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16.1 
 

The difference between systems A and B lies in the dynamic lag in the 
measurement elements Gm1 (primary loop) and Gm2(secondary loop). With 
a faster measurement device in A, better control action is achieved. In 
addition, for a cascade control system to function properly, the response of 
the secondary control loop should be faster than the primary loop. Hence 
System A should be faster and yield better closed-loop performance than 
B. 
 
Because Gm2 in system B has an appreciable lag, cascade control has the 
potential to improve the overall closed-loop performance more than for 
system A. Little improvement in system A can be achieved by cascade 
control versus conventional feedback. 

 
Comparisons are shown in Figs. S16.1a/b. PI controllers are used in the 
outer loop. The PI controllers for both System A and System B are 
designed based on Table 12.1 (τc = 3). P controllers are used in the inner 
loops. Because of different dynamics the proportional controller gain of 
System B is about one-fourth as large as the controller gain of System A 
 
System A:   Kc2 = 1      Kc1=0.5       τI=15 
System B:   Kc2 = 0.25            Kc1=2.5       τI=15 
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Figure S16.1a.   System A. Comparison of D2 responses (D2=1/s) for cascade 
control and conventional PI control. 
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In comparing the two figures, it appears that the standard feedback results 
are essentially the same, but the cascade response for system A is much 
faster and has much less absolute error than for the cascade control of B 
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Figure S16.1b.   System B .Comparison of D2 responses (D2=1/s) for cascade 
control and conventional PI control. 

 
 

 

 
 
Figure S16.1c.   Block diagram for System A 
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  Figure S16.1d.   Block diagram for System B 

 
 
 
16.2 
 
 

a) The transfer function between Y1 and D1 is 
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and that between Y1 and D2 is 
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For Gc1 = Kc1 and Gc2 = Kc2, we obtain 
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The figures below show the step load responses for Kc1=43.3 and for 
Kc2=25. Note that both responses are stable. You should recall that the 
critical gain for Kc2=5 is Kc1=43.3. Increasing Kc2 stabilizes the controller, 
as is predicted. 
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Figure S16.2a.  Responses for unit load change in D1 (left) and D2 (right) 

 
 

b) The characteristic equation for this system is  
 

1+Gc2GvGm2+Gc2GvGm1Gc1Gp = 0     (1) 
 
Let Gc1=Kc2 and Gc2=Kc2. Then, substituting all the transfer functions into 
(1), we obtain  
 

1)1()67()814(8 122
2

2
3 +++++++ cccc KKsKsKs   (2) 

 
Now we can use the Routh stability criterion. The Routh array is 
 
Row 1   8       267 cK+  
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2 34.13 
3 38.25 
4 43.31 
5 48.75 
6 54.38 
7 60.11 
8 65.91 
9 71.75 
10 77.63 
11 83.52 
12 89.44 
13 95.37 
14 101.30 
15 107.25 
16 113.20 
17 119.16 
18 125.13 
19 131.09 
20 137.06 

 

For 1 ≤ Kc2≤ 20, there is no impact on stability by the term 14+8Kc2 in the 
second row. The critical Kc1 is found by varying Kc2 from 1 to 20, and 
using 
 

04456624 212
2
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Rearranging (3) and (4), we obtain 
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Hence, for normal (positive) values of Kc1 and Kc2, 
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The results are shown in the table and figure below. Note the nearly linear 
variation of Kc1 ultimate with Kc2. This is because the right hand side is 
very nearly 6 Kc2+16.5. For larger values of Kc2, the stability margin on 
Kc1 is higher. There don’t appear to be any nonlinear effects of Kc2 on Kc1, 

especially at high Kc2. 

 

There is no theoretical upper limit for Kc2, except that large values may 

cause the valve to saturate for small set-point or load changes. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S16.2b.  Effect of Kc2  on the critical gain of Kc1 
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c) With integral action in the inner loop, 
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Substitution of all the transfer functions into the characteristic equation 
yields 
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  Rearrangement gives 
 
  01)512(45548 11
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The Routh array is: 
 
Row 1   8      45     11 cK+  

 
Row 2             54             1512 cK+          0 
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Row 5           11 cK+  

 
Using the Routh array analysis 
 
Row 3:    0201167 1 >− cK  ∴   35.581 <cK  

    01 1 >+ cK   ∴   11 −>cK  

 
Row 4:  Since 1201167 cK−   is already positive, 

 0125464137100 1
2

1 >++− cc KK   

  Solving for the positive root, we get 3.431 <cK  
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The ultimate 1cK  is 43.3, which is the same result as for proportional only 

control of the secondary loop. 
 
With integral action in the outer loop only, 
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Substituting the transfer functions into the characteristic equation. 
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The Routh array is 

  
Row 1   8      37       1cK  

 
Row 2             54               156 cK+          0 
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Row 5             1cK  

 
Using the Routh array analysis, 
 
Row 3:    020975 >−   ∴   75.481 <cK  

   01 >cK    

 
Row 4:  Since 120975 cK−   is already positive, 

 058503297100 1
2

1 >++− cc KK   

    Solving for the positive root, we get 66.341 <cK  

 
Hence, Kc1<34.66 is the limiting constraint. Note that due to integral 
action in the primary loop, the ultimate controller gain is reduced. 
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Calculation of offset: 
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Since Gc1 contains integral action, a step-change in D1 does not produce an 
offset in Y1. 
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Thus, for the same reason as before, a step-change in D2 does not produce 
an offset in  Y1. 
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Therefore, when there is no integral action in the outer loop, a primary 
disturbance produces an offset. 
 
Thus, there is no offset for a step-change in the secondary disturbance. 

. 
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  Thus, there is no offset for a step-change in the secondary disturbance. 
 
 
16.3 
 
 

a)      Tuning the slave loop: 
 

The open-loop transfer function is 

 
)1)(15)(12(

)( 2

+++
=

sss

K
sG c  

Since a proportional controller is used, a high Kc2 reduces the steady-state 
offset. The highest Kc2 which satisfies the bounds on the gain and phase 
margins is 5.3. For this Kc2, the gain margin is 2.38, and the phase margin 
is 30.7°.  

 
By using MATLAB, the Bode plot of G(s) with Kc2 = 5.3 is shown below. 
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      Figure S16.3a.  Bode plot for the inner open-loop; gain and phase margins. 
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b) Tuning the master loop: 
 

  The input-output transfer function of the inner loop is 
 
   

   
3.681710

)1(3.5
)(

23 +++
+=

sss

s
sG ni   (with Kc2 = 5.3) 

 
The ultimate gain Kc1,u can be found by simulation. In doing so, 
 
  Kc1,u = 3.2491 
 
The corresponding period of oscillation is  
 

Pu = 2π/ω = 8.98 time units. 
 
 
  The Ziegler-Nichols tuning criteria for a PI-controller yield 
 
  Kc1 = Kc1,u / 2.2 = 1.48 
 
  48.72.1/1 == uI Pτ  

 
The closed-loop response with these tuning constant values (Kc1=1.48, 

1Iτ = 7.48 ,  Kc2 = 5.3)  is shown below. 
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            Fig S16.3b.  Closed-loop response for a unit step set-point change.  
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16.4 
 
 
 For the inner controller (Slave controller), IMC tuning rules are used 
 

 2 3
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1 (2 1)(5 1)( 1)
*

( 1)c
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Closed-loop responses for different values of τc2 are shown below. A τc2 value of 
3 yields a good response. 

 
  

For the Master controller, 
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This higher-order transfer function is approximated by first order plus time delay 
using a step test: 
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Figure S16.4.  Reaction curve for the higher order transfer function 
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From Table 12.1:  (PI controller, Case G):   
1

15.32

0.38c
c

K =
τ +

   and    15.32iτ =  

Closed-loop responses are shown for different values of τc1. A τc1 value of 7  
yields a good response. 
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 Figure S16.4b. Closed-loop response for τc2  Figure S16.4c. Closed-loop response for τc1 
  

Hence for the master controller,  Kc = 2.07     and       τI = 15.32 
 
 
16.5 
 
 
  

a) The T2 controller (TC-2) adjusts the set-point, T1sp, of the T1 controller (TC-
1). Its output signal is added to the output of the feedforward controller.  

 

 
    
   Figure S16.5a.  Schematic diagram for the control system 
 

b) This is a cascade control system with a feedforward controller being used 
to help control T1. Note that T1 is an intermediate variable rather than a 
disturbance variable since it is affected by V1. 
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c) Block diagram: 
 

 
 Figure S16.5b.  Block diagram for the control system in Exercise 16.5. 

 
 
 
16.6 
 
 
 a) For the inner loop, the characteristic equation reduces to: 
 

  0
3

1
1 =

−
++

s

s
K inner     � s − 3 + Kinner s + Kinner = 0 

  � s(1+ Kinner) –3 + Kinner = 0 

  Hence, 
inner

inner

K

K
s

+
−

=
1

3
 

The inner loop will be stable if this root is negative. Thus, we conclude 

that this loop will be stable if either Kinner>3 or  Kinner<−1. 

b) The servo transfer function for the outer loop is: 

( ) ( )( )

( ) 1 ( ) ( ) ( )
c inner p

sp inner p c inner p

G s K G sY s

Y s K G s G s K G s
=

+ +
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The  complex closed-loop poles arise when the characteristic polynomial 
is factored. This polynomial is   

 (s2 + s + 0.313)  =  (s + 0.5 + 0.25 i) (s + 0.5 −0.25i) 

11 1
1 6 6 0

3 3
I

c
I

ss s
K

s s s

 τ ++ ++ + = − τ − 
 

( ) 26 6I I c IK sτ + τ + τ�  

               ( 3 6 6 6 )I I I c cK K s+ − τ + τ + τ +  

    06 =+ cK  

The poles are also the roots of the characteristic equation: 

Hence, the PI controller parameters can be found easily: 

   052.0=cK  

   0.137Iτ =  

 
 
16.7 
 
 

Using MATLAB-Simulink, the block diagram for the closed-loop system 
is shown below.  
 

 
     
    Figure S16.7a.  Block diagram for Smith predictor 
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where the block             represents the time-delay term e-θs. 
 

 
The closed-loop response for unit set-point and disturbance changes are 
shown below. Consider a PI controller designed by using Table 12.1(Case 
A) with τc = 3  and set Gd = Gp. Note that no offset occurs, 
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   Figure S16.7b.  Closed-loop response for setpoint and disturbance changes. 

 
 
 
16.8 
 
 
  The block diagram for the closed-loop system is 
 
 

 
Figure S6.8.  Block diagram for the closed-loop system 
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 a)  
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  Hence dead-time is eliminated from characteristic equation: 
 

  
1

s

sp I

Y e

Y s

−θ

=
+ τ

 

 
 

b) The closed-loop response will not exhibit overshoot, because it is a first 
order plus dead-time transfer function. 

 
 
16.9 

 

For a first-order process with time delay, use of a Smith predictor and 
proportional control should make the process behave like a first-order 
system, i.e., no oscillation. In fact, if the model parameters are accurately 
known, the controller gain can be as large as we want, and no oscillations 
will occur. 

Appelpolscher has verified that the process is linear, however it may not 
be truly first-order. If it were second-order (plus time delay), proportional 
control would yield oscillations for a well-tuned system. Similarly, if there 
are errors in the model parameters used to design the controller even when 
the actual process is first-order, oscillations can occur. 
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16.10 
 

 
a) Analyzing the block diagram of the Smith predictor 

1 (1 )

s
c p

s s
sp c p c p

G G eY

Y G G e G G e

−θ

−θ −θ

′
=

′ ′+ − +�
�
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s s
c p c p c p

G G e
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−θ

−θ −θ

′
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′ ′ ′+ + − �
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Note that the last two terms of the denominator can when pp GG ′=′ ~
 and  

θ = θ�  

The characteristic equation is 

1 0s s
c p c p c pG G G G e G G e−θ −θ′ ′ ′= + + − =�
� �  

 
b)       The closed-loop responses to step set-point changes are shown below for 

 the various cases. 
 

 

   

Figure S16.10a.   Simulink diagram block; base case 
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Figure S16.10b.   Base case           Figure S16.10c.     Kp = 2.4 
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Figure S16.10d.    Kp = 1.6              Figure S16.10e.   τ = 6 
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Figure S16.10f.  τ = 4      Figure S16.10g.     θ=2.4 
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  Figure S16.10h.     θ = 1.6 

It is immediately evident that errors in time-delay estimation are the most 
serious. This is because the terms in the characteristic equation which 
contain dead-time do not cancel, and cause instability at high controller 
gains. 

When the actual process time constant is smaller than the model time 
constant, the closed–loop system may become unstable. In our case, the 

error is not large enough to cause instability, but the response is more 

oscillatory than for the base (perfect model) case. The same is true if the 

actual process gain is larger than that of the model. If the actual process 

has a larger time constant, or smaller gain than the model, there is no 

significant degradation in closed loop performance (for the magnitude of 

the error, ± 20% considered here). Note that in all the above simulations, 

the model is considered to be  
15

2 2

+

−

s

e s

 and the actual process parameters 

have been assumed to vary by ± 20% of the model parameter values. 

 

c)  The proportional controller was tuned so as to obtain a gain margin of 2.0.   

This resulted in Kc = 2.3. The responses for the various cases are shown 

below 
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        Base case        Kp = 3 
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           Kp = 1         τ = 1 
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          τ = 2.5                   θ = 3 
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  θ = 1 
  
 Nyquist plots were prepared for different values of Kp, τ and θ, and 
 checked to see if the stability criterion was satisfied. The stability regions 
 when the three parameters are varied one to time are. 

Kp ≤ 4.1    (τ = 5   ,    θ = 2) 

τ    ≥ 2.4     (Kp=2  ,   θ = 2) 

θ    ≤ 0.1   and 1.8 ≤ θ ≤ 2.2    (Kp = 2    ,    τ = 5)  
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16.11 
 
 
  From Eq. 16-24, 
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  that is, 
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  Using the final value theorem for a step change in D: 
 

   )(lim)(lim
0

ssYty
st →∞→

=  

 
  then 
   

   
00

lim)(lim
→→

=
ss

ssY
( )3 32 2

1 1
1

2
1

s sc c I

I

c c I

I

K K s
e e

s s s
s

K K s s
s s

− − + τ+ − τ 
+ τ+
τ

 

 

         
0

lim
→

=
s

( )3 32 2
( ) 1

2
( )

s s
I c c I

I c c I

e s K K s e
s s

s K K s
s

− − τ + + τ −  

τ + + τ
 

 
  Multiplying both numerator and denominator by s2, 
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  Applying L'Hopital's rule: 
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Therefore  
 

)(lim)(lim
0

ssYty
st →∞→

=  = 6 

 
  and the PI control will not eliminate offset. 

 
 
16.12 
 

 
 For a Smith predictor, we have the following system 

      Figure S16.12.   Smith Predictor diagram block 

where the process model is Gp(s) = Q(s) e-θs 

For this system, 

pc

pc

sp GG

GG

Y

Y
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where Gc’ is the transfer function for the system in the dotted box.  
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Simplification gives 
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1

s
sc

sp c

G QeY
P s e

Y G Q

−θ
−θ= =

+
 

where   ( )
1

c

c

G Q
P s

G Q
=

+
 

If P(s) is the desired system performance (after the time delay has elapsed) 
under feedback control, then we can solve for Gc in terms of P(s). 
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 The IMC controller requires that we define 

 sG e−θ
+ =�  

 )(
~

sQG =−   (the invertible part of Gp) 

  Let the filter for the controller be  f(s) = 
1

1F sτ +
 

  Therefore, the controller is  
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The closed-loop transfer function is 
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Note that this is the same closed-loop form as analyzed in part (a), which 
led to a Smith Predictor type of controller. Hence, the IMC design also 
provides time-delay compensation. 
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16.13 
 

Referring to Example 4.8, if q, the flowrate, and Ti, the inlet temperature, 
are know and are constant, then the Laplace transform models in (4-79) 
and (4-80) are 

 )()()( 1211 sTasCas A ′=′−      (4-79) 

 )()()()( 21222 sTbsCasTas sA ′+′=′−     (4-80) 

where ( )sT s′ is the coolant temperature. Using Eq. 4-86, we can directly 

compute concentration from the temperature signal, i.e., 

  )()(
11

12 sT
as

a
sCA ′

−
=′  

which is a first-order filter operating on ( )T s′  

So inferential control of concentration using temperature would be 
feasible in this case. If q and Ti varied, a more general expression for the 
linearized model would be necessary, but there would still be a direct way 
to infer CA from T. 

 
 
16.14 
 

One possible solution would be to use a split range valve to handle the 
100≤ p≤ 200 and higher pressure ranges. Moreover, a high-gain controller 
with set-point = 200 psi can be used for the vent valve. This valve would 
not open while the pressure is less than 200 psi, which is similar to how a 
selector operates. 

Stephanopoulos (Chemical Process Control, Prentice-Hall, 1989)  has 
described many applications for this so-called split-range control. A 
typical configuration consists of 1 controller and 2 final control elements 
or valves. 
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  Figure S16.14.  Process instrumentation diagram  
 
 
16.15 

The amounts of air and fuel are changed in response to the steam pressure. 
If the steam pressure is too low, a signal is sent to increase both air and 
fuel flowrates, which in turn increases the heat transfer to the steam. 
Selectors are used to prevent the possibility of explosions (low air-fuel 
ratio). If the air flowrate is too low, the low selector uses that 
measurement as the set-point for the fuel flow rate controller. If the fuel 
flowrate is too high, its measurement is selected by the high selector as the 
set-point for the air flow controller. This also protects against dynamic 
lags in the set-point response. 

 
 
16.16 
 

       Figure S16.16.  Control condensate temperature in a reflux drum  
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16.17  
 
 
  Supposing a first-order plus dead time process, the closed-loop transfer  
  function is  

    ( )
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1
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1

1
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 
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τ +
=

 
+ + τ τ +

τ +

 

Notice that Kc and Kp always appear together as a product. Hence, if we 
want the process to maintain a specified performance (stability, decay 
ratio specification, etc.), we should adjust Kc such that it changes inversely 
with Kp; as a result, the product KcKp is kept constant. Also note, that since 
there is a time delay, we should adjust Kc based upon the future estimate 
of Kp: 

  ( )
ˆ ( )

ˆ ( )

c p c p
c

p

K K K K
K t

bK t a
M t

= =
+ θ +

+ θ

 

  where  ˆ ( )pK t + θ  is an estimate of Kp θ  time units into the future. 

  

 
16.18 
 
 

This is an application where self-tuning control would be beneficial. In 
order to regulate the exit composition, the manipulated variable (flowrate) 
must be adjusted. Therefore, a transfer function model relating flowrate to 
exit composition is needed. The model parameters will change as the 
catalyst deactivates, so some method of updating the model (e.g., periodic 
step tests) will have to be derived. The average temperature can be 
monitored to determine a significant change in activation has occurred, 
thus indicating the need to update the model. 
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16.19 
 

 a) 
1

1 1
c p

c p c

G G

G G s
=

+ τ +
 

1
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c
c
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p
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G s
G

s
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  Substituting for Gp 

  
2

1 2 1 2( ) 11
( )c

c p

s s
G s

s K

τ τ + τ + τ +=
τ

 1 2 1 2

1 1
( )

p c

s
K s

 = τ + τ + τ τ + τ  
 

Thus, the PID controller tuning constants are  

1 2( )
c

p c

K
K

τ + τ=
τ

  

1 2Iτ = τ + τ  

1 2

1 2
D

τ ττ =
τ + τ

 

  (See Eq. 12-14 for verification)   

b)  For τ1 = 3     and   τ2 = 5  and  τc = 1.5, we have  

  Kc = 5.333    τI = 8.0   and τD = 1.875 

Using this PID controller, the closed-loop response will be first order 
when the process model is known accurately. The closed-loop response to 
a unit step-change in the set-point when the model is known exactly is 
shown above. It is assumed that τc was chosen such that the closed loop 
response is reasonable, and the manipulated variable does not violate any 
bounds that are imposed. An approximate derivative action is used by 

Simulink-MATLAB, namely 
1

Ds

s

τ
+β

when β=0.01 

 



16-28 

 

     

    Figure S16.19a.  Simulink block diagram. 
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            Figure S16.19b.  Output (no model error)   Figure S16.19c. Manipulated variable (no 
model error) 
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 Figure S16.19d.  Output (Kp = 2)           Figure S16.19e.  Manipulated variable 

  (Kp = 2) 



16-29 

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time

O
ut

pu
t

            
0 5 10 15 20 25 30 35 40

0

200

400

600

800

1000

1200

time

M
an

ip
ul

at
ed

 v
ar

ia
bl

e

 

Figure S16.19f.  Output (Kp = 0.5)                 Figure S16.19g.   Manipulated variable 

(Kp =0.5) 
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 Figure S16.19h.  Output (τ2 = 10)          Figure S16.19i.  Manipulated variable 

    (τ2 = 10) 
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 Figure E16.9 j.- Output (τ2 = 1)                    Figure E16.9 k.-  Manipulated variable 

(τ2 = 1) 

 
(1) The closed-loop response when the actual Kp is 2.0 is shown above. The 

controlled variable reaches its set-point much faster than for the base case 
(exact model), but the manipulated variable assumes values that are more 
negative (for some period of time) than the base case. This may violate 
some bounds. 
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(2) When Kp = 0.5, the response is much slower. In fact, the closed-loop time 
constant seems to be about 3.0 instead of 1.5. There do not seem to be any 
problems with the manipulated variable. 

 
 
(3) If  (τ2 = 10), the closed-loop response is no longer first-order. The settling 

time is much longer than for the base case. The manipulated variable does 
not seem to violate any bounds. 

 
(4) Both the drawbacks seen above are observed when τ2 = 1. The settling 

time is much longer than for the base case. Also the rapid initial increase 
in the controlled variable means that the manipulated variable drops off 
sharply, and is in danger of violating a lower bound. 

 
 
 
   

16.20 
 

Based on discussions in Chapter 12, increasing the gain of a controller 
makes it more oscillatory, increasing the overshoot (peak error) as well as 
the decay ratio. Therefore, if the quarter-decay ratio is a goal for the 
closed-loop response (e.g., Ziegler-Nichols tuning), then the rule proposed 
by Appelpolscher should be satisfactory from a qualitative point of view. 
However, if the controller gain is increased, the settling time is also 
decreased, as is the period of oscillation. Integral action influences the 
response characteristics as well. In general, a decrease in τI gives 
comparable results to an increase in Kc. So, Kc can be used to influence the 
peak error or decay ratio, while τI can be used to speed up the settling time 
(a decrease in τI decreases the settling time). See Chapter 8 for typical 
response for varying Kc and τI. 

 

 
16.21 
 

  SELECTIVE CONTROL 

Selectors are quite often used in forced draft combustion control system to 
prevent an imbalance between air flow and fuel flow, which could result 
in unsafe operating conditions. 

For this case, a flow controller adjusts the air flowrate in the heater. Its set-
point is determined by the High Selector, which chooses the higher of the 
two input signals: 

  .- Signal from the fuel gas flowrate transmitter (when this is too high) 
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  .- Signal from the outlet temperature control system. 

Similarly, if the air flow rate is too low, its measurement is selected by the 
low selector as the set-point for the fuel-flow rate. 

CASCADE CONTROLLER 

The outlet temperature control system can be considered the master 
controller that adjusts the set-point of the fuel/air control system (slave 
controller). If a disturbance in fuel or air flow rate exists, the slave control 
system will act very quickly to hold them at their set-points. 

FEED-FORWARD CONTROL 

The feedforward control scheme in the heater provides better control of 
the heater outlet temperature. The feed flowrate and temperature are 
measured and sent to the feedback control system in the outflow. Hence 
corrective action is taken before they upset the process. The outputs of the 
feedforward and feedback controller are added together and the combined 
signal is sent to the fuel/air control system. 

 
 
16.22 
 

  ALTERNATIVE A.-   

 
Since the control valves are "air to close", each Kv is positive (cf. Chapter 
9). Consequently, each controller must be reverse acting (Kc>0) for the 
flow control loop to function properly. 

 
Two alternative control strategies are considered: 

 
Method 1: use a default feed flowrate when Pcc > 80% 

 
 Let :  Pcc = output signal from the composition controller (%) 

  =spF
~

(internal) set point for the feed flow controller (%) 

 
 Control strategy: 
 

  If  Pcc > 80%  , =spF
~

lowspF ,
~

 

 

 where lowspF ,
~

 is a specified default flow rate that is lower than the normal 

 value, nomspF
~

. 
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  Method 2: Reduce the feed flow when Pcc > 80% 
 
  Control strategy: 
 

  If  Pcc < 80%,  =spF
~

nomspF
~

 −  K(Pcc – 80%) 

 

 where K is a tuning parameter (K > 0) 

 

 Implementation: 

 Note: A check should be made to ensure that   0 ≤ spF
~

 ≤ 100% 

  ALTERNATIVE B.-  

  A selective control system is proposed: 

 

    Figure S16.22.  Proposed selective control system 

Both control valves are A-O and transmitters are “direct acting”, so the 

controller have to be “reverse acting”. 

When the output concentration decreases, the controller output increases. 

Hence this signal cannot be sent directly to the feed valve (it would open 
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the valve). Using a high selector that chooses the higher of these signals 
can solve the problem 

 
    .- Flow transmitter 
    .- Output concentration controller 

Therefore when the signal from the output controller exceeds 80%, the 
selector holds it and sends it to the flow controller, so that feed flow rate is 
reduced. 

 
 
16.23 
 

ALTERNATIVE A.- 
 

Time delay.-  Use time delay compensation, e.g., Smith Predictor 
 

Variable waste concentration.-  Tank pH changes occurs due to this 
unpredictable changes. Process gain changes also (c,f. literature curve for 
strong acid-strong base) 
 
Variable waste flow rate.-  Use FF control or ratio qbase to qwaste. 
 
Measure qbase .-  This suggests you may want to use cascade control to 
compensate for upstream pressure changes, etc 

ALTERNATIVE B.- 

Several advanced control strategies could provide improved process 
control. A selective control system is commonly used to control pH in 
wastewater treatment .The proposed system is shown below (pH T = pH 
sensor; pH C = pH controller) 

  Figure S16.23.  Proposed selective control system. 
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where S represents a selector ( <  or   >, to be determined) 

In this scheme, several manipulated variables are used to control a single 
process variable. When the pH is too high or too low, a signal is sent to the 
selectors in either the waste stream or the base stream flowrate controllers. 
The exactly configuration of the system depends on the transmitter, 
controller and valve gains.  

In addition, a Smith Predictor for the pH controller is proposed due to the 
large time delay. There would be other possibilities for this process such 
as an adaptive control system or a cascade control system. However the 
scheme above may be good enough 

  Necessary information: 

.- Descriptions of measurement devices, valves and controllers; direct 
action or reverse action. 

.- Model of the process in order to implement the Smith Predictor  
 
 
16.24 
 
 

For setpoint change, the closed-loop transfer function with an integral 
controller and steady state process (Gp = Kp) is:  
 

  
1

1
11 1 1

P
C P I P

sp IC P I PP
I P

KG G s KY
Y G G s KK ss K

τ= = = = τ+ τ ++ +τ
 

Hence a first order response is obtained and satisfactory control can be 
achieved. 
 
 
For disturbance change (Gd = Gp): 
 

( )
11 1 1

d P P I I

IC P I PP
I P

G K K s sY
D G G s KK ss K

τ τ= = = = τ+ τ ++ +τ
 

 
Therefore a first order response is also obtained for disturbance change. 

 

 


