Chapter 16

The difference between systems A and B lies in the dynamic lag in the
measurement elements G (primary loop) and Gre(secondary loop). With
a faster measurement device in A, better control action is achieved. In
addition, for a cascade control system to function properly, the response of
the secondary control loop should be faster than the primary loop. Hence
System A should be faster and yield better closed-loop performance than
B.

Because G, in system B has an appreciable lag, cascade control has the
potential to improve the overal closed-loop performance more than for
system A. Little improvement in system A can be achieved by cascade
control versus conventiona feedback.

Comparisons are shown in Figs. S16.1a/b. Pl controllers are used in the
outer loop. The Pl controllers for both System A and System B are
designed based on Table 12.1 (1. = 3). P controllers are used in the inner
loops. Because of different dynamics the proportional controller gain of
System B is about one-fourth as large as the controller gain of System A

System B: K¢ =0.25 Ke=25 1=15
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Figure S16.1a. System A. Comparison of D, responses (D,=1/s) for cascade
control and conventional Pl control.
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In comparing the two figures, it appears that the standard feedback results
are essentially the same, but the cascade response for system A is much
faster and has much less absolute error than for the cascade control of B
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Figure S16.1b. System B .Comparison of D, responses (D,=1/s) for cascade
control and conventional Pl control.
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Figure S16.1c. Block diagram for System A
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16.2

System B

Cascade control system
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Figure S16.1d. Block diagramfor System B

The transfer function between Y; and D1 is

Gdl

0 G,G, Usg
. l‘:I>'-|-(3(:2(3v(3m2g P

Y
D

1 1+G

and that between Y1 and D> is

N GG
D2 1+ GCZGmaZ + GCZGmachle
using G, = S G,, =1
g v S+ 1 ! d2 !
4

G,=Fr——= ,G,=005,
(2s+D(4s+1)
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For G¢1 = K¢1 and Ger = Ko, we obtain

B 85’ +(14+8K_,)s* +(7 +6K_,)s +K_, +1

245" +(50+ 24K _,)S’ +[10 +K _,(9 +3K_,)]s +(35 +26K _,)S? +K_,(1 +K ) #
_ 4(s+1)

85 +(14+8K_,)S* +(7 +6K_,)s +K (1 +K ) +1

The figures below show the step load responses for K=43.3 and for
K=25. Note that both responses are stable. You should recall that the
critical gain for K=5 is K=43.3. Increasing K, stabilizes the controller,
asis predicted.

20
««««« tim

Figure S16.2a. Responses for unit load change in D, (left) and D, (right)

The characteristic equation for this system is
1+GCZGmaZ+Gc2GvGrm.Gchp =0 (1)

Let Ge1=K and Go=K,. Then, substituting all the transfer functionsinto
(1), we obtain

8s® +(14+8K_,)s” +(7+6K_)s+K_(1+ K ) +1 2)

Now we can use the Routh stability criterion. The Routh array is

Row 1 8 7+6K,,
Row 2 14+8K_, 1+K_,1+K,)
24 +45-
o 2K +OOK,, 454K K, .
7+4K,
Row 4 1+K_,1+K,)
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For 1 < K< 20, there is no impact on stability by the term 14+8K; in the
second row. The critical K¢; is found by varying K¢, from 1 to 20, and
using

24K ,* +66K , +45-4K _K_, 20 ©)
1+K_,(1+K,)=0 4)

Rearranging (3) and (4), we obtain

2
< 24K ,” + 66K, +45 ®)
4K,

Ky = _EM'E (6)
Kcz

Hence, for normal (positive) values of K¢ and Ko,

K

_ 24K 2 +66K_, +45
clu 4KC2
The results are shown in the table and figure below. Note the nearly linear
variation of K¢ ultimate with K. This is because the right hand side is
very nearly 6 K+16.5. For larger values of K, the stability margin on
Kei is higher. There don’t appear to be any nonlinear effects of Kg on K,
especially at high Kcp.

K

There is no theoretical upper limit for K¢, except that large values may
cause the valve to saturate for small set-point or load changes.

KCZ Kclru
1 33.75
2 34.13
3 38.25
4 43.31
5 48.75 160.00
6 54.38 140.00 - ,
7 60.11 120.00
8 65.91 % 100.00 |
9 71.75 E
10 77.63 3 80007
11 83.52 g 60007
12 89.44 40.00 +
13 95.37 20.00
14 101.30 0.00 ‘ . ‘
15 107.25 0 5 10 15 20
16 113.20 Kez
17 119.16
18 125.13
19 131.09
20 137.06

Figure S16.2b. Effect of K., onthe critical gain of K,
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With integral action in the inner loop,

G, =K,

—5B+iH

5s[]

Substitution of all the transfer functions into the characteristic equation
yields

1+5EL+—B—(0 2) +5EL+iB—(o 05K,

I
(4s+1)(2s+1)

Rearrangement gives
8s® +54s® +455” + (12+5K )s+ K, +1=0

The Routh array is:

Row 1 8 45 1+ K,
Row 2 54 12 +5K, 0
27
- 24 +
Row 4 100K~ +4137K +12546 0
1167 - 20K ,
Row 5 1+ K,

Using the Routh array analysis

Row 3: 1167-20K, >0 [ K, <58.35
1+K, >0 0 K, >-1

Row 4: Since 1167 — 20K, isalready positive,

-100K ,* +4137K , +12546 >0
Solving for the positive root, we get K_, <43.3
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The ultimate K, is43.3, which is the same result as for proportional only
control of the secondary loop.

With integra action in the outer loop only,
1
G, =K H+—0
cl cl 0] 5s 0
G, =5
Substituting the transfer functions into the characteristic equation.

1 4

145> (02) +5—— (0.05)K A+ -0
s+1 s+1 0 5bs4s+1)(2s+1])

0 8s* +54s® +37s” +(6+5K )s+K_ =0

The Routh array is

Row 1 8 37 Ky
Row 2 54 6+5K, 0
Row 3 975-20K K.,
27
_ 2
Row 4 100K " +3297K , + 5850 0
975-20K
Row 5 Ka

Using the Routh array analysis,

Row 3: 975-20>0 U Ky <48.75
Kcl > O

Row 4: Since 975- 20K, isalready positive,

-100K ,* +3297K , +5850 >0
Solving for the positive root, we get K, < 34.66

Hence, K;<34.66 is the limiting constraint. Note that due to integral
action in the primary loop, the ultimate controller gain is reduced.
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Calculation of offset:

g 10
FOf Gcl = Kcl |j'+_|] ’ Gc2 = Kc2 ’ (TI 2 = oo)
O T:SO
l — Gd1(1+ KCZGmaZ)
D 1l
' 1+ KCZGmaZ + KCZGmachl +LDGp
0 %SO
\A
—(s=0)=0
5 (s=0)

1

Since G¢; contains integral action, a step-change in D; does not produce an
offsetinY;.

N GoCo
D U
? 1+ KCZGmaZ + KCZGVGleCl +LDGp
150
\
—(s=0)=0
~-(s=0)

2

Thus, for the same reason as before, a step-change in D, does not produce
anoffsetin Y.

For G, =K, (ie. 1,, =) , G., =K., Ejl.+ig
O G280

Y G, 1+K,, EH Tllzsgevemz)

Ok, %HT;EGVGM ¥ Kchmachjjgl +£ G,

% (s=0)20

1

Therefore, when thereis no integral action in the outer loop, a primary
disturbance produces an offset.

Thus, there is no offset for a step-change in the secondary disturbance.

16-8



16.3

N GoCo
D i U [
2 1+ Kc2 %‘4- 1 DGmaZ + KCZGmachJJ]l + 1 Gp
O 1250 0 T|2§
\
—(s=0)=0
~-(s=0)

2

Thus, there is no offset for a step-change in the secondary disturbance.

Tuning the slave loop:

The open-loop transfer function is
G(s) = Ke:
(2s+1(5,s+D(s+])
Since a proportional controller is used, a high K¢, reduces the steady-state
offset. The highest K., which satisfies the bounds on the gain and phase
margins is 5.3. For this K¢, the gain margin is 2.38, and the phase margin
1s30.7°.

By using MATLAB, the Bode plot of G(s) with K¢, = 5.3 is shown below.

Bode Diagram

—— —— Gain margin graphical solution |
7777777 Phase margin graphical solution

Magnitude (abs)
w
T

-45

©
o

-135

Phase (deg)

-180

-225

-270
-2 -1 0 1
10 10 10 10
Frequency (rad/sec)

Figure S16.3a. Bode plot for the inner open-loop; gain and phase margins.
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b)

Tuning the master loop:

The input-output transfer function of the inner loop is

G (9= 5.3(s+1)
" 10s® +17s®> +8s+6.3

(with Kz = 5.3)

The ultimate gain Kz, can be found by simulation. In doing so,
KCl,U = 32491

The corresponding period of oscillation is

P, = 217w = 8.98 time units.

The Ziegler-Nichols tuning criteriafor a Pl-controller yield
Kclz Kcl,u / 2.2 = 1.48
r,=PR,/12=748

The closed-loop response with these tuning constant values (K¢;=1.48,
T,,=7.48, K =5.3) isshown below.

1.4

0.8 B

Output

0.6 4

0.4r B

0.2 4

O L [ [ L L 1 L [ L
0 10 20 30 40 50 60 70 80 90 100

Time

Fig S16.3b. Closed-loop response for a unit step set-point change.
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16.4

For the inner controller (Slave controller), IMC tuning rules are used

_ 1 _(2s+1(55+1(s+))
B G, ) (To5+1)°

*
Gcz

Closed-loop responses for different values of 1, are shown below. A 1, value of
3 yields agood response.

For the Master controller,

G,* = i_ where G = (2s+1)(5s +1)3(s +1) 1
G, (t4St]) (10s+1)

This higher-order transfer function is approximated by first order plustime delay
using a step test:

1

/

I I Il I L
0 10 20 30 40 50 60
time

Figure S16.4. Reaction curve for the higher order transfer function

-0.38s

Hence G, ~_ %
' (15.32s+1)

From Table 12.1: (PI controller, Case G): K, = 32 and T1,=15.32

1,+0.38

Closed-loop responses are shown for different values of 1. A Ty vaue of 7
yields a good response.
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20 40 50

Figure S16.4b. Closed-loop response for 1., Figure S16.4c. Closed-loop response for 1¢;

Hence for the master controller, K. =2.07 and T, =15.32

16.5

a) The T, controller (TC-2) adjusts the set-point, Tis, Of the T1 controller (TC-

b)

’ -
v1

1). Its output signal is added to the output of the feedforward controller.

Oom Feedforward

controller '
(e, T
T

~

im

OO ] ©)

aTOw
VN

Figure S16.5a. Schematic diagram for the control system
This is a cascade control system with a feedforward controller being used

to help control T;. Note that T; is an intermediate variable rather than a
disturbance variable sinceit is affected by V.
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16.6

c)

Block diagram:

<—o‘|

T, 102
Oom G NN

mO d1

v
Ger

'm2

T1 sp Q1 :l-
Q-p G, G, G, 1 G Gy

b)

T1m T.

m1

2m G

m2 T

Figure S16.5b. Block diagram for the control systemin Exercise 16.5.

For the inner loop, the characteristic equation reduces to:

s+1_

inner S _3

1+K O o S_3+Kinner S+ Kinner:O

S(1+ Kinner) =3 + Kimner =0

-K
Hence, s=
1+ K

inner
inner

The inner loop will be stable if this root is negative. Thus, we conclude
that this loop will be stable if either Kippe>3 or Kipner<—1.

The servo transfer function for the outer loop is:

Y(S) — Gc (S) Kinner Gp(S)
Y,(9) 1+ K Gy (S) + G (9K e G,y (9)

nner inner
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The complex closed-loop poles arise when the characteristic polynomial
is factored. This polynomial is

($+s+0.313) = (s+0.5+0.25i) (s+ 0.5 -0.25i)

1463 1k
s-3

(T, + 61, +K 6T, )S°
+(-3t1, +61, +61T,K_+6K_)S
+K.6=0
The poles are a'so the roots of the characteristic equation:

Hence, the PI controller parameters can be found easily:
K. =0.052

1, =0.137

Using MATLAB-Simulink, the block diagram for the closed-loop system
Is shown below.

Disturbance change

2 o
Ll Ll
Szt
Stepd Tranzport Transfer Fend
Set-point change Delayd
1
FID =B’%{_.. 2 >, >
Gst1 }/
Stepd FID Contrallerd Transport  Tiansfer Fenf
Delayz

1

S+
Transfer Fond

1—:%{4—

Szt
Transfer Fond Tranzport
Delays

ol

Figure S16.7a. Block diagram for Smith predictor
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where the block D%Z represents the time-delay term e%,

The closed-loop response for unit set-point and disturbance changes are
shown below. Consider a Pl controller designed by using Table 12.1(Case
A) with ;. = 3 and set Gy = G,. Note that no offset occurs,

T T T T T
— Seno response
12F --- Regulatory response |

0.8

Output

0.4

,,,,,
- ~<

0.2

e

Figure S16.7b. Closed-loop response for setpoint and disturbance changes.

The block diagram for the closed-loop systemiis

o o

h
b
=

Figure $6.8. Block diagram for the closed-loop system

0 1+ O K g%
*ys and G =——

where G, =K =
c c +Tls_e—esE p 1+ 1S
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16.9

b)

0 1+t1s Oe®
K K —0
Y GG, _ pE;L]_+T|S—e "L+ 1s

— cp

Y, 1+GG O 1+ Oe®
o -y 14+ KK, 1 T'S-esDe
%1+T,s—e 1+ 1s

, 1
Since K.=— and T1=1

KP

O e% 0O

Y %+I,s—e'esg _ e
Yo O e* O 1l+1s-e*+e®

1+
%+ T, s—e“’sE

Hence dead-time is eliminated from characteristic equation:

Y _e"
Yo 1+T7s

The closed-loop response will not exhibit overshoot, because it is a first
order plus dead-time transfer function.

For afirst-order process with time delay, use of a Smith predictor and
proportional control should make the process behave like afirst-order
system, i.e., no oscillation. In fact, if the model parameters are accurately
known, the controller gain can be as large as we want, and no oscillations
will occur.

Appelpolscher has verified that the processis linear, however it may not
be truly first-order. If it were second-order (plus time delay), proportional
control would yield oscillations for awell-tuned system. Similarly, if there
are errors in the model parameters used to design the controller even when
the actual processisfirst-order, oscillations can occur.
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16.10

a) Analyzing the block diagram of the Smith predictor

Y G.G,e ™
Y, 1+GG,(1-e*)+GGe™®
1 —6s
G.G,e

" 1+GG, +GGe* -GG e®
Note that the last two terms of the denominator can when (3’p = é; and
8=0
The characteristic equation is
=1+GG, +GG,e ™ -G.C,e ™ =0

b) The closed-loop responses to step set-point changes are shown below for
the various cases.

Base case

2
w L6 — |-

Tranzport  Transfer Fend Scoped
Delayz

Step3

F Y

S+
Transfer Fend

2
= oy
S+
Transter Fen Transport
Crelayd

Figure S16.10a. Smulink diagram block; base case
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Figure S16.10b. Basecase

Figure S16.10c.

Ko = 2.4
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FigureS16.10f. 7= 4 Figure S16.10g.
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c)

SMWMVWWWVVW\{\M
)
5

Figure S16.10h. 6= 16

It isimmediately evident that errors in time-delay estimation are the most
serious. This is because the terms in the characteristic equation which
contain dead-time do not cancel, and cause instability at high controller
gains.

When the actual process time constant is smaller than the model time
constant, the closed-loop system may become unstable. In our case, the
error is not large enough to cause instability, but the response is more
oscillatory than for the base (perfect model) case. The same is true if the
actual process gain is larger than that of the model. If the actual process
has a larger time constant, or smaller gain than the model, there is no
significant degradation in closed loop performance (for the magnitude of
the error, = 20% considered here). Note that in all the above simulations,
26—25
5s+1
have been assumed to vary by + 20% of the model parameter values.

the model is considered to be and the actual process parameters

The proportional controller was tuned so as to obtain a gain margin of 2.0.
This resulted in K¢ = 2.3. The responses for the various cases are shown
below

«««««

Base case Kp=3
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6=1
Nyquist plots were prepared for different values of K, 1 and 6, and
checked to see if the stability criterion was satisfied. The stability regions
when the three parameters are varied one to time are.

Ke<4l (1=5, 6=2)

T 224 (K=2, 6=2)

0 <01 and18<6<22 (K,=2 , 1=5)
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16.11

From Eqg. 16-24,

y G, (1+GG(1-¢*))

D 1+G .G
that is,
+ [
ge—3s %+ Kc Kch Sg(l_e—3s)|:|
Y s [ TS S 0
D 1+ Kt K182

TS S
Using the final value theorem for a step changein D:

!imy(t) = Iin(")le(s)

then
(] + U
EE_SS |j|-+ Kc Kch Sg(l_e—3s)|:|
: . S 0 S S 01
limsY(s) =lim s -
-0 5-0 1+ K. +K 182 S
TS S
2 ﬁ[' s+ (K, +K_T, s)g(l— e‘ﬂﬁ
_ ”ng S S

T| S+ (KC + KCTl S)i

Multiplying both numerator and denominator by s,

’ 2e‘35(t,sz+ (K, +K_T, 5)2(1— e‘3s))
=lim
5-0 1,8’ + (K +K_T,9)2s

Applying L'Hopital's rule:

’ -6 (Tl s+ (K, +K_T, s)2(1—e‘3s))
=lim
5-0 31,8+ 2(K, + 2K T1,9)
N 2¢*(21,5+6K e +2K 1, —2K 1€ +6K T,52™) _
31,8+ 2(K, + 2K T1,9)

6
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Therefore
!imy(t) = Iinng(s) =6

and the Pl control will not eiminate offset.

16.12

For a Smith predictor, we have the following system

G,

F 3

Figure S16.12. Smith Predictor diagram block

where the process model is Gy(s) = Q(s) e®

For this system,
Y _ GG,
Y, 1+G.G,

where G.’is the transfer function for the system in the dotted box.

G = G
1+GQ(l-€%)
GG,
Y  1+GQU-€%)
H9= GG
Yo 4 G,

+
1+GQl-e™)

Simplification gives
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AR =P(s)e™®

Y, 1+GQ

where P(s) = GQ
+G.Q

If P(s) isthe desired system performance (after the time delay has el apsed)
under feedback control, then we can solve for G in terms of P(s).

__P(s)
° T QeA-P()

The IMC controller requires that we define

G ze®

+

G. =Q(s) (the invertible part of Gy)

Let the filter for the controller be f(s) =

T.s+1

Therefore, the controller is

G, =G."f() = RO
Q(s)

The closed-loop transfer function is

—6s
i_ G, = € :G+f
Yo 1+1.s

Note that this is the same closed-loop form as analyzed in part (@), which
led to a Smith Predictor type of controller. Hence, the IMC design aso
provides time-delay compensation.
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16.13

16.14

Referring to Example 4.8, if g, the flowrate, and T;, the inlet temperature,
are know and are constant, then the Laplace transform modelsin (4-79)
and (4-80) are

(s—a,)C,(s) =a,T'(s) (4-79)
(s—ax)T'(s) = a,C,(s) +b,T.(9) (4-80)

where T.(s) isthe coolant temperature. Using Eq. 4-86, we can directly
compute concentration from the temperature signal, i.e.,

CA9 =522

which is afirst-order filter operating on T'(s)

So inferential control of concentration using temperature would be
feasible in this case. If g and T; varied, a more general expression for the
linearized model would be necessary, but there would still be a direct way
toinfer CafromT.

One possible solution would be to use a split range valve to handle the
100< p< 200 and higher pressure ranges. Moreover, a high-gain controller
with set-point = 200 psi can be used for the vent valve. This valve would
not open while the pressure is less than 200 psi, which is similar to how a
selector operates.

Stephanopoulos (Chemical Process Control, Prentice-Hall, 1989) has
described many applications for this so-called split-range control. A
typical configuration consists of 1 controller and 2 final control elements
or valves.
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16.15

16.16

VENT

SPLIT RANGE
|I=———=======q--- CONTROLLER [======~-=

INLET OUTLET
é > REACTOR i >

Figure S16.14. Processinstrumentation diagram

The amounts of air and fuel are changed in response to the steam pressure.
If the steam pressure is too low, a signal is sent to increase both air and
fuel flowrates, which in turn increases the heat transfer to the steam.
Selectors are used to prevent the possibility of explosions (low air-fuel
ratio). If the air flowrate is too low, the low selector uses that
measurement as the set-point for the fuel flow rate controller. If the fuel
flowrate is too high, its measurement is selected by the high selector as the
set-point for the air flow controller. This also protects against dynamic
lags in the set-point response.

|

COOLING
WATER

—~ |
CONDENSATE

1

Figure S16.16. Control condensate temperaturein a reflux drum
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16.17

16.18

Supposing afirst-order plus dead time process, the closed-1oop transfer
functionis

1 O -6s
+—— + 1,9

GG, © P (t,s+1)
G (s) = 0 Gy (s)=
1+GG, %L 1 O g
D +'[7$ +TDSEe
1+K K |
P (t,s+1)

Notice that K. and K, always appear together as a product. Hence, if we
want the process to maintain a specified performance (stability, decay
ratio specification, etc.), we should adjust K. such that it changes inversely
with Kp; as aresult, the product KcKp, is kept constant. Also note, that since
there is a time delay, we should adjust K. based upon the future estimate
of Kp:
K. (1) = AK°Kp _ KK,
Kot+8) 44 B
M (t +06)

where Kp(t +0) isan estimate of K, 6 time units into the future.

This is an application where self-tuning control would be beneficial. In
order to regulate the exit composition, the manipulated variable (flowrate)
must be adjusted. Therefore, a transfer function model relating flowrate to
exit composition is needed. The model parameters will change as the
catalyst deactivates, so some method of updating the model (e.g., periodic
step tests) will have to be derived. The average temperature can be
monitored to determine a significant change in activation has occurred,
thus indicating the need to update the model.
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16.19

b)

1
GCGP = 1 | Gc: TCS+1 = ii
1+G .G, 15+l G %L— 1 B G, 1.s
"0 Tstlg

Substituting for G,

1S (ntTy)stl 1
1.S K

c p p

10
G.(s)= T,+1,)+T,T,S+—
c() cal 2) 1t SE

Thus, the PID controller tuning constants are

_(1,+1,)
C
K,T.
T, =T,+T1,
— T1T2
TD_T
Tl T2

(See EqQ. 12-14 for verification)
Fort;=3 and 1,=5 and 1.=1.5, we have
Kc=5.333 1,=80 and1p=1.875

Using this PID controller, the closed-loop response will be first order
when the process model is known accurately. The closed-loop response to
a unit step-change in the set-point when the model is known exactly is
shown above. It is assumed that 7. was chosen such that the closed loop
response is reasonable, and the manipulated variable does not violate any
bounds that are imposed. An approximate derivative action is used by

Simulink-MATLAB, namely —2>_ when $=0.01
1+Bs
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Perfect model

w1
—— FID » 1_ . 1_ . |:|
3+ Gst+1
Step2 FIl Condraller
fith Approximale
Cerivative)

Figure S16.19a. Simulink block diagram.

yyyyyy

Figure S16.19b. Output (no model error) Figure S16.19¢c. Manipulated variable (no
model error)

‘‘‘‘‘

Figure S16.19d. Output (K, = 2) Figure S16.19e. Manipulated variable
Ko=2)
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Figure S16.19f. Output (K, = 0.5) Figure S16.19g. Manipulated variable

(K, =0.5)
|
Figure S16.19h. Output (7> = 10) Figure S16.19i. Manipulated variable
(= 10)
FigureE16.9 .- Output (7, = 1) Figure E16.9 k.- Manipulated variable
(r=1)

(1)  The closed-loop response when the actual K, is 2.0 is shown above. The
controlled variable reaches its set-point much faster than for the base case
(exact model), but the manipulated variable assumes values that are more
negative (for some period of time) than the base case. This may violate
some bounds.
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(4)

16.20

16.21

When K, = 0.5, the response is much slower. In fact, the closed-loop time
constant seems to be about 3.0 instead of 1.5. There do not seem to be any
problems with the manipulated variable.

If (12 = 10), the closed-loop response is no longer first-order. The settling
time is much longer than for the base case. The manipulated variable does
not seem to violate any bounds.

Both the drawbacks seen above are observed when 1, = 1. The settling
time is much longer than for the base case. Also the rapid initial increase
in the controlled variable means that the manipulated variable drops off
sharply, and isin danger of violating alower bound.

Based on discussions in Chapter 12, increasing the gain of a controller
makes it more oscillatory, increasing the overshoot (peak error) as well as
the decay ratio. Therefore, if the quarter-decay ratio is a goal for the
closed-loop response (e.g., Ziegler-Nichols tuning), then the rule proposed
by Appelpolscher should be satisfactory from a qualitative point of view.
However, if the controller gain is increased, the settling time is aso
decreased, as is the period of oscillation. Integral action influences the
response characteristics as well. In genera, a decrease in T, gives
comparable results to an increase in K. So, K. can be used to influence the
peak error or decay ratio, while 1, can be used to speed up the settling time
(a decrease in 1) decreases the settling time). See Chapter 8 for typical
response for varying K¢ and 1.

SELECTIVE CONTROL

Selectors are quite often used in forced draft combustion control system to
prevent an imbalance between air flow and fuel flow, which could result
In unsafe operating conditions.

For this case, aflow controller adjusts the air flowrate in the heater. Its set-
point is determined by the High Selector, which chooses the higher of the
two input signals:

.- Signal from the fuel gas flowrate transmitter (when thisistoo high)
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.- Signal from the outlet temperature control system.

Similarly, if the air flow rate istoo low, its measurement is selected by the
low selector as the set-point for the fuel-flow rate.

CASCADE CONTROLLER

The outlet temperature control system can be considered the master
controller that adjusts the set-point of the fuel/air control system (slave
controller). If adisturbance in fuel or air flow rate exists, the slave control
system will act very quickly to hold them at their set-points.

FEED-FORWARD CONTROL

The feedforward control scheme in the heater provides better control of
the heater outlet temperature. The feed flowrate and temperature are
measured and sent to the feedback control system in the outflow. Hence
corrective action is taken before they upset the process. The outputs of the
feedforward and feedback controller are added together and the combined
signal is sent to the fuel/air control system.

ALTERNATIVEA.-

Since the control valves are "air to close", each K, is positive (cf. Chapter
9). Consequently, each controller must be reverse acting (K>0) for the
flow control loop to function properly.

Two alternative control strategies are considered:

Method 1: use a default feed flowrate when P > 80%

Let: Pc=output signal from the composition controller (%)
Fy = (internal) set point for the feed flow controller (%)

Control strategy:
If Pec>80% , F, = F,

where Fo

is a specified default flow rate that is lower than the normal

Ylow

vaue, F

spnom *
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Method 2: Reduce the feed flow when P> 80%

Control strategy:

F_ = K(Pe—80%)

If Pec<80%, Fy = Fynom
where K is a tuning parameter (K > 0)

Implementation:

80 % Foom
PCC

80 %
Note: A check should be made to ensure that 0 < IE‘Sp < 100%

ALTERNATIVE B.-

A selective control system is proposed:

Figure S16.22. Proposed selective control system

Both control valves are A-O and transmitters are “direct acting”, so the
controller have to be “reverse acting”.

When the output concentration decreases, the controller output increases.
Hence this signal cannot be sent directly to the feed valve (it would open
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the valve). Using a high selector that chooses the higher of these signals
can solve the problem

.- Flow transmitter
.- Output concentration controller

Therefore when the signal from the output controller exceeds 80%, the
selector holds it and sends it to the flow controller, so that feed flow rateis
reduced.

ALTERNATIVE A -
Timedelay.- Usetime delay compensation, e.g., Smith Predictor

Variable waste concentration.- Tank pH changes occurs due to this
unpredictable changes. Process gain changes also (c,f. literature curve for
strong acid-strong base)

Variablewaste flow rate.- Use FF control or ratio (pase tO Quaste-

Measure Ouase .- This suggests you may want to use cascade control to
compensate for upstream pressure changes, etc

ALTERNATIVE B.-

Severa advanced control strategies could provide improved process
control. A selective control system is commonly used to control pH in
wastewater treatment .The proposed system is shown below (pH T = pH
sensor; pH C = pH controller)

5 ¥
b | ] Yo

O
16

Figure S16.23. Proposed selective control system.
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where S represents aselector (< or >, to be determined)

In this scheme, several manipulated variables are used to control a single
process variable. When the pH istoo high or too low, asignal is sent to the
selectors in either the waste stream or the base stream flowrate controllers.
The exactly configuration of the system depends on the transmitter,
controller and valve gains.

In addition, a Smith Predictor for the pH controller is proposed due to the
large time delay. There would be other possibilities for this process such
as an adaptive control system or a cascade control system. However the
scheme above may be good enough

Necessary information:

.- Descriptions of measurement devices, valves and controllers; direct
action or reverse action.

.- Modéd of the processin order to implement the Smith Predictor

For setpoint change, the closed-loop transfer function with an integral
controller and steady state process (G = Kp) is:

AT N S|
/ l+GG 1+/J/ K, T,5+K, %Sﬂ
P
Hence afirst order response is obtained and satisfactory control can be
achieved.

For disturbance change (G4 = Gp):

_Ke(1) _ TS

V= =Ko -
D 1+G.G; 1+%|SKP T S+Kp %PS-'-]-

Therefore afirst order responseis also obtained for disturbance change.
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