = 5.114.2 ×  = 3.21. 
 

(e) From the graphs in part (b), 
5.0

AR
=ωOL = 2.14 and 

5.0=ω
ϕ =-147.7°.  

 
Substituting into Eq. 14-18 gives M = 1.528. Therefore, the amplitude of 
y(t) = 1.528×1.5 = 2.29 which is the same as the amplitude of ym(t) 
because Gm is a time delay. 

 
(f) The closed-loop system produces a slightly smaller amplitude for ω = 0.5.  

As ω approaches zero, the amplitude approaches one due to the integral 
control action.  
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14.12 
 
 

(a) Schematic diagram: 

 
 
  Block diagram: 

 
   

(b) GvGpGm = Km = 6 mA/mA 
 

GTL = e-8s 
 
  GOL = GvGpGmGTL = 6e-8s 
 
 

If GOL =  6e-8s, 
   
   | GOL(jω) | = 6 
 
   ∠ GOL (jω)  = -8ω rad 
 
 
  Find ωc:   Crossover frequency generates − 180° phase angle = − π radians 
    

     -8ωc = -π    or    ωc = π/8 rad/s 
 

Hot fluid

TT

TC

Cold fluid

Mixing Point Sensor



14-20 

  Find Pu:    Pu = 2π 2π 16s
ω π / 8c

= =    

  Find Kcu:  Kcu = 167.0
6
1

|)(|
1

==
ωcp jG

 

 
 
  Ziegler-Nichols ¼ decay ratio settings: 
 
  PI controller: 
 

Kc = 0.45 Kcu = (0.45)(0.167) = 0.075 
   τI = Pu/1.2 = 16/1.2 = 13.33 sec 
 
  PID controller: 
 

Kc = 0.6 Kcu = (0.6)(0.167) = 0.100 
   τI = Pu/2 = 16/2 = 8 s 

  τD = Pu/8 = 16/8 = 2 s 
 
 (c)  

0 30 60 90 120 150
0

0.2

0.4

0.6

0.8

1

1.2

1.4

PID control
PI control

y 

t 
 

  Fig. S14.12. Set-point responses for PI and PID control. 
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(d) Derivative control action reduces the settling time but results in a more 
oscillatory response. 

 
 
 
 
14.13 
 
 

(a) From Exercise 14.10, 
 

1083.0
264.5)(

+
=

s
sGv  

)1017.0)(1432.0(
2)(

++
=

ss
sGp  

   
)1024.0(

12.0)(
+

=
s

sGm  

  The PI controller is     





 +=

s
sGc 3.0

115)(  

  Hence the open-loop transfer function is 
 
   mpvcOL GGGGG =  
 
  Rearranging, 
 

   
sssss

sGOL ++++×
+

= − 23455 556.005738.000168.01046.1
06.21317.6  
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  By using MATLAB, the Nyquist diagram for this open-loop system is 

 

Nyquist Diagram
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     Figure S14.13a. The Nyquist diagram for the open-loop system. 
 

(b) Gain margin = GM = 
cAR

1  

 
where ARc is the value of the open-loop amplitude ratio at the critical 
frequency ωc. By using the Nyquist plot, 

Nyquist Diagram
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   Figure S14.13b.  Graphical solution for part (b). 
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   θ = -180      ⇒     ARc = | G(jωc)| = 0.5   
 
  Therefore the gain margin is  GM = 1/0.5 = 2. 
 
 
14.14 
 

To determine 
p

m M
e 1||max <

ω
, we must calculate Mp based on the CLTF 

with IMC controller design. In order to determine a reference Mp, we 
assume a perfect process model (i.e. GG ~

−  = 0 ) for the IMC controller 
design. 
 

GG
R
C

c
*=∴  

 
Factoring, 
 
            −+= GGG ~~~   

    
12

10~,~
+

== −
−

+ s
GeG s  

  fsGc 10
12* +

=∴  

 
  Filter Design:  Because τ = 2 s, let τc = τ/3 = 2/3 s. 
 

   ⇒  
132

1
+

=
s

f  

 

  
10

12* +
=∴

sGc 10320
12

132
1

+
+

=
+ s

s
s

 

     

  
10320

10
12

10
10320

12*

+
=








+








+
+

==∴
−−

s
e

s
e

s
sGG

R
C ss

c  

   
  1=∴ pM  
 
  The relative model error with K as the actual process gain is: 
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10
10

12
10

12
10

12
~

~
−

=

+









+

−







+

=
−

=∴ −

−−

K

s
e

s
e

s
Ke

G
GGe s

ss

m  

Since Mp = 1, 1
10

10||max <
−

=
ω

Kem  

 

   ⇒  1
10

10
<

−K   ⇒  K < 20 

    

    1
10

10
−>

−K   ⇒  K  >  0 

 
 
  ∴   200 << K   for guaranteed closed-loop stability. 
 
 
 
14.15 

 
 
Denote the process model as, 
 

1
2~ 2.0

+
=

−

s
eG

s

  

 
  and the actual process as: 
 

   
1

2 2.0

+τ
=

−

s
eG

s

 

 
  The relative model error is: 
 

  
1
)1(

)(~
)(~)()(

+τ
τ−

=
−

=∆∴
s

s
sG

sGsGs  

 
  Let s = jω. Then, 
 
    

  
|1|
|)1(|

1
)1(

+ωτ
ωτ−

=
+ωτ
ωτ−

=∆∴
jj

j      (1) 
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  or 
   

  
2 2

| (1 ) |

1

τ ω

τ ω

−
∆ =

+
 

 
  Because | ∆ | in (1) increases monotonically with ω, 
 

   
τ
τ−

=∆=∆
∞→ωω

|1|||lim||max     (2) 

 
  Substituting (2) and Mp = 1.25 into Eq. 14-34 gives: 
 

   8.0|1|
<

τ
τ−  

 
  This inequality implies that 
   

   8.01
<

τ
τ−

      ⇒      1 < 1.8τ  ⇒  τ > 0.556 

  and  
 

   8.01
<

τ
−τ

    ⇒       0.2τ < 1   ⇒  τ < 5 

 
  Thus, closed-loop stability is guaranteed if 
    

0.556 < τ < 5 
 
 


