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Chapter 15

15.1
For R,=d/u
K - OR, _ 4
P ou u’
which can vary more than K, in Eq. 15-2, because the new K, depends on
both d and u.
15.2

By definition, the ratio station sets

(um - umO) = KR (dm - dmO)

f— 2 2
Thus K, =20 — K2”2 :ﬁ[lj (1)
d,-d,, Kd K\d

For constant gain Ky, the values of u and d in Eq. 1 are taken to be at the
desired steady state so that u/d=R; the desired ratio. Moreover, the
transmitter gains are

_ (20-4)mA
S’

(20— 4)mA
s

u

K, , K,

Substituting for K;, K> and u/d into (1) gives:

s> s\

u
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15.3

15.4

(a)

b)

(b)

The block diagram is the same as in Fig. 15.11 where Y= H,, Y,,= Hyp,

Ysp = H2Sp’ D = Ql, DmE le, and UE Q3-

(A steady-state mass balance on both tanks gives

0=q1—q3 or ;=0 (in deviation variables)
From the block diagram, at steady state:

Qs = K KrK; O

1

From (1) and (2), K,=
(1) and (2), Ky KK,

(No, because Eq. 1 above does not involve g,.

Gt

Kv Gp1

(1

)

Gp2

H2

From the block diagram, exact feedforward compensation for O; would

result when

O +0,=0

Substituting 0, = Ky G/K; O,

1
KK,

v

Gf:—
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() Same as part (b), because the feedforward loop does not have any dynamic
elements.

(d)

Qa

Gi Kt

A

A

Qi=0

H
Kv Qe >+ Gp1 &@—P Gp2 G

-
-+

For exact feedforward compensation
04+ 03=0 (1)
From the block diagram, 0, =Ky GrK, Q4 (2)

Using steady-state analysis, a mass balance on tank 1 for no variation in g
gives

0,—03=0 3)
Substituting for Q3 from (3) and (2) into (1) gives
Q4 + KVGfK,Q4 =0

1
KVKI

For dynamic analysis, find G,; from a mass balance on tank 1,

d
Al??:%"‘%_cl\/z
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(a)

(b)

Linearizing (4), noting that ¢, = 0, and taking Laplace transforms:

dan' ,
IEZ%_

C
= h

2\h,

His) @G -
Q) iy /Cs+1

Since q w - (6)
From (5) and (6),

aw_ 1.
() a\m/Cs+1

(7

Substituting for O3 from (7) and (2) into (1) gives

o, )KvaKtht =0

1
+( =
@A 1C)s+1

1 —
or (b=—gigﬂ24JEVQﬁ+H

v

For a steady-state analysis:
G,~=1, Gi=2, G,=G,=G=1
From Eq.15-21,

_ -G, =2
GGG, OO

Gy

Using Eq. 15-21,
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-2
-G, _ (s+D(Gs+1) -2

N Y 1Y 55+l
v (D(D(j
s+1

(c) Using Eq. 12-19,

where G, =1, G_=——

For 1.=2, and =1, Eq. 12-21 gives

_ 1
2s +1

From Eq. 12-20

- 1 s+1
G =G 'f=(s+1 =
¢ /= )(2s+lj 25 +1
From Eq. 12-16
s+1
G - GC*NZ 2s+1 _ s+l
-GG ,__1 2s
2s+1

For feedforward control only, G.=0. For a unit step change in disturbance,

(d)
D(s) = 1/s.
Substituting into Eq. 15-20 gives

Ys) = (Ga+GiG/G,Gy)~
S

For the controller of part (a)

1

2 e L
1s) {(s Gs ey T 2)(1)(s ; 1)} s
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—-10 B 5/2+—25/2_ 25 =25
(s+DBs+1) s+1  S5s+1  s+1 s+1/5

Y(s)=

or WH)=2.5@"—e”)

For the controller of part (b)

- 2 2 LY
1) = {(s TDGs+) (l)(ss +1)(1)[s +1ﬂ ;70

or ()= 10

The plots are shown in Fig. S15.5a below.

0.2

-02
-04 |

y(t) -0.6H

-08 ¢

— Controller of part (a)

210! - - Controller of part (b)

-1.2+

14|

time

Figure S15.5a. Closed-loop response using feedforward control only.

(e) Using Eq. 15-20:

For the controller of parts (a) and (c),

2 1
(s+DGs+1) (DHEDD (HJ

s+1 1
1+ (%j ) (s-i—l} )

Y(s)=

1
s
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—20s _ 5 +25/3+—40/3
(s+DGs+D2s+1) s+1 Ss+1  2s+1
_ 5 20/3 N 5/3
s+1 s+1/2 s+1/5

or Y(s)=

or y(l‘)=5€_t—? e—t/2+ ée—t/S

and for controllers of parts (b) and (c)

2 1
(s+1D)(5s+1) ()[ +1j()( +1)1 0

1) = s+1 s B
(1) (1)

or (=0

The plots of the closed-loop responses are shown in Fig. S15.5b.

0.4,

y(t)

— controllers of parts (a) and (c)
controllers of parts (b) and (c)

-0.8 -
0o 2 4 6 8 10 12 14 16 18 20
time

Figure S15.5b. Closed-loop response for feedforward-feedback control.

(a) The steady-state energy balance for both tanks takes the form

0=W1CT1+ WzCTz—WCT4+Q
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(b)

(a)

(b)

where Q is the power input of the heater
C is the specific heat of the fluid.

Solving for O and replacing unmeasured temperatures and flow rates by
their nominal values,

O=C(wiT, +w:T2 —wT4) (1)

Neglecting heater and transmitter dynamics,

O=Kup 2
Tim =T’ + Ki(Ti-T1°) (3)
Wy = Wmo + KW(W'WO) (4)

Substituting into (1) for O, T;, and w from (2), (3), and (4), gives

C — o0, 1 O 7 70, L 0
=—wm@G +—0,, - 14 +wy I5 =Ty (W +——(w,, — W,
p Kh[ (4 KT(lm tm )Wy T =Ty (W 2= (W =3, 7))

w

Dynamic compensation is desirable because the process transfer function
G,= Tu(s)/P(s) 1s different from each of the disturbance transfer functions,
Ga= Ta(s)/Ti(s), and Gpp= Tu(s)/w(s); this is more so for G, which has a
higher order.

:

Gy
L K, QS: G, —éL

A steady-state material balance for both tanks gives,
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(©)

0=q1+q2+qs—gs
Because ¢, = ¢, =0, the above equation gives

0=g¢;—q; or 0= 01-0;s (1)
From the block diagram,

Os =K, GrK; O

Substituting for Qs into (1) gives

0 ::§21 —-l(v(zle;gzl or (zf:: ](Vl(

To find G,and G, the mass balance on tank 1 is

dh
AlT;:%"‘%_Cl\/h_l

where A4 is the cross-sectional area of tank 1.

Linearizing and setting ¢, = 0 leads to

Taking the Laplace transform,

Hi(s) R
Ql’ (S) A1R1S +1

where R, =

2k,
= @

Linearizing g3 = C14/h, gives

1 h or Q3(S) =L

q3=—n , (3)
Ry Hi(s) R
Mass balance on tank 2 is
dh
A itk + _
2 q; 744 —4s
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Using deviation variables, setting ¢, = 0, and taking Laplace transform
AysH (s) =05 (s) - 05 (s)

Hys) _ 1

O5(s)  Ayps @
and
Hy(s) 1 _
i)y o
Gd(s)zHi(S)_Hé(S) 03(s) Hi(s) _ 1

O(s)  Oi(s) Hi(s) Oi(s)  Aps(ARs+1)
upon substitution from (2), (3), and (4).

Using Eq. 15-21,

1
G - G, As(ARs+])
7 GGG, KK, (-1/4,y5)
R 1
K K, ARs+]1

For the process model in Eq. 15-22 and the feedforward controller in Eq.
15-29, the correct values of t; and 1, are given by Eq. 15-42 and (15-43).

Therefore,
TI—T = T,—1 (D

for a unit step change in d, and no feedback controller, set D(s)=1/s, and
G~ 0 in Eq. 15-20 to obtain

vs) =6, +6,6,6.6,]*
‘ s
Setting G;= G, = 1, and using Eqgs. 15-22 and 15-29,
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_ Kd —Kd/KP(T1S+1) Kp l
Y(S)[rds+l+(l)( Ty +1 ](1)(1 s+1]]s

p

K {l_ 1 nEmemn) 1 @, }

s Tgs+l s (tz—rp) T8 +1 T,— 1) rps+1

- T —7T _ TI_T -t/
or () =K,|-e ”T_Me t/t, _ p T,
T =Tp T, ~ T2

* 0 — T,(t—7
J. e(t)dt=f y()dt =-K, Td+T2(T1 T2)+ p(T1—7p)
0 0 — —

-K
r i [Tdtz ~TaTp T 12T 1 —Tpu "'Tp2 +(1)T2 _Tptz)}
27 p

=-K, [(ﬁ —-1) (1, —Td)]

=0 when (1) holds.

15.9

(a) For steady-state conditions
G~=1, G/2, G,=G,=G=1
Using Eq. 15-21,

_ -G _ -2 _
GGG, OO

Gy

(b)  Using Eq. 15-21,
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_ Ze*S
-G, (s+DGs+1) =2
Gy = =

GGG, (1)(1)( 1 )e-s 5s+1
s+1

(c) Using Eq. 12-19,

G=GGG =%

vop T m

where G =e’ G =

For t.=2,and r =1, Eq. 12-21gives

1
2s +1

f:

From Eq. 12-20

1 1 s+1
— =(S+1) =
fo

G *= -
¢ 2s+1 2s+1

From Eq. 12-16

s+1
Gt 2641 s+l
“1-G,*G 1 2
25 +1

(d) For feedforward control only, G.=0. For a unit step disturbance,
D(s) = 1/s.

Substituting into Eq. 15-20 gives
1
Y(s) = (Gt GtG.vaGp);

For the controller of part (a)

_| 2
(s+1)(5s +1)

e—S
s+1

¥(s) + (1)(—2)(1)(

J:
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—10e™
(s+D(5s+1)

or W) =2.5 ("D — e "I3g(1-1)

For the controller of part (b)

B 2e”’ -2 e’ |1 _
1) = Ls +1)(5s+1) " (1)(5s + J(l)(s + lﬂ s 0

or ()= 0

The plots are shown in Fig. S15.9a below.

0.2

y(t) -0.6F

-0.8

— controller of part (a)

= = controller of part (b)
1.0+

-1.2 -

0 5 10 15 20 25 30
time

Figure S15.9a. Closed-loop response using feedforward control only.

(e) Using Eq. 15-20:

For the controllers of parts (a) and (c),

2e”’ e’
(s+D)5s+1) (1)(—2)(1)(S + 1]

s+1 e’
1*(2s]<1)(s+1j“)
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and for the controllers of parts (b) and (c),

2 _2 1
¥(s) = (s+1)(5s+1) ’ (1){5s + lj(l)(s + 1] 1_ 0
1+ (“2“)(1)(1)(1) §
S s+1

or y(H)=0

The plots of the closed-loop responses are shown in Fig. S15.9b.

0.4

0.2 -

-02+

yy “04r

-0.6+

— controllers of parts (a) and (c)
- - controllers of parts (b) and (c)

-08

-1.0 - 1

-1.2

0 2 4 6 8 10 12 14 16 18 20
Time

Figure S15.9b. Closed-loop response for the feedforward-feedback control.

15.10 I

(a) For steady-state conditions
G,=K,, G;=Ki; G,=G,=G=1

Using Eq. 15-21,
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(b)

(c)

(d)
(e)

_ -G, =05
GGG, (HHQ2)

Gy

Using Eq. 15-21,

—0.5¢7%
O gt St s O50tD
- s +
DO g
955 +1

Using Table 12.1, a PI controller is obtained from equation G,

K=t T 195 o5
K,t,+0 2(30+20)
T, =1=95

As shown in Fig.S15.10a, the dynamic controller provides significant
improvement.

0.08

—— Controller of part (a)
----- Controller of part (b)

0.06+

0.041

0.021

-0.02+

-0.04

0 100 200 300 400 500
time

Figure S15.10a. Closed-loop response using feedforward control only.
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15.11

0.06

—— Controllers of part (a) and (c)
004 [\ |- Controllers of part (b) and (c)

0.021

S~

-0.02+

-0.04+

-0.06

0 100 200 300 400 500
time

Figure S15.10b. Closed-loop response for feedforward-feedback control.

As shown in Fig. S15.10b, the feedforward configuration with the
dynamic controller provides the best control.

Energy Balance:

pVC%= wC(T, -T)-U(+q)AT ~-T,)-U, A4, (T-T,)(1)

Expanding the right hand side,

pVCi}—f =wC(T,-T)-UA(T -T,)
_UchT+UchTL _ULAL (T_Ta) (2)
Linearizing,
9.T~q.T +q.T"+1q, 3)

Substituting (3) into (2), subtracting the steady-state equation, and
introducing deviation variables,
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dT"
ve
PV

=wC(T/-T')-UAT' —-UATq' —UAq,T'
+UAT.q' U, A, T’

4

Taking the Laplace transform and assuming steady-state at ¢ = 0 gives,

PVCST'(s) = wCT}(s) + UA(T, ~T7)QL(s)
—(WC+UA+UAg. +U, 4,)T'(s)
Rearranging,
T'(s) =G ()T(s)+ G ()0 (s)

where:

K
G, (s)=—L
a() s +1

G,(s) ud:
S)=
p s +1

wC
K,; = %
_UA(T,-T)
i K
K
K=wC+UA+UAq,+U, A,

K

The ideal FF controller design equation is given by,

_Gd

G,G,G,

GF:

But, G, =K,e™ and G,=K,

Substituting (7) and (8) gives,

e‘
—wCe*™

"7 KKUAT. -T)

©)

(6)

(7

(17-27)

(8)

)

In order to have a physically realizable controller, ignore the ¢ term,
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15.12

a)

b)

—-wC

G, = — 10
" K,KUAT,-T) (19)
A component balance in A gives:
dc
V—Azchl-—ch—chA (1)
dt
At steady state,
0=gcy—qcy—Vkcy 2)
Solve for g,
__ kVc
(in__(jA

For an ideal FF controller, replace C,, by C,., gbyg;and C, by C Asp

kVC 4p
9=~
Cl4i__(jAsp
Linearize (1):
dCA R — — — — —
ngqcﬂ+chi+cAiq —-qc —qcy—cyq —Vkc,
Subtract (2),
dC’ — — ’ — - ! !
V—A = gciy+C4q' - qcy —C49' ~Vke)y

dt

Take the Laplace transform,
sVe'y(s)=gcys)+c;0'(s)—gcy(s)—c40'(s)—Vkc!y(s)

Rearrange,
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|1

Cy:—C
Cly(9)=—————Clyi(s)+—2—4L_¢ 6
4() sV +q+Vk 4i(s) sV+q7+VkQ(S) ©)

or
Cy(9)=Gy(s)CYs)+ G, ()Q'(s) (7)

The ideal FF controller design equation is,

Gy (s)
G =— 8
H G 56, 66,) ®
Substitute from (6) and (7) with G,(s)=K, and G«(s)=K, :
Gp(s) =~ ©)

K, (cqi —c K,

Note: G (s)=P'(s)/C!,, (s) where P is the controller output and c4in
is the measured value of cy;.

15.13

(a) Steady-state balances:

02654'61_53 (1)

0:‘73""?2_?4 (2)
0

0=+ 34, - %, 3)

0= X3q5 +X,q, — X,4, 4)

Solve (4) for x,q, and substitute into (3),

0=X595 +X,q, —X,q, ®)

Rearrange,
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In order to derive the feedforward control law, let
f4 - x4Sp’ fz —> Xy (t), ES —> X5 (t), and
Thus,

x4sp q4 - xS (t)qS (t)

Q2(t) =

X5
Substitute numerical values:

(3400)x4.sp - ‘x5 (t)qS (t)
0.990

q,(t) =

or

q,(t) =3434x, , —1.01x5(¢)g5(7)

9, = q,()

(6)

(7

®)

9

Note: If transmitter and control valve gains are available, then an
expression relating the feedforward controller output signal, p(?), to the

measurements , Xs,,(?) and qsn(t), can be developed.

(b) Dynamic compensation: It will be required because of the extra
dynamic lag preceding the tank on the left hand side. The stream 5

disturbance affects x; while g3 does not.
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