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Chapter 15 
 
 
 
 
15.1 
 
 
  For Ra=d/u 
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which can vary more than Kp in Eq. 15-2, because the new Kp depends on 
both d and u. 

 
 
 
15.2 
 
 
  By definition, the ratio station sets 
 
   (um – um0) = KR (dm –   dm0) 
 

  Thus 
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For constant gain KR, the values of u and d in Eq. 1 are taken to be at the 
desired steady state so that u/d=Rd, the desired ratio. Moreover, the 
transmitter gains are 
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Substituting for K1, K2 and u/d into (1) gives: 
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15.3 
 
 

(a) The block diagram is the same as in Fig. 15.11 where Y ≡ H2,  Ym ≡ H2m,  
Ysp ≡ H2sp,  D ≡ Q1,  Dm ≡ Q1m, and U ≡ Q3. 

 
 

b) (A steady-state mass balance on both tanks gives 
 

0 = q1 – q3        or     Q1 = Q3    (in deviation variables) (1) 
 
From the block diagram, at steady state: 
 
 Q3 = Kv Kf Kt Q1 
 

From (1) and (2),   Kf = 1

v tK K
     (2) 

 
c) (No, because Eq. 1 above does not involve q2. 

 
 
15.4 
 
 
 
 

 
 

 
(b) From the block diagram, exact feedforward compensation for Q1 would 

result when 
 

Q1 + Q2 = 0 
 
 
  Substituting  Q2 = KV Gf Kt Q1, 
 

Gf = − 1

v tK K
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(c) Same as part (b), because the feedforward loop does not have any dynamic 

elements.   
 

 
 (d) 
 

 
 
  For exact feedforward compensation 
 

 Q4 + Q3 = 0      (1) 
 
  From the block diagram,   Q2 = KV Gf Kt Q4   (2) 
 

Using steady-state analysis, a mass balance on tank 1 for no variation in q1 
gives 

  
    Q2 − Q3 = 0      (3) 
 
  Substituting for Q3 from (3) and (2) into (1) gives 
 
    Q4 + KV Gf Kt Q4 = 0 
 

or   Gf = − 1

v tK K
 

 
For dynamic analysis, find Gp1 from a mass balance on tank 1, 
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Linearizing (4), noting that 1q′  = 0, and taking Laplace transforms: 
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  From (5) and (6), 
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Substituting  for Q3 from (7) and (2) into (1) gives 
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(a) For a steady-state analysis: 
 

Gp=1,      Gd=2,      Gv = Gm = Gt =1 
 
From Eq.15-21,   
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(b) Using Eq. 15-21,  
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 Gf = 
15
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(c) Using Eq. 12-19,  
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For τc=2, and r=1,  Eq. 12-21 gives 
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From Eq. 12-20 
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From Eq. 12-16 
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(d) For feedforward control only, Gc=0. For a unit step change in disturbance, 

D(s) = 1/s. 
 

Substituting into Eq. 15-20 gives 
 

 Y(s) = (Gd+GtGfGvGp) s
1  

 
For the controller of part (a) 
 

 Y(s) = 
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 Y(s) = 
5/1
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or  y(t) = 2.5 (e-t – e- t/5) 

 
 
For the controller of part (b) 
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  or        y(t) =  0 
 
  The plots are shown in Fig. S15.5a below. 
 

 
 
Figure S15.5a.  Closed-loop response using feedforward control only. 
 
 

(e) Using Eq. 15-20: 
 

For the controller of parts (a) and (c), 
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  or Y(s) = =
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or  y(t) = 5e-t –
3
20  e-t/2 + 

3
5 e- t/5 

 

and for controllers of parts (b) and (c) 
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  or  y(t) = 0 
 
  The plots of the closed-loop responses are shown in Fig. S15.5b.  
 

 
  Figure S15.5b. Closed-loop response for feedforward-feedback control.  
 
 
 
 
15.6 
 
 

(a) The steady-state energy balance for both tanks takes the form 
 

0 = w1 C T1 +  w2 C T2 − w C T4 + Q 
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where  Q is the power input of the heater 
 C is the specific heat of the fluid. 
 
Solving for Q and replacing unmeasured temperatures and flow rates by 
their nominal values, 
 
 Q = C ( )42211 TwTwTw −+      (1) 
 
Neglecting heater and transmitter dynamics, 
 
 Q = Kh p       (2) 
 
 T1m = T1m

0 + KT(T1-T1
0)     (3) 

  
   wm = wm

0 + Kw(w-w0)      (4) 
 
 
  Substituting into (1) for Q, T1, and w from (2), (3), and (4), gives 
 

0 0 0 0
1 1 1 1 2 2 4

1 1[ ( ( )) ( ( ))]m m m m
h T w

Cp w T T T w T T w w w
K K K

= + − + − + −

 
   

(b) Dynamic compensation is desirable because the process transfer function 
Gp= T4(s)/P(s) is different from each of the disturbance transfer functions, 
Gd1= T4(s)/T1(s), and Gd2= T4(s)/w(s); this is more so for Gd1 which has a 
higher order. 
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(a)  

 
 
 

(b) A steady-state material balance for both tanks gives, 
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0 = q1 + q2 + q4 − q5 

 
Because 2q′  = 4q′  = 0, the above equation gives 
 
 0 = 1q′  – 5q′    or    0 =  Q1 – Q5    (1) 
 
From the block diagram, 
 
 Q5 = Kv Gf Kt Q1 

 
  Substituting for Q5 into (1) gives 
 

 0 = Q1 − Kv Gf Kt Q1  or  Gf  = 
tv KK

1  

 
 (c) To find Gd and Gp, the mass balance on tank 1 is 

 

   1121
1

1 hCqq
dt
dhA −+=    

 
  where A1 is the cross-sectional area of tank 1. 
 
  Linearizing and setting 2q′  = 0 leads to 
 

   1 1
1 1 1

12

dh CA q h
dt h

′
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  Taking the Laplace transform, 
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  Linearizing  q3 = C1 1h   gives 
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  Mass balance on tank 2 is 
 

   543
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  Using deviation variables, setting 4q′  = 0, and taking Laplace transform 
 
   ( ) ( ) ( )2 2 3 5A sH s Q s Q s′ ′ ′= −  
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                          and 
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  upon substitution from (2), (3), and (4). 
   

Using Eq. 15-21, 
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For the process model in Eq. 15-22 and the feedforward controller in Eq. 
15-29, the correct values of τ1 and τ2 are given by Eq. 15-42 and (15-43).  

   
  Therefore, 
 
   τ1 − τ2    =   τp − τL     (1) 
 

for a unit step change in d, and no feedback controller, set D(s)=1/s, and 
Gc= 0  in Eq. 15-20 to obtain 

 

   Y(s) = [ ]
s

GGGGG pvftd
1

+  

  Setting Gt = Gv = 1, and using Eqs. 15-22 and 15-29, 
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     0=    when (1) holds. 
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(a) For steady-state conditions 
 

Gp=1,     Gd=2,     Gv = Gm = Gt =1 
 
Using Eq. 15-21,   
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(b) Using Eq. 15-21,  
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 Gf = 
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(c) Using Eq. 12-19,   
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(d) For feedforward control only, Gc=0. For a unit step disturbance,  

D(s) = 1/s. 
 

Substituting into Eq. 15-20 gives 
 

 Y(s) = (Gd+GtGfGvGp) s
1  

 
For the controller of part (a) 
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or  y(t) = 2.5 (e-(t-1) – e-( t-1)/5)S(t-1) 

 
 
For the controller of part (b) 
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  or        y(t) =  0 
 
  The plots are shown in Fig. S15.9a below. 
 

 
Figure S15.9a.  Closed-loop response using feedforward control only. 
 
 

(e) Using Eq. 15-20: 
 

For the controllers of parts (a) and (c), 
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and for the controllers of parts (b) and (c), 
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  or  y(t) = 0 
 
  The plots of the closed-loop responses are shown in Fig. S15.9b. 
 

 
  Figure S15.9b. Closed-loop response for the feedforward-feedback control.  
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   (a) For steady-state conditions 

 
Gp=Kp,     Gd=Kd,     Gv = Gm = Gt =1 

 
Using Eq. 15-21,  
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(b) Using Eq. 15-21, 
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(c) Using Table 12.1,  a PI controller is obtained from equation G, 
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τ
=

cp
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(d) As shown in Fig.S15.10a, the dynamic controller provides significant 
improvement. 

(e)  
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  Figure S15.10a.  Closed-loop response using feedforward control only. 
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Figure S15.10b. Closed-loop response for feedforward-feedback control. 

 
 

f) As shown in Fig. S15.10b, the feedforward configuration with the 
dynamic controller provides the best control. 
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  Energy Balance: 
 

   )()()1()( aLLcci TTAUTTAqUTTwC
dt
dTVC −−−+−−=ρ (1) 

 
  Expanding the right hand side, 
 

   )()( ci TTUATTwC
dt
dTVC −−−=ρ   

         )( aLLccc TTAUTUAqTUAq −−+−    (2) 
 
  Linearizing, 
 
   cccc qTTqTqTq ′+′+≈      (3) 
 

Substituting (3) into (2), subtracting the steady-state equation, and 
introducing deviation variables, 
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   TqUAqTUATUATTwC
dt
TdVC cci ′−′−′−′−′=
′

ρ )(  

          TAUqUAT LLcc ′−′+      (4) 
 
  Taking the Laplace transform and assuming steady-state at t = 0 gives, 
 
   ( ) ( ) ( ) ( )i c cVCsT s wCT s UA T T Q sρ −′ ′ ′= + −  
 
         )()( sTAUqUAUAwC LLc ′+++−    (5) 
 
  Rearranging, 
 
   ( ) ( ) ( ) ( ) ( )L i p cT s G s T s G s Q s′ ′ ′= +     (6) 
 
  where: 
 

   ( )
τ 1

L
d

KG s
s

=
+

 

   
1

)(
+τ

=
s
K

sG p
p  

   d
wCK
K

=        (7) 

   
K

TTUA
K c

p
)( −

=  

   
K
VCρ

=τ  

   LLc AUqUAUAwCK +++=  
 
  The ideal FF controller design equation is given by, 
 

   d
F

t v p

GG
G G G
−

=       (17-27) 

 
  But, s

tt eKG θ−=    and  Gv=Kv     (8) 
   
  Substituting (7) and (8) gives, 
 

   
)( TTUAKK

wCeG
cvt

s

F −
−

=
θ+

     (9) 

 
  In order to have a physically realizable controller, ignore the e+θs term, 



 

15-18 

 

   
)( TTUAKK

wCG
cvt

F −
−

=      (10) 
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a) A component balance in A gives: 
 

A
Ai A A

dcV qc qc Vkc
dt

= − −      (1) 

 
At steady state, 
 
 

   0 Ai A Aq c q c Vkc= − −      (2) 
 
  Solve for ,q  
 

   
AAi

A

CC
CkVq
−

=        (3) 

 
  For an ideal FF controller, replace AiC  by AiC , q by q1 and AC  by AspC : 
 

   Asp

Ai Asp

kVC
q

C C
=

−
 

 
b) Linearize (1): 

 
A

iA Ai Ai A A A A
dcV q c qc c q q c qc c q Vkc
dt

′ ′ ′ ′= + + − − − −  

 
Subtract (2), 
 

A
iA Ai A A A

dcV qc c q qc c q Vkc
dt
′

′ ′ ′ ′ ′= + − − −  

 
Take the Laplace transform, 
 

( ) ( ) ( ) ( ) ( ) ( )A iA Ai A A AsVc s qc s c Q s qc s c Q s Vkc s′ ′ ′ ′ ′ ′= + − − −  
 
Rearrange, 
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 ( )( ) ( )Ai A
A Ai

c cqC s C s Q s
sV q Vk sV q Vk

−′ ′ ′= +
+ + + +

  (6) 

or 
 
   ( ) ( ) ( ) ( ) ( )A d iA pC s G s C s G s Q s′ ′ ′= +     (7) 
 
  The ideal FF controller design equation is, 
 

   ( )( )
( ) ( ) ( )

d
F

v p t

G sG s
G s G s G s

= −      (8) 

 
  Substitute from (6) and (7) with Gv(s)=Kv and Gt(s)=Kt : 
 

   ( )
( )F

v Ai A t

qG s
K c c K

= −
−

     (9) 

 
 . 

Note:  )(/)()( sCsPsG mAiF ′′=   where P is the controller output and cAim 
is the measured value of cAi. 

 
 
15.13 
 
 
  (a)  Steady-state balances: 
 
   3150 qqq −+=       (1) 
 
   4230 qqq −+=       (2) 
       0 

   3311550 qxqxqx −+=       (3) 
 
   4422330 qxqxqx −+=      (4) 
 
  Solve (4) for 33qx  and substitute into (3), 
        
   4422550 qxqxqx −+=      (5) 
 
  Rearrange, 
 



 

15-20 

 
2

5544
2 x

qxqxq −
=       (6) 

 
In order to derive the feedforward control law, let 
 

4 4 ,spx x→  2 2 ( ),x x t→  5 5( ),x x t→    and    )(22 tqq →  
 
Thus, 
 

 
2

5544
2

)()(
)(

x
tqtxqx

tq sp −
=      (7) 

 
Substitute numerical values: 
 

 
990.0

)()()3400(
)( 554

2

tqtxx
tq sp −=     (8) 

  or 
 

 )()(01.13434)( 5542 tqtxxtq sp −=     (9) 
 
Note: If transmitter and control valve gains are available, then an 
expression relating the feedforward controller output signal, p(t), to the 
measurements , x5m(t) and q5m(t), can be developed. 
 
(b) Dynamic compensation: It will be required because of the extra 

dynamic lag preceding the tank on the left hand side. The stream 5 
disturbance affects x3 while q3 does not. 

 
 
 
 

 


