Chapter 18

McAvoy has reported the Pl controller settings shown in Table S18.1 and
the set-point responses of Fig. S18.1a and S18.1b. When both controllers
are in automatic with Z-N settings, undesirable damped oscillations result
due to the control loop interactions. The multiloop tuning method results
In more conservative settings and more sluggish responses.

Controller Pairing Tuning Method Ke T,(min)
T7-R Single loop/Z-N -2.92 3.18
T4- S Single loop/Z-N 4.31 1.15
T7-R Multiloop -2.59 2.58
T4- S Multiloop 4.39 2.58

Table S18.1. Controller Settings for Exercise 18.1
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Figure S18.1a. Set point responses for Exercise 18.1. Analysisfor Ty7
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Figure S18.1b. Set point responses for Exercise 18.1. Analysisfor T,

The characteristic equation is found by determining any one of the four
transfer functions Y1(S)/Ys1(S), Y1(S)/Ysu2(S), Yo(S)/Yepu(S) and  Ya(S)/Yspo(S),
and setting its denominator equal to zero.

In order to determine, say, Y1(S)/Ys1(S), set Yoo = 0in Fig 18.3b and use
block diagram algebrato obtain

Ci(8) =Gy, G [R(S) —C,(8)] +Gp My (9) D
M, (8) = G, (G, My (8) +Gg, G [R(S) —C,()]]) (2)

Simplifying (2),

Cszzz G -C
M= e RO G ©

Substituting (3) into (1) and simplifying gives
G(s) _ (Gc,Ge, A+ G, Gy ) =G, G, G, G,

R(S) (@+G; Gy )A+GC,Gp) —G G, G G,
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18.3

Therefore characteristic equationsis

(1 +Gc1 Gpro) (1 + G2 Gp21) — Get G2 Gp11 Gpo = 0

If either Gpy1 or Gy is zero, this reduces to

(1 4+ Ge1 Gp12) =0 or (I +G2Gp) =0

So that the stability of the overall system merely depends on the stability

of the two individual feedback control loops in Fig. 18.3b since the third
loop containing Gp11 and Gpy» is broken.

Consider the block diagram for the 1-1/2-2 control scheme in Fig.18.3a
but including a sensor transfer function (Gnu,Gnp) for each output (y1,y2).
The following expressions are easily derived,

Y(s) = Gp(s) U(s)

Y (S)0_ 5, (8)  Gppo(S)EIU, (P

- 1
" B Bl Gun(U (o m
U(s) = Ge(s) E(s)
o O0_[Bu(s) 0 [DE(SD o
%JZ(S)E E 0 GCZ(S)EE'Ez(SE
E(9= Ys()-Gn(9)Y(9)
[E,(s)O D(Spl(S)D_HSml(s) 0 DOOY,(sp )

* HEoH d.080 o  c.eHBuE

If Egs. 1 through 3 are solved for the response of the output to variations
of set points, the result is

Y(s) = Gy(9)G(S) [I + Gp(9G(S)Gm(S)] ™ Yo (5) =
where | is the identity matrix.

In terms of the component transfer function the matrix
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i [+ h,, (s) h,(s) O
V1 GOGEGHS = T 1 (of

where
hll(S): Gpll(S) Gcl(S) Gml(S)
h12(S): Gp]_z(S) Gcz(S) sz(S)

h21(S): szl(S) Gcl(S) Gml(S)
hzz(S): szz(S) Gcz(S) sz(S)

lm-“L hzz(s) _h12(5) O

Theinverseof V, if it exists, is V'==p] i
Af-hy,(s) 1+hy(s)g

where A = (1+h11(S))(1+h22(S))-h12(S)hzl(S)

By accounting for Y(s) = [Gp(S)G¢(S) V(9] Yo (3), the closed-loop
transfer functions are (see book notation):

T1u(s) = ;[hu (S)(L+h,,(s)) —hy,(9) th(S)]

G..(9D
9= g %on
Tat®) = [Ny (YA+ iy (9) ~ iy (I (9]

Gm2 (S)A

From Egs. 6-78 and 6-79 a from physical reasoning, its is evident that
although h is affected by both the manipulated variables, T is affected only
by wh, and is independent of w. Hence, T can be paired only with wy,. Thus,
the reasonable pairing for the control scheme is T-wi, h-w
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a)

b)

As shown in Example 18.3, the correct pairing for x = 0.4 case is W-Wg,
X-Wa. Therefore, the block diagram is

Wm Kml
tmlS+ l “
Wsp E: K 0 10 U1 Kvi
+— >
. BL T, 1SH T,,5+1
Xsp E: O 10 U2 Ky,

—| KO+ O0Ol—-»

O Ti.S0O T,,5+1

K
X m2
i T,,5+1

\

As shown in Example 18.9 , the correct pairing is w-uy, X-Uy. The block

diagramis
Wm Kml
Tmls+1 -
Wsp E1 K B‘L+ 10 U1 Kyi
ClD TllsH T,,S+1
Kvz
KVl
A
Xs E o 10| U K
o [ Kc2|j'l‘+ O 2 . ___v2
O TS0 T,,5+1
K
X m2
o T.,S+1
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) Calculate the steady-state gains as

(=Xl o 0972088 _ i
HarR H, ~ @25-175) ib/min

=Xl | 096004 _ e i
Has H, ~ (24-20) Ib/min

K,=Xel o 0062004 _ ;04 minib
Har H ~ (@75-125)Ib/min

K, = PXeH 0042008 _ 5,16 minip

OAS [, (24-20)lb/min

Substituting into Eq. 18-34,

_ 1
- | (6*10°)(4*10™)
(-8*10™)(-5*107)

Thusthe RGA is

R S

Xp 02 -10
Xg E—l 2%

Pairing for positive relative gains requires Xp-R, Xg-S.
i) This pairing seems appropriate from dynamic considerations as well;

because of the lag in the column, R affects Xp sooner than Xg, and S
affects Xg sooner that Xp.
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18.8

b)

The corresponding steady-state gain matrix is

128 -18.90
““D6 -104-
. Ve

Using theformulain Eq. 18-34 , weobtain  A13=2.0

Thusthe RGA is

02 -1
A=n N
1 20

Pairing for positive relative gains requires Xp-R and Xg-S

The same pairing is recommended based on dynamic considerations. The
transfer functions between Xp and R contains a smaller dead time and a
smaller time constant, so Xp will respond very fast to changes in R. For
the pair Xg-S, the time constant is not favorable but the dead time is
significantly smaller and the response will be fast as well.

From Eq. 6-89
(T,=T)/w T.-T)/w

G, (5=~ —2 7 G, (5=re 21—

(%) Ts+1 e () 1s+1
Gp (s) :Uﬁ ’ Gp (s) = 1/ AP

21 22 S
Thus k, =TT g, =11

w W

and since Gp1, Gpoo contain integrating elements,

, 1
K,, =limsG, (s) =——
2 5.0 Pn() AP
K, =limsG, (s)=——
Z s0 = AP

Substituting into Eq. 18-34,
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Hence0< A <1, and the choice of pairing depends on whether A > 0.5 or
not. The RGA is

Wh WC
T T-T0
T T 0

= F _50
o L-Tp
@rh_Tc Th_TCQ

Assume that A = 0.5 so that the pairing is T-wy, h-w.. Assume valve gains
to be unity. Then the ideal decoupling control system will be asin Fig.18.9
where Y:=T, Y.=h, U;=w, , U=w, and using Egs. 18-78 and 18-80,

T.(9=-LAP)S __
(1/ AP)s
T.(9) = [ -T)/wl/(ts+1) _T-Te

[(T,-T)/w]/(ts+1) T,-T

The above decouplers are physically realizable.

OPTION A: Controlled variable: Ty7, Tog
Manipulated variables: uy, U,

The corresponding steady-state gain matrix is

1.5 053

K=
Ho 1.7

Using the formulain EQ.18-34, we obtain A1 = 1.65
Thusthe RGA is

18-8



0165 0650
“Hoes 165H

OPTION B: Controlled variable: T17, T3
Manipulated variables: uy, U,

The corresponding steady-state gain matrix is

1.5 053

K=
B4 2.H
Using theformulain Eq.18-34, we obtain  A;; = 1.64

Thusthe RGA is

164 —0.640
“Hoess 1644

OPTION C: Controlled variable: T4, T3o
Manipulated variables: uy, U,

The corresponding steady-state gain matrix is

Using the formulain EQ.18-34, we obtain  A;; =290

Thusthe RGA is

\ _02% 2897
“Hogo  200H

Hence options A and B yield approximately the same results. Option C is
the least desirable.

By applying Niederlinski’s stability theorem for option C:

M:ﬂ <0
MK, 58

Thus the closed-loop system is unstable.

18-9



18.10

Material balance for each of the two tanksis

Aﬂzcﬁ%‘%"ﬂh “h,) @
d, _  Jh
A S =0~ K ) @

where A;, A, are cross-sectional areas of tanks 1, 2, respectively.
Linearizing, putting in deviation variable form, and taking Laplace
transform,

ASH, (9= Q' (9 +Q. (8) ~(— = ). (8) —K[H. (8) ~H, (9]
RJH

AsH, (8) =Q; (8) ~(——=)H; (5) +K[H; () -H; (9)]

RZJE

Let KlsL and K -1 and

— 2 —
2R R 2Ry
Solve the above equations simultaneously to get,

[(As+K, +K)(As+K, +K) —K*TH,(s)

3)
= (As+K, +K)[Q (s) +Q; ()] +KQ, (s)

[(As+K, +K)(As+K, +K) ~K’]H, (9)

(4)
=K[Q/(5) ~Q; (9] +(As +K, +K)Q; (9)

The four steady-state process gains are determined using Egs. 3 and 4 as

[H,"(s)0_ K, +K

K —hrn
u Ep(S)D KK, + K (K, +K,)

K, = lim (s)D K
s Ep S0 KK, +K(K, +K,)
[(H,'(s0_ K
K, =lim D =
-0 Q'(8) 0 KK, +K(K; +K,)
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K, = limaz S K, +K
27 50H, (9 KK, +K(K, +K,)

Substituting into Eq. 18-34

- 1 _ (K, +K)(K, +K)
1 K? KK, +K(K, +K,)
(K, +K)(K; +K)
ThusRGA is
1 02
1 §K1+K)(K2+K) -K? Oh
KK, +K(K +K) B —K? (K, +K)(K, +K)oh,

b) Substituting the given numerical values, the RGA is

01 02
h 0250 -1.500

h H150 2504

For the relative gains to be positive, the preferred pairing is hi-qa, ho-qe.

18.11

a) Let

] |:| [I ]
v(9=0" 0y =0%Ch

. (91 HQ; (sH

Then by inspection of Egs. (3) and (4) in the solution to Exercise 18-10,

,D(s) =Q5 (9)

G.(s) = 1 [(As+K, +K K []
22V T (ASTK FK)(ASHG +K) -KEH K As+K, +KH

and
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b)

18.12

1 [As+K, +K[
%(S): w2 [
(AS+K, +K)(As+K, +K) -K? [ K .

where A1, Ay, K4, Ky are as defined in the solution to Exercise 18.10.

The block diagram for h;-g; / ho-p pairing is identical to Fig.18.3a with
the addition of the load. Thus the signal D(s) passes through a block Gg;
whose output is added to the summer with output Y;. Similarly, the
summer leading to Y is influenced by the signal D(s) that passes through
block Ggp.

F=20 Ul(Po—Pl) (1)
F=30u (Pl — Pz) (2)

Taking Pg and P5 to be constant, Eq. 1 gives

Eji% =20(Po—a)—20ulgﬁ% @)
Ul , Ul ,

and

Ej{% = 20(P, - P) )

and Eq. 2 gives

oF % = 30M Zgﬁ
l"Il u1

2

)

ETMT]

oR

Substituting for from (5) into (3) and simplifying

LTI

1‘/|2

oF _ 20(R, - R) ©)
U 20u,
» 1+

30u,
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18.13

Using Eqg. 18-24,

(oF /6u1)u2 1
= = (7)
(oF /aul)PZ N 20u,
30u,
At nomina conditions

1

ul:L:]_/Z , UZ:L:2/3
20(R, - R) 30(R, - P,)

Substituting into (7), A1 =2/3 > 0.5. Hence, the best controller pairing is
F-Ul, P]_-Uz.

Material balances for the tank,

dh
Ag = h*% 0% D
d(Ah

( dtCS) =G G, +C,0, —Gq, (2)

Substituting for dh/dt from (1) into (2) and simplifying

dc,
dt

Ah

=(6-¢)q *+(c, ~¢)q, ©)
Linearizing, using deviation variables, and taking the Laplace transform
ARSC; (8) = (6, ~,)Q1 (8) ~6Cs (8) (€, —€,)Q; () —4,C; (9)

Since q, +q, =q, , this becomes

[Mapd O Oc-cd , Oc-d _,
TP s+ 10c (9 T 3=H 0/ (9 5 22F Q! (s @
1% O g O 4 0O O OO

Similarly from (1),

AsH'(s) =Q/(s) +Q, (3) —Q; () (5)

18-13



Therefore,

' [l
H'(s)O 0

r, U
Q(s)g U—
0=0G-c)/q
DD

C3’ (s)g

aeH g

1

As

AhC
O—0s+1
00 O

|
© e
moooOoo

Substituting numerical values

00.1415

L
S S
G(s) =0 O
&) 10.0075 0
° B

H.06s+1

—-0.14150

OJ

For the control valves

__ 015
0.167s+1

0.15
G, (s) =
.(S) 00

%HS+1

(6)

Thus,
O 0.0212 -0.0212 (O

0 0

0.167s+1 0.167s+1
G.(9=G,(9G(9 =0 017 01678+
— = 0 0.0011 0

"
Since C,;(s)/Q;(s) =0, csisnot affected by gz and must be paired with
1. Thus, the pairing that should be used is h-gs, Cz-0.

H1.06s+1)(0.167s+1)

For the pairing determined above, Fig.18.9 can be used with Y;=H',
Y.=C;, U1=Q;, U=Q, . Notice that this pairing requires Gy(s) above the
switch columns. Then using Egs. 18-78 and 18-80,

T. (S) = - GPZl (S) = - 0 =
2 G, (s O 0.0011 O
H1.065+1)(0.167s+)H
(9= _Gg,(s) _ _ 0.0212/[s(0.167s+1)] 1
2 Gy (s)  —0.0212/[s(0.167s+1)|

18-14



18.14

18.15

In this case, an RGA anaysis is not needed. The manipulated and
controlled variables are:

Controlled variables: F;, Py and |
Manipulated variables. m, mp, mg

Basically, the pairing could be done based on dynamic considerations, so
that the time constants and dead times in the response must be as low as
possible.

The level of the interface “I” may be easily controlled with mg so that any
change in the set-point is controlled by opening or closing the valve in the
bottom of the decanter.

The manipulated variable my could be used to control the inflow rate F. If
F1 is moved away from its set-point, the valve will respond quickly to
control this change.

The decanter overhead pressure P; is controlled by manipulating mp. That
way, pressure changes will be quickly treated. This control configuration
is also used in distillation columns.

OPTION A: Controlled variable: Y1, Yo
Manipulated variables: U, Uz

The corresponding steady-state gain matrix is

03 -083

““Hio 2F

Using the formula in Eq.18-34, we obtain  A11=06

Thus the RGA is
06 -57
A=p 0
> 6
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OPTION B: Controlled variable: Y1, Yo
Manipulated variables: Uy, Us

The corresponding steady-state gain matrix is

03 1z
K=n 0
110 4

Using the formulain EQ.18-34, we obtain A3 =0.71

Thusthe RGA is

71 0290
“H29 071H

OPTION C: Controlled variable: Y1, Y2
Manipulated variables: U, U
The corresponding steady-state gain matrix is

+05 1/ 20

““Hz  4f

Using the formulain EQ.18-34, we obtain Ay, = 0.67

Thusthe RGA is

[0.67 0.331

A=h33 o6

By accounting for Bristol’s original recommendation, the controlled and
manipulated variables are paired so that the corresponding relative gains
are positive and as close to one as possible. Thus, OPTION B leads to the
best control configuration.
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18.16

b)

The process scheme is shown below

g:

T2=170F T1=80F

s Ts=110F

Figure S18.16. Process scheme
Steady state material balance:
Qi+ 02=0s
Steady state energy balance:
L C(T1-Tre) +oC(T2-Trer) = GsC(T5 Trex)
By substituting (1) in (2) and solving:

01=1gpm
02 =2gpm

The steady-state gain matrix K must be calculated :

D-s'gz Ky KlzD@IiS
%;D E<21 Ko W, 0

From (1), it follows that K»=K2,=1. From (2),
O;T; =T, +0,T,

Substitute (1) and rearrange,

18-17
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- %
T= g () )

Kf% (T, +T,) BBt %) - qlg_ (T, +T,)0,
0 , D(Q1+q2) [l (Q1+q2)

_ g U
Kp = —0
’ % a (q1+q2)2

RGA analysis:
1 1 o}
P — == . =1-
H 1- KKz 1- EI_&E 0, +q h P = +Ch
KuKz ™ g q,7
Thusthe RGA is,
Gy a
~ 7
T3 q2 ql
q2 + ql q2 + ql
A=
q Gy d,
° \_ d. + O, g, + O, )

Substitute numerical values for numerica conditions,

G .

Wl
winN

0

winN
Wl

Pair: T,-q,/d5-q,
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18.17

a) Dynamic Modd!:

Mass Balance:

dh
pASE =(1- )W, +w, —w, (1)

Energy Balance: (T« = 0)

d(h,
pCpA% =C, (- f)wT, +C,wT, -CwT, UA(T, -T) (2

Mixing Point:

w, =w,; + fw, 3
Energy Balance on Mixing Point:

C.w,T, =C wT, +C_ fwT, (4
Control valves:

U =C,X, ©)
w, = X,(C,h—-C, fw,) (6)

b) Degrees of freedom:

Variables: 14
h, Wi, W, Wa, Wy , Ty, Tp, T3, Ta, T¢, X, X3, f, U
Equations: 6
Degrees of freedom = Ny—Ng = 8
Specified by the environment: 4 (T, wy, Ty, T>)
Manipulated variables: 4 (f, Wy, X, X3)

C) Controlled variables:
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h Guiddines#2 and 5 (i.e., G2 and G5)
T, G3and G5
w; G3and G5

w; (or T3) G4 and G5 (or G2 and G5)

RGA

At steady state, (1) and (2) become:

0=(1- f)w, +w, —w, (7)
0=C,(1- f)wT, +C,w,T, - Cow,T, ~UA (T, - T,) (8)

Rearrange (8) and substitute (5),

_— C,L-fw, +C w,T, —-C,x AT,

° CoW;, + CoX A, ®)
Rearrange (7)
w, =(@- f)w, +w, (10)
Substitute (10) into (9),
_C, (- f)w, +C w,T, +C.x AT,
T Cy(1- f)w, +Cw, +Cyx A, ()
Substitute (10), (3) and (11) into (4),
(wy + fw)T, =w,T, + fw,T, (12
or
[@- f)w, +w, + fw, T, = fw,T, +
N [(1_ F)w, +W2] ECp(l— f)w, +C w,T, —Cx AT, B (13)

[l C,(1- f)w, +Cw, +Cyx A
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fw,T, N 1- f)w, +w, O, @- f)w, +C w,T, —C,x AT [

T, = & O
wtw, g wtw, gg GC@-f)w +Cw,+Cx.A [
(14
Rearrange (6),
+
h - W3 X3C2 le (15)
X3Cy
Substitute (10) into (15),
h= (1_ f)Wl Tw, + X3C2 le (16)

X:Cy

Rewrite (14) as,

fw, T, +EE1+E8f +w, ULE, f + E;w, + E, U

T, = 17
) W +W, 0 W+tw, EEEsf+E6W2+E7E a0

where:

E =w E, = —prl E, = CpT2

E, =C,X_AT_+ CpW1 E. =-C,w, (18)

E, =C; E, =C, X, A+C,w, Es =-w,

Can write (17) as,

fw T

— 1°1
T4 =_ 11 4

W, + W,

R

+ E.E,f ‘4 (EsEs + E) fw, +(EJE; + E))w, +(EE, + EE,) f + EE,

Ew,” + (W,E + E, )W, +WE f + Ecw, f + E,w,

F

(19)
Thus
GL — - W1T1 + 2EBE2f + (EsEa + Ez)Wz + E1E2 + E8E4
of tow +w, [F,]
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_ (Fl)[leS + E5W2]

20
= (20)
Similarly
oT,
E
From (16)
oh _%Cow —w,
of % X,C,
oh _ K, = 1

aWZ XSCl
Then

OA  1-AO
N= ~ 0

AA[
where
1
A=
1_ K12K21
K11K22
€) It will be difficult to control T, because neither x3 nor f has alarge steady-

state effect on Ta.

18.18

Multiloop Pl control system reported by Lee et al:

KC T|
Xp-R control loop 0.850 7.21 min
Xg-Scontrol loop -0.089 8.86 min
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PERFECT PROCESS MODEL

Dynamic decouplers:

T8 = Gpu(S) __ 6.6(14.4s+1) s - "95.045-66
. G,»(5)  (10.95+1)(-19.4) 2115 194

T.(9= _Gw(9) _ _-189(16.75+1) ,, _315635+189 .
’ Gu(s)  (21s+1)(12.8) 268.85+12.8

Static decouplers:

T, (8)=— KPZl(S) =- 66
szz(s) (-19.9)
T12(S) =- KplZ(S) = __18.9

Km(9 (128

By using Simulink-MATLAB, unit set-point responses are shown below.
Both Xp setpoint change and Xg setpoint change are considered separately.

al) Xp set-point change:

al.1.- Conventiona multiloop PI control:

Xp response:

1.4

1.2f

1+

0.8F

XD(t)

0.6

0.4r

0.2

O 1 L 1 1 1 1
0 10 20 30 40 50 60 70

time

Figure S18.18a. Xp response to Xp set-point change; perfect model
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Xg response:

12

XB(t)

0.2 I L I I I I
0 10 20 30 40 50 60 70

time

Figure S18.18b. Xgresponseto Xp set-point change; perfect model

a.1.2.- Static decoupler:

Xp response:

1.4

0.8F B

XD(t)

0.4r B

0.2 B

time

Figure S18.18c. Xp response to Xp set-point change; perfect model.
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Xp response:

0.6

0.4r 1

XB(t)

0.8 1 L 1 1 1 1
0 10 20 30 40 50 60 70

time

Figure S18.18d. Xz responseto Xp set-point change; perfect model

a.1.3.- Dynamic decoupler:

Xp response:

1.4

0.8F 1

XD(t)

0.4r 1

0.2 1

O 1 L 1 1 1 1
0 10 20 30 40 50 60 70

time

Figure S18.18e. Xp response to Xp set-point change; perfect model
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Xg response:

XB(t)
N

1 I L I I I I
0 10 20 30 40 50 60 70

time

Figure S18.18f. Xg response to Xp set-point change; perfect model

As noted in simulations above, the static decoupler provides better Xp
response (less oscillatory ) than the dynamic decoupler. However, the
dynamic decoupler provides perfect control of Xg during the setpoint
changein Xp.

a2) Xg_Set-point change

al.1.- Conventiona multiloop PI control:

Xp response:

0.16

0.14r- B

0.12 - b

O 1 L I 1 L
0 10 20 30 40 50 60 70

time

Figure S18.18g. Xp response to Xg set-point change; perfect model
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Xg response

1.4

1.2f B

XB(t)

0.6 B

0.4r B

L L
0 10 20 30 40 50 60 70
time

Figure S18.18h. Xg responseto Xg set-point change; perfect model

0

a.1.2.- Static decoupler:

Xp response:

0.02 -
N
-0.02 -
-0.04 -
-0.06

-0.08

XD(t)

-0.1r

-0.12

-0.14

-0.16 -

0.18 | | I | I I |
0 10 20 30 40 50 60 70

time

Figure S18.18i. Xpresponseto Xg set-point change; perfect model
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Xp response:

1.4r

1.2f

0.8F

XB(t)

0.6

0.4r

0.2

0

[

[

0

Figure S18.18j. Xg responseto Xg set-point change; perfect model
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20

a1.3.- Dynamic decoupler:

Xp response:
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XD(t)
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time
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Figure S18.18k. Xp response to Xg set-point change; perfect model
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Xg response:

1.4

1.2r- *

0.8 *

XB(t)

0.6+ B

0 L L 1 L L L
0 10 20 30 40 50 60 70

time

Figure S18.18l. Xz responseto Xg set-point change; perfect model
In simulations above, in this case the dynamic decoupler provides better

performance. In addition, this dynamic decoupler provides perfect control
of Xg during the setpoint changein Xp .

18-29



b)

MODEL ERROR
Degree of robustness to model erors is evaluated for the dynamic
decoupler. Only Xp set-point change is considered. Furthermore, different
model errors are analyzed:

bl) +20 % K11 - K11 =15.36

Xp response:

1.5

XD(t)

0.5F

O 1 L I 1 I I
0 10 20 30 40 50 60 70

time

Figure S18.18m. Xp responseto Xp set-point change; +20% Ky,

Xg response:

L
0 10 20 30 40 50 60 70
time

Figure S18.18n. Xg response to Xp set-point change; +20% K,
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b2) +20% K11  +20 % Ko -~ Kp1=15.36 and Ky, =-23.28

Xp response:

15 T T T T T

XD(t)

0.5- B

| L
0 10 20 30 40 50 60 70
time

Figure S18.180. Xp response to Xp set-point change; +20% Kig ang K22

Xg response:

| | | | | L
0 10 20 30 40 50 60 70
time

Figure S18.18p. Xg responseto Xp set-point change; +20% Ky ang K22
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b3) +20 % 111 - T11=20.04

Xp response:

15

XD(t)

0.5+ B

O 1 I I L I I
0 10 20 30 40 50 60 70

time

Figure S18.18q. Xp responseto Xp set-point change; +20% 1,

Xg response:

time

Figure S18.18r. Xgresponseto Xp set-point change; +20% 114
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b4) +20% 111 +20 % T, -~ T111=20.04 and T1,»,=17.28

Xp response:
1.5
1 [
ot
X
0.5F B
O 1 1 1 1 1 1
0 10 20 30 40 50 60 70

time

Figure S18.18s. Xp responseto Xp set-point change; +20% 711 ang T2

Xg response:

0.8+ B

0.4} 1

XB(t)

time

Figure S18.18t. Xg response to Xp set-point change; +20% 711 ang T2
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18.19

b)

As noted in simulations above, model errorsin Ky; , Ky, and 111 are not so
important, although the dynamic decoupler does not provide perfect
control for Xg in this case. System looks to be more sensitive to errors in

Too.

i)

Static considerations:

Pairing according to RGA elements closest to +1:
Hi-Qs, pH1-Q1, H2-Qs pHz-Qs

Dynamic considerations:

The some pairing results in the smallest time constants for tank 1.
It is also dynamically best for tank 2 because it avoids the large 6/t
ratio of 0.8.

Physical considerations

The proposed pairing makes sense because the controlled variables
for each tank are paired with the inlet flows for that some tank.

Because pH is more important than level, we might use the pairing,
Hi — Q1 / pH1-Q3 , for the first tank to provide better pH control
due to the smaller time delay (0.5 vs. 1.0 min).

The new gain matrix for the 2% 2 problem is

00.42 0.410

““Hos2 o3H

From Eq. 18-34,

_ 1 _
Au= 1 (0.41)(-0.32) 0-506

(0.42)(0.32)

Thus
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D506 0.4947
“H.494 05080

RGA pairing: Hz — Q4 / pH2-Qg. The pairing also avoids the large
delay of 0.8 min.

18.20

Since level is tightly controlled, there is a no accumulation, and a material
balance yields:

Overall: We—Ews—wp=0 (D)

Solute: wexg-wpxp =0 2)

Controlled variable: X, W
Manipulated variables: W, , W,

From (1):
wrg = wsE +wp
From (2):
Xp :X_FWF :X_F(WSE+WP) 3)
W, W,

Using deviation variables:
We =WE+w;

Linearizing (3):

_ 0X [)4
ik IR IS

, Xe EW E
Xp = E%E’\/P +%§\é )
W, Wp
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Then the steady-state gain matrix is

W, W,
f A
, X EW, E
XP __ 2 —
W, A
W 1 E
- J

By using the formulain EQ.18-34, we obtain

1 Ew,
}\11: = =—=—=A,
14+ Ve EWS+Wp
EV_VS
A=A, =1-A,= P
12 21 11 EV—VS_I_V—Vp
Sothe RGA is
O Ew, W, O
Ew, +w, EW, +W,
A=U O
o _ _ g
0 W Ew, 0
HEWS+Wp E S+WpH

So, if Ew, > W, , the pairing should be x5-w, /W -W,
So, if Ew, <W, ,thepairing should be x;-w, / w; - W,

18.21

a) The corresponding steady-state gain matrix is

(+0.04 -0.00051

“Ho22  -002H

Using theformulain Eq. 18-34, weobtain A3 =1.16
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b)

18.22

Thusthe RGA is

0116 -0.167
“Hoie 1164

Pairing for positive relative gains requires y;-u; and y»-U,.

For higher-dimension process (n>2) the RGA can be calculated from the
expression

Aij = Kij Hi
where H;; isthe (i,j) element of H = (K™")"

By using MATLAB,

(06223 -12217 58.020]
K= 8—84.47 170.83 —83.4%
5195 -1485 13090

06223 -84.47 195 [
-0 —
H= 712217 170.83 14.85%

H58.02 -8343 13.09H
Thusthe RGA is

021034 -211.18 1.89 [
A= 5—390.95 406.58 —14.642%
F181.60 -194.39 13.80 [

This RGA analysis shows the control difficulties for this process because
of the control loop interactions. For instance, if the pairings are 1-3, 2-2,
3-1, the third loop will experience difficulties in closed-loop operation.
But other options not be better.
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18.23

SVA anaysis:

Determinant of K = K 0= 0.0034
The condition number = CN = 1845

Since the determinant is small, the required adjustmentsin U will be very
large, resulting in excessive control actions. In addition, this example
shows the K matrix is poorly conditioned and very sensitive to small
variationsin its elements.

Applying SVA anaysis:

Determinant of K = [K [0=-6.76
The condition number = CN = 542.93

The large condition number indicates poor conditioning. Therefore this
process will require large changes in the manipul ated variables in order to
influence the controlled variables. Some outputs or inputs should be
eliminated to achieve better control, and singular value decomposition
(SVD) can be used to select the variables to be eliminated.

By using the MATLAB command SVD, singular values of matrix K are:

[21.3682
6.9480
1.1576
0.0394

™M
]
OoooO
i

Note that 03/04 > 10, then the last singular value can be neglected. If we
eliminate one input and one output variable, there are sixteen possible
pairing shown in Table S18.23, along with the condition number CN.

18-38



Pairingnumber  Controlled variables ~ Manipulated variables CN

1 Y1,¥Y2,¥3 Uj,Up,U3 114.29
2 Y1,¥Y2,¥3 U1,Up,Us 51.31
3 Y1,¥Y2,Y3 U1,U3,Us 398.79
4 Y1,¥2,¥3 Up,Us,Us 315.29
5 Y1,¥Y2,Ya U1,Uo,U3 42.46
6 Y1,Y2,Y4 Uy, U2,Ug 30.27
7 Y1,¥Y2,Y4 U1,U3,Us 393.20
8 Y1,Y2,Y4 Up,Us,Ug 317.15
9 Y1,¥Y3,Ya U1,Up,U3 21.21
10 Y1,¥Y3,Ya U1,Up,Us 16.14
11 Y1,¥Y3,Ya U1,U3,Us 3897.2
12 Y1,Y3,Y4 Up,Us,Ug 693.25
13 Y2,Y3,Ya U1,Uo,U3 24.28
14 Y2,Y3,Y4 Uy,Ug,Ug 20.62
15 Y2,Y3,Ya U1,U3,Us 1332.7
16 Y2,Y3,Y4 Up,Us,Ug 868.34

Table S18.23. CN for different 3x3 pairings.

Based on having minimal condition number, pairing 10 (y1-U1,Ys-Uz,Y4-Us)
isrecommended. The RGA for the reduced variable set is

01654 -0.880 0.226[]
A= 8—0.785 3.742 —1.957%
©.1312 -1.8615 2.73043
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