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18.1 
 
 

McAvoy has reported the PI controller settings shown in Table S18.1 and 
the set-point responses of Fig. S18.1a and S18.1b. When both controllers 
are in automatic with Z-N settings, undesirable damped oscillations result 
due to the control loop interactions. The multiloop tuning method results 
in more conservative settings and more sluggish responses. 
 

 
Controller Pairing Tuning Method Kc ττττI(min) 

T17 - R Single loop/Z-N -2.92 3.18 
T4 -  S Single loop/Z-N 4.31 1.15 

    
T17 - R Multiloop -2.59 2.58 
T4 -  S Multiloop 4.39 2.58 

  
   Table S18.1.  Controller Settings for Exercise 18.1 

 

  

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time(min)

Single loop tuning    
(one loop in manual)  
Single loop tuning        
(both loops in automatic) 
Multiloop tuning

 T 17

 
           Figure S18.1a.   Set point responses for Exercise 18.1. Analysis for T17 
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   Figure S18.1b.  Set point responses for Exercise 18.1. Analysis for T4 
 
18.2 
 

The characteristic equation is found by determining any one of the four 
transfer functions Y1(s)/Ysp1(s), Y1(s)/Ysp2(s), Y2(s)/Ysp1(s) and  Y2(s)/Ysp2(s), 
and setting its denominator equal to zero. 
 

  In order to determine, say, Y1(s)/Ysp1(s), set Ysp2 = 0 in Fig 18.3b and use  
  block diagram algebra to obtain 
 

12 1 111 1 1 1( ) [ ( ) ( )] ( )P C PC s G G R s C s G M s= − +                                 (1) 

2 21 22 11 1 1 1( ) ( [ ( ) [ ( ) ( )]])C P P CM s G G M s G G R s C s= − + −                        (2) 

 
  Simplifying (2), 
 

                       2 22 1

2 21

1 1 1( ) [ ( ) ( )]
1

C P C

C P

G G G
M s R s C s

G G

−
= −

+
                                               (3) 

 
  Substituting (3) into (1) and simplifying gives 
 

                      1 12 2 21 1 2 11 22

1 12 2 21 1 2 11 22

1

1

( )(1 )( )

( ) (1 )(1 )
C P C P C C P P

C P C P C C P P

G G G G G G G GC s

R s G G G G G G G G

+ −
=

+ + −
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  Therefore characteristic equations is 
 
  (1 +Gc1 Gp12) (1  + Gc2 Gp21) – Gc1 Gc2 Gp11 Gp22 = 0 

 

  If either Gp11 or Gp22 is zero, this reduces to  

 

  (1 + Gc1 Gp12) = 0         or          (1  + Gc2 Gp21) = 0 

 

So that the stability of the overall system merely depends on the stability 

of the two individual feedback control loops in Fig. 18.3b since the third 

loop containing Gp11 and Gp22 is broken. 

 

 

  

18.3 
 

Consider the block diagram for the 1-1/2-2 control scheme in Fig.18.3a 

but including a sensor transfer function (Gm1,Gm2) for each output (y1,y2). 

The following expressions are easily derived, 

 

 

  Y(s) = Gp(s) U(s)     

 

 or    
11 121 1

21 222 2

( ) ( )( ) ( )

( ) ( )( ) ( )
p p

p p

G s G sY s U s

G s G sY s U s

    
=     

    
    (1) 

 

 U(s) = Gc(s) E(s)      

 

 or    
11 1

22 2

( ) 0( ) ( )

0 ( )( ) ( )
c

c

G sU s E s

G sU s E s

    
=     

    
    (2) 

 

  E(s)= Ysp(s)-Gm(s)Y(s)   

 

or     
1 11 1

2 22 2

( ) ( ) 0( ) ( )

( ) 0 ( )( ) ( )
sp m

sp m

Y s G sE s Y s

Y s G sE s Y s

      
= −      

     
  (3) 

 

If Eqs. 1 through  3 are solved for the response of the output to variations 

of set points, the result is 

 

  Y(s) = Gp(s)Gc(s) [I + Gp(s)Gc(s)Gm(s)]
-1 Ysp (s) =  

 

  where I is the identity matrix. 

 

  In terms of the component transfer function the matrix  
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V = I + Gp(s)Gc(s)Gm(s) = 







+

+
)(1)(

)()(1

2221

1211

shsh

shsh
 

  where 
 
   h11(s)= Gp11(s) Gc1(s) Gm1(s) 
   h12(s)= Gp12(s) Gc2(s) Gm2(s) 
   h21(s)= Gp21(s) Gc1(s) Gm1(s) 
   h22(s)= Gp22(s) Gc2(s) Gm2(s) 
   

The inverse of V, if it exists, is    V-1








+−
−+

∆
=

)(1)(

)()(11

1121

1222

shsh

shsh
 

 
where ∆ = (1+h11(s))(1+h22(s))-h12(s)h21(s) 

 
 

By accounting for Y(s) = [Gp(s)Gc(s) V-1(s)]  Ysp (s), the closed-loop 
transfer functions are (see book notation): 
 

 T11(s) = [ ])()())(1)((
)(

1
21122211

1

shshshsh
sGm

−+
∆

 

 

 T12(s) = 
∆)(

)(

2

12

sG

sh

m

 

 

   T21(s) = 
∆)(

)(

1

21

sG

sh

m

 

 

 T22(s) = [ ])()())(1)((
)(

1
12211122

2

shshshsh
sGm

−+
∆

 

 
 
 
18.4 
 

From Eqs. 6-78 and 6-79 a from physical reasoning, its is evident that 
although h is affected by both the manipulated variables, T is affected only 
by wh and is independent of w. Hence, T can be paired only with wh. Thus, 
the reasonable pairing for the control scheme is T-wh, h-w 
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18.5 
 
 

a) As shown in Example 18.3, the correct pairing for x = 0.4 case is w-wB,           
 x-wA. Therefore, the block diagram is 

 

1
1

1
1

    
++++    ττττ    

c
I

K
s

2
2

1
1

    
++++    ττττ    

c
I

K
s

1

1 1τ +τ +τ +τ +
V

V

K

s

2

2 1τ +τ +τ +τ +
V

V

K

s

1

1 1τ +τ +τ +τ +
m

m

K

s

2

2 1τ +τ +τ +τ +
m

m

K

s
 

              
 
 b) As shown in Example 18.9  , the correct pairing is w-u1, x-u2. The block  
  diagram is 
 

 

1
1

1
1

    
++++    ττττ    

c
I

K
s

2
2

1
1

    
++++    ττττ    

c
I

K
s

1

1 1τ +τ +τ +τ +
V

V

K

s

2

2 1τ +τ +τ +τ +
V

V

K

s

1

1 1τ +τ +τ +τ +
m

m

K

s

2

2 1τ +τ +τ +τ +
m

m

K

s

2

1

V

V

K

K
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18.6 
 
 

i) Calculate the steady-state gains as 
 

4
11

0.97 0.93
8 10 min/lb

(125 175) lb/min
D

S

X
K

R
−∆ − = = = − × ∆ − 

  

 
 

  3
12

0.96 0.94
5 10 min/lb

(24 20) lb/min
B

R

X
K

S
−∆ − = = = + × ∆ − 

 

  

  4
21

0.06 0.04
4 10 min/lb

(175 125)lb/min
B

S

X
K

R
−∆ − = = = + × ∆ − 

 

 
 

  lb
lbS

X
K

R

B min/105
min/)2024(

06.004.0 3
22

−×−=
−

−=






∆
∆

=  

 
 
  Substituting into Eq. 18-34,  
 

                        3 4

4 3

1
2

(5*10 )(4*10 )
1

( 8*10 )( 5*10 )

− −

− −

λ = =
−

− −

 

 
Thus the RGA is 
 
            R     S 

                           D

B

x

x

2 1

1 2

− 
 − 

 

     
  Pairing for positive relative gains requires XD-R, XB-S. 
 

ii) This pairing seems appropriate from dynamic considerations as well; 
because of the lag in the column, R affects XD sooner than XB, and S 
affects XB sooner that XD. 
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18.7 
 
 

a) The corresponding steady-state gain matrix is 
 

K
12.8 18.9

6.6 19.4

− 
=  − 

 

 
  Using the formula in Eq. 18-34 , we obtain    λ11 = 2.0 
 
  Thus the RGA is  
   

   �
2 1

1 2

− 
=  − 

 

 
  Pairing for positive relative gains requires XD-R and XB-S. 
 

b) The same pairing is recommended based on dynamic considerations. The 
transfer functions between XD and R contains a smaller dead time and a 
smaller time constant, so XD will respond very fast to changes in R. For 
the pair XB-S, the time constant is not favorable but the dead time is 
significantly smaller and the response will be fast as well. 

 
 
 
18.8 
 
 

a) From Eq. 6-89 
 

                       
11

( ) /
( )

1
h

p

T T w
G s

s

−=
τ +

 ,   
12

( ) /
( )

1
c

p

T T w
G s

s

−=
τ +

 

                       
21

1/
( )p

AP
G s

s
=        ,   

22

1/
( )p

AP
G s

s
=  

Thus 
11 ,hT T

K
w

−=       
12

cT T
K

w

−=  

and since Gp21, Gp22 contain integrating elements,  
 

21

22

21 0

22 0

1
lim ( )

1
lim ( )

P
s

P
s

K sG s
AP

K sG s
AP

→

→

= =

= =
 

 
Substituting into Eq. 18-34, 
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1

1

h

c h c

h

T T

T T T T

T T

−λ = =
− −−
−

 

 
Hence 0 ≤ λ  ≤ 1, and the choice of pairing depends on whether λ > 0.5 or 
not. The RGA is 
 
                    wh                  wc  

T

h

h c

h c h c

c h

h c h c

T T T T

T T T T

T T T T

T T T T

 − −
 − − 
 − − 

− −  

 

 
b) Assume that λ ≥ 0.5 so that the pairing is T-wh, h-wc. Assume valve gains 

to be unity. Then the ideal decoupling control system will be as in Fig.18.9 
where Y1≡T ,  Y2≡h , U1≡wh , U2≡wc, and using Eqs. 18-78 and 18-80, 

  

  
21

12

(1/ )
( ) 1

(1/ )

[( ) / ] /( 1)
( )

[( ) / ] /( 1)

cc

h h

AP s
T s

AP s

T T w s T T
T s

T T w s T T

= − = −

− τ + −= − =
− τ + −

 

 
c) The above decouplers are physically realizable. 

 
 
 
18.9 
 
 
 

OPTION A:  Controlled variable: T17, T24 
           Manipulated variables: u1, u2 

 
The corresponding steady-state gain matrix is 

 

K
1.5 0.5

2 1.7

 
=  

 
 

 
  Using the formula in Eq.18-34, we obtain    λ11 = 1.65 
  Thus the RGA is  
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   �
1.65 0.65

0.65 1.65

− 
=  − 

 

 
OPTION B:  Controlled variable: T17, T30 
           Manipulated variables: u1, u2 

 
The corresponding steady-state gain matrix is 

 

K
1.5 0.5

3.4 2.9

 
=  

 
 

 
  Using the formula in Eq.18-34, we obtain    λ11 = 1.64 
 
  Thus the RGA is  
   

   �
1.64 0.64

0.64 1.64

− 
=  − 

 

 
 

OPTION C:  Controlled variable: T24, T30 
           Manipulated variables: u1, u2 

 
The corresponding steady-state gain matrix is 

 

K
2 1.7

3.4 2.9

 
=  

 
 

 
  Using the formula in Eq.18-34, we obtain    λ11 = 290 
 

Thus the RGA is  
   

   �
290 289

289 290

− 
=  − 

 

 
Hence options A and B yield approximately the same results. Option C is 
the least desirable. 
 
By applying Niederlinski’s stability theorem for option C: 

 

 
0.02

0
5.8ii

K

K

−= <
Π

 

 

Thus the closed-loop system is unstable. 
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18.10 
 
 

a)  Material balance for each of the two tanks is 
 

11
1 1 6 1 2

1

( )
hdh

A q q K h h
dt R

= + − − −                                                       (1) 

22
2 2 1 2

2

( )
hdh

A q K h h
dt R

= − + +                                                        (2) 

 
where A1, A2 are cross-sectional areas of tanks 1, 2, respectively. 
Linearizing, putting in deviation variable form, and taking Laplace 
transform, 
 

1 1 1 6 1 1 2

1 1

1
( ) ( ) ( ) ( ) ( ) [ ( ) ( )]

2
A sH s Q s Q s H s K H s H s

R h
′ ′ ′ ′ ′ ′= + − − −  

2 2 2 2 1 2

2 2

1
( ) ( ) ( ) ( ) [ ( ) ( )]

2
A sH s Q s H s K H s H s

R h
′ ′ ′ ′ ′= − + −  

Let 1

1 1

1

2
K

R h
≡  and 2

2 2

1

2
K

R h
≡ , and 

 
Solve the above equations simultaneously to get,  
 

2
1 1 2 2 1

2 2 1 6 2

[( )( ) ] ( )

( )[ ( ) ( )] ( )

A s K K A s K K K H s

A s K K Q s Q s KQ s

′+ + + + −

′ ′ ′= + + + +
                        (3) 

 
2

1 1 2 2 2

1 6 1 1 2

[( )( ) ] ( )

[ ( ) ( )] ( ) ( )

A s K K A s K K K H s

K Q s Q s A s K K Q s

′+ + + + −

′ ′ ′= − + + +
                          (4) 

 
The four steady-state process gains are determined using Eqs. 3 and 4 as 
 

)()('

)('
lim

2121

2

1

1

0
11 KKKKK

KK

sQ

sH
K

s ++
+

=







=

→
 

 

)()('

)('
lim

21212

1

0
12 KKKKK

K

sQ

sH
K

s ++
=








=

→
 

)()('

)('
lim

21211

2

0
21 KKKKK

K

sQ

sH
K

s ++
=








=

→
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)()('

)('
lim

2121

1

2

2

0
22 KKKKK

KK

sQ

sH
K

s ++
+

=







=

→
 

 
Substituting into Eq. 18-34 
 

2 1
2

1 2 1 2

2 1

( )( )1

( )
1

( )( )

K K K K

K K K K K K
K K K K

+ +λ = =
+ +−

+ +

 

 
Thus RGA is 
                                                  q1                                                   q2 

2
1 2

2
1 2 1 2 1 2

( )( )1

( ) ( )( )

K K K K K

K K K K K K K K K K

 + + −
 + + − + + 

1

2

h

h
 

 
 

b)  Substituting the given numerical values, the RGA is  
  

                                            q1                   q2 

 
1

2

h

h

2.50 1.50

1.50 2.50

− 
 − 

 

 
For the relative gains to be positive, the preferred pairing is h1-q1, h2-q2. 
 
 

 
18.11 
 
 

a) Let  
 

 1 1
6

2 2

( ) ( )
( ) , ( ) , ( ) ( )

( ) ( )

H s Q s
Y s U s D s Q s

H s Q s

   ′ ′
′   = = =

   ′ ′   
 

 
Then by inspection of Eqs. (3) and (4) in the solution to Exercise 18-10, 
 

          2 2

2
1 11 1 2 2

1
( )

( )( )P

A s K K K
G s

K A s K KA s K K A s K K K

+ + 
=  + ++ + + + −  

 

 
  and 
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2 2

2
1 1 2 2

1
( )

( )( )d

A s K K
G s

KA s K K A s K K K

+ + 
=  −+ + + + −  

 

 
 where A1, A2, K1, K2 are as defined in the solution to Exercise 18.10. 
 

 
b) The block diagram for h1-q1 / h2-q2 pairing is identical to Fig.18.3a with 

the addition of the load. Thus the signal D(s) passes through a block Gd1 
whose output is added to the summer with output Y1. Similarly, the 
summer leading to Y2 is influenced by the signal D(s) that passes through  
block Gd2. 

 
 
 
18.12 
 
 
  F = 20 u1 (P0 – P1)      (1) 

  F = 30 u2 (P1 – P2)      (2) 

 

  Taking P0 and P2 to be constant, Eq. 1 gives 

 

  

22
1

1
110

1

20)(20
uu

u

P
uPP

u

F






∂
∂−−=





∂
∂

   (3) 

 

  and 

  

  )(20 10
1

2

PP
u

F

P

−=





∂
∂

      (4) 

 

  and Eq. 2 gives 

 

  

22
1

1
2

1

30
uu

u

P
M

u

F






∂
∂=





∂
∂

      (5) 

 

  Substituting for 

2
1

1

M
M

P






∂
∂

from (5) into (3) and simplifying 

 

  

2

1

10

1

30

20
1

)(20

2

u

u
PP

u

F

u +

−
=





∂
∂

      (6)  
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  Using Eq. 18-24,     

 

2

11

1
11

30

20
1

1

)/(

)/(

2

2

u

uuF

uF

P

u

+
=

∂∂
∂∂

=λ      (7) 

  At nominal conditions 
 

  2/1
)(20 10

1 =
−

=
PP

F
u       ,      3/2

)(30 21
2 =

−
=

PP

F
u  

 
Substituting into (7),  λ11 = 2/3 > 0.5. Hence, the best controller pairing is 
F-u1, P1-u2. 
 

 
18.13 
 
 

a)  Material balances for the tank, 
  

1 2 3

dh
A q q q

dt
= + −                                                                         (1) 

3
1 1 2 2 3 3

( )d Ahc
c q c q c q

dt
= + −                                                         (2) 

 
Substituting for dh/dt from (1) into (2) and simplifying 
 

232131
3 )()( qccqcc

dt

dC
Ah −+−=        (3) 

 
Linearizing, using deviation variables, and taking the Laplace transform 
               

3 1 3 1 1 3 2 3 2 2 3( ) ( ) ( ) ( ) ( ) ( ) ( )AhsC s c c Q s q C s c c Q s q C s′ ′ ′ ′ ′= − − + − −  

 
Since 1 2 3q q q+ = , this becomes 

 

  1 3 2 3
3 1 2

3 3 3

1 ( ) ( ) ( )
c c c cAh

s C s Q s Q s
q q q

      − −′ ′ ′+ = +      
       

                  (4) 

 
Similarly from (1),  
 

1 2 3( ) ( ) ( ) ( )AsH s Q s Q s Q s′ ′ ′′ = + −                                               (5) 
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Therefore, 
 

1 3

1 3 3

3 3

1 3
3

1 1( ) ( )

( ) ( )
( ) /( ) 0( ) ( )

1( ) ( )

H s H s
As As

Q s Q s
c c qG s

C s C s Ah
sQ s Q s q

 ′ ′  −  ′ ′    − = = ′ ′      +  ′ ′     

 

 
Substituting numerical values 
 

0.1415 0.1415

( )
0.0075

0
1.06 1

s sG s

s

− 
 

=  
 
 + 

 

 
For the control valves 
 

0.15 0.15
( )

10 0.167 11
60

vG s
s

s
= =

+  +  

                                               (6)                                   

Thus, 
0.0212 0.0212

(0.167 1) (0.167 1)
( ) ( ) ( )

0.0011
0

(1.06 1)(0.167 1)

P v

s s s s
G s G s G s

s s

− 
 + + = =
 
 + + 

 

 
 b) Since  3 ( )C s′ / 3( )Q s′  = 0,  c3 is not affected by q3 and must be paired with   

  q1. Thus, the pairing that should be used is h-q3, c3-q1. 
 

c) For the pairing determined above, Fig.18.9 can be used with Y1≡ H ′ , 
Y2≡ 3C′ , U1≡ 3Q′ , U2≡ 1Q′ . Notice that this pairing requires Gp(s) above the 

switch columns. Then using Eqs.  18-78 and 18-80, 
 

  

[ ]
[ ]

21

22

12

11

21

12

( ) 0
( ) 0

( ) 0.0011
(1.06 1)(0.167 1)

( ) 0.0212 / (0.167 1)
( ) 1

( ) 0.0212 / (0.167 1)

P

P

P

P

G s
T s

G s

s s

G s s s
T s

G s s s

= − = − =
 
 + + 

+
= − = − =

− +
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18.14 
 
 

In this case, an RGA analysis is not needed. The manipulated and 
controlled variables are: 

   
    Controlled variables:     F1, P1 and I 
    Manipulated variables:  m1, m2, m3 

 
Basically, the pairing could be done based on dynamic considerations, so 
that the time constants and dead times in the response must be as low as 
possible. 
 
The level of the interface “I” may be easily controlled with m3 so that any 

change in the set-point is controlled by opening or closing the valve in the 

bottom of the decanter. 

 

The manipulated variable m1 could be used to control the inflow rate F1. If 

F1 is moved away from its set-point, the valve will respond quickly to 

control this change. 

  

The decanter overhead pressure P1 is controlled by manipulating m2. That 

way, pressure changes will be quickly treated. This control configuration 

is also used in distillation columns. 
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OPTION A:  Controlled variable: Y1, Y2 

           Manipulated variables: U1, U2 

 

The corresponding steady-state gain matrix is 

 

K
3 0.5

10 2

− 
=  − 

 

  Using the formula in Eq.18-34, we obtain    λ11 = 6 

 

  Thus the RGA is  

   

   �
6 5

5 6

− 
=  − 
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OPTION B:  Controlled variable: Y1, Y2 
           Manipulated variables: U1, U3 

 
The corresponding steady-state gain matrix is 

 

K
3 1/ 2

10 4

 
=  − 

 

 
  Using the formula in Eq.18-34, we obtain    λ11 = 0.71 
 
  Thus the RGA is  
   

   �
0.71 0.29

0.29 0.71

 
=  

 
 

 
 

OPTION C:  Controlled variable: Y1, Y2 
           Manipulated variables: U2, U3 

 
The corresponding steady-state gain matrix is 

 

K
0.5 1/ 2

2 4

− 
=  

 
 

 
  Using the formula in Eq.18-34, we obtain    λ11 = 0.67 
 

Thus the RGA is  
   

   �
0.67 0.33

0.33 0.67

 
=  

 
 

 
 
By accounting for Bristol’s original recommendation, the controlled and 

manipulated variables are paired so that the corresponding relative gains 

are positive and as close to one as possible. Thus, OPTION B leads to the 

best control configuration. 
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18.16 
 
 
 
  The process scheme is shown below  
 
 

   
  Figure S18.16.   Process scheme 

 
a) Steady state material balance:      

 
 q1 + q2 = q3        (1) 
 
Steady state energy balance:        
 
q1C(T1-Tref)+q2C(T2-Tref) = q3C(T3-Tref)      (2) 
 
By substituting (1) in (2)  and solving: 

 
  q1 = 1 gpm 
  q2 = 2 gpm 

 
b) The steady-state gain matrix K must be calculated : 

 









′
′









=








′
′

2

1

2221

1211

3

3

q

q

KK

KK

q

T
     (3) 

 
From (1), it follows that K21=K22=1. From (2), 
 

221133 TqTqTq +=       (4) 

  
Substitute (1) and rearrange, 
  

MIX

q1q2

T1 = 80 FT2 = 170 F

q3 T3 = 110 F
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 )( 21
21

1
3 TT

qq

q
T +

+
=       (5) 

 

2
21

221
2

21

121
21

1

3
11 )(

)(

)(

)(
)(

2
qq

qTT

qq

qqq
TT

q

T
K

q
+
+=








+

−++=





∂
∂

=  

  









+

−+=





∂
∂

=
2

21

1
21

2

3
12 )(

)(
1

qq

q
TT

q

T
K

q

 

 
RGA analysis: 
 

2 1
11 12 11

12 21 2 1 2 11

11 22 2

1 1
1

1 1

q q
K K q q q qq
K K q

λ = = = → λ = − λ =
+ + − − − 

 

 

 
 
Thus the RGA is, 

 
      1q                 2q  
   

          3T          
12

2

qq

q

+
        

12

1

qq

q

+
   

=�   
   

             3q           
12

1

qq

q

+
        

12

2

qq

q

+
  

   
 
  Substitute numerical values for numerical conditions, 
 
       1q                 2q  
   

          3T               
3

1
                

3

2
   

=�   
   

             3q                
3

2
     

3

1
 

 
 
Pair :      3T - 2q  / 3q - 1q  
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18.17 
 
 

a)  Dynamic Model: 
 

Mass Balance: 
 

 1 2 3(1 )
dh

A f w w w
dt

ρ = − + −        (1) 

 
Energy Balance: (Tref = 0) 
 

3
1 1 2 2 3 3 3

( )
(1 ) ( )p p p p c c

d hT
C A C f wT C w T C w T UA T T

dt
ρ = − + − − −     (2) 

 
Mixing Point: 
 

134 fwww +=         (3) 

 
Energy Balance on Mixing Point: 
 

4 4 3 3 1 1p p pC w T C w T C fw T= +       (4) 

 
Control valves: 
 

cXCU 3=         (5) 

 
)( 12133 fwChCxw −=       (6) 

 
b)  Degrees of freedom: 

 
Variables: 14 
 
   h, w1, w2, w3, w4 ,T1, T2, T3, T4, Tc, xc, x3, f, U 
 
Equations: 6 
 

  Degrees of freedom = NV−NE = 8 
 
 Specified by the environment: 4 (Tc, w1, T1, T2) 
 
 Manipulated variables: 4 (f, w2, xc, x3) 

 
c)  Controlled variables: 
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h   Guidelines #2 and 5  (i.e., G2 and G5) 
 
T4   G3 and G5 
 
w4  G3 and G5 
 
w2 (or T3)   G4  and G5 (or G2 and G5) 

 
 

d)  RGA 
 

At steady state, (1) and (2) become: 
 

321)1(0 wwwf −+−=       (7) 

 
)()1(0 33332211 ccpp TTUATwCTwCTwfC −−−+−=   (8) 

 
Rearrange (8) and substitute (5), 
 
 

cc

cccpp

AxCwC

TAxCTwCwfC
T

333

3221
3

)1(

+
−+−

=     (9) 

 
Rearrange (7) 
 

  213 )1( wwfw +−=        (10) 

 
  Substitute (10) into (9), 
 

  
cc

cccpp

AxCwCwfC

TAxCTwCwfC
T

32313

3221
3 )1(

)1(

++−
++−

=     (11) 

 
  Substitute (10), (3) and (11) into (4), 
 
   1133413 )( TfwTwTfww +=+      (12) 

  or 
 
   [ ] +=++− 114121)1( TfwTfwwwf  
    

   +  [ ]21)1( wwf +− 







++−
−+−

cc

cccpp

AxCwCwfC

TAxCTwCwfC

32313

3221

)1(

)1(
       (13) 

  Rearrange, 
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  







+

+−
+

+
=

21

21

21

11
4

)1(

ww

wwf

ww

Tfw
T 








++−
−+−

cc

cccpp

AxCwCwfC

TAxCTwCwfC

32313

3221

)1(

)1(
  

 
(14) 

  Rearrange (6), 
 

  
13

1233

Cx

fwCxw
h

+
=        (15) 

 
  Substitute (10) into (15), 
 

  
13

12321)1(

Cx

fwCxwwf
h

++−
=      (16) 

 
  Rewrite (14) as, 
 

  







+

++
+

+
=

21

281

21

11
4 ww

wfEE

ww

Tfw
T 








++
++

7265

4232

EwEfE

EwEfE
  (17) 

 
  where: 
 
  11 wE =   12 wCE p−=          23 TCE p=  

  134 wCATXCE pcc +=           135 wCE −=  (18) 

  36 CE =             1337 wCAXCE c +=         18 wE −=  

 
  Can write (17) as, 
 

  +
+

=
21

11
4 ww

Tfw
T  

 

  

��������� ���������� ��

������������� �������������� ��

2

1

1725512761
2

26

41482124312283
2

28

)(

)()()(

F

F

wEfwEfEwwEEwwE

EEfEEEEwEEEfwEEEfEE

+++++
+++++++

+  

 
           (19) 
 
  Thus 
 

  
][

)(2

2

482122832

21

11
11

4

F

EEEEwEEEfEE

ww

Tw
K

f

T B ++++
+

+
==

∂
∂
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[ ]

2
2

25511)(

F

wEEwF +
−       (20) 

  Similarly 
 

  12
4 K

f

T =
∂
∂

 

   
From (16) 
 

13

1123
21 Cx

wwCx
K

f

h −
==

∂
∂

 

 

  
13

22
2

1

Cx
K

w

h ==
∂
∂

 

 
  Then 
 

  
1

1

λ − λ 
Λ =  − λ λ 

 

 
  where 
 

   
12 21

11 22

1

1
K K

K K

λ =
−

 

 
e)  It will be difficult to control T4 because neither x3 nor f has a large steady-

 state effect on T4. 
 
 
 

18.18 
 
 
  Multiloop PI control system reported by Lee et al: 
 
 
        Kc   τI 
 

     XD-R control loop   0.850  7.21 min 
     XB-S control loop           -0.089             8.86 min 
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a) PERFECT PROCESS MODEL 
 

Dynamic decouplers: 
 

 21 4 4
21

22

( ) 6.6(14.4 1) 95.04 6.6
( )

( ) (10.9 1)( 19.4) 211 19.4
p s s

p

G s s s
T s e e

G s s s
− −+ − −= − = − =

+ − − −
 

   12 2 2
12

11

( ) 18.9(16.7 1) 315.63 18.9
( )

( ) (21 1)(12.8) 268.8 12.8
p s s

p

G s s s
T s e e

G s s s
− −− + += − = − =

+ +
 

 
  Static decouplers: 
 

   21
21

22

( ) 6.6
( )

( ) ( 19.4)
p

p

K s
T s

K s
= − = −

−
 

   12
12

11

( ) 18.9
( )

( ) (12.8)
p

p

K s
T s

K s

−= − = −  

 
By using Simulink-MATLAB, unit set-point responses are shown below. 
Both XD setpoint change and XB setpoint change are considered separately.  
 
 
a.1)  XD set-point change: 
 
 
      a.1.1.- Conventional multiloop PI control: 
 
 XD  response: 
 

 
0 10 20 30 40 50 60 70

0

0.2

0.4

0.6

0.8

1
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1.4

time

X
D

(t
)

 
Figure S18.18a.  XD response to XD  set-point change; perfect model 
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 XB  response: 
 

 
0 10 20 30 40 50 60 70

-0.2

0

0.2

0.4
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time

X
B
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Figure S18.18b.  XB response to XD  set-point change; perfect model 

 
 
 

   a.1.2.- Static decoupler: 
 
 
 XD  response: 
 

 
0 10 20 30 40 50 60 70

0
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0.4
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0.8
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time
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   Figure S18.18c.  XD response to XD  set-point change; perfect model. 
 
 



18-25 

XB  response: 
 

 
0 10 20 30 40 50 60 70

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

time

X
B

(t
)

 
 Figure S18.18d.  XB  response to XD  set-point change; perfect model 
 
 
 

 
    a.1.3.- Dynamic decoupler: 
 
   XD  response: 

     

0 10 20 30 40 50 60 70
0

0.2

0.4
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0.8

1

1.2

1.4

time

X
D
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   Figure S18.18e.  XD response to XD  set-point change; perfect model 
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   XB  response: 
 

  
0 10 20 30 40 50 60 70

-1

0

1

2

3

4

5

time

X
B

(t
)

 
   Figure S18.18f.  XB response to XD  set-point change; perfect model 
 

As noted in simulations above, the static decoupler provides better XD 
response (less oscillatory ) than the dynamic decoupler. However, the 
dynamic decoupler provides perfect control of XB during the setpoint 
change in XD . 
 
a.2)  XB set-point change 
 
    a.1.1.- Conventional multiloop PI control: 
 
 XD  response: 
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X
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 Figure S18.18g.  XD response to XB  set-point change; perfect model 



18-27 

 XB  response 
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time
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 Figure S18.18h.  XB response to XB  set-point change; perfect model 
 
 
 
 
   a.1.2.- Static decoupler: 
 
 
 XD  response: 
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-0.18
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   Figure S18.18i.  XD response to XB  set-point change; perfect model 
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XB  response: 
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 Figure S18.18j.  XB response to XB  set-point change; perfect model 
 
 
 

 
    a.1.3.- Dynamic decoupler: 
 

 XD  response:     
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-1

0

1

2

3

4

5

time

X
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   Figure S18.18k.  XD response to XB  set-point change; perfect model 
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   XB  response: 

 

0 10 20 30 40 50 60 70
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time
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   Figure S18.18l.  XB response to XB  set-point change; perfect model 
 

In simulations above, in this case the dynamic decoupler provides better 
performance. In addition, this dynamic decoupler provides perfect control 
of XB during the setpoint change in XD . 
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b) MODEL ERROR 
 

Degree of robustness to model errors is evaluated for the dynamic 
decoupler. Only XD set-point change is considered. Furthermore, different 
model errors are analyzed: 
 

                           b.1)     +20 % K11     →     K11 = 15.36 
 

 XD  response: 

0 10 20 30 40 50 60 70
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0.5
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1.5

time

X
D
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Figure S18.18m.  XD response to XD  set-point change; +20% K11 

 
 
 

  XB  response:
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Figure S18.18n.  XB response to XD  set-point change; +20% K11 
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   b.2)    +20 % K11    +20 % K22      →     K11 = 15.36  and    K22 = -23.28 
 
 

   XD  response: 
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Figure S18.18o.  XD response to XD  set-point change; +20% K11  and K22 
 
 

 
   XB  response: 
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Figure S18.18p.  XB response to XD  set-point change; +20% K11  and K22 
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        b.3)    +20 % τ11     →     τ11 = 20.04 
    
 
   XD response: 
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Figure S18.18q.  XD response to XD  set-point change; +20% τ11 

 
 
 
   XB  response: 
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Figure S18.18r.  XB response to XD  set-point change; +20% τ11 
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   b.4)    +20 % τ11    +20 % τ22      →     τ11 = 20.04  and    τ22 = 17.28 

 
   XD  response: 
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time
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Figure S18.18s.  XD response to XD  set-point change; +20% τ11  and  τ22 

 
   
 
   XB  response: 

  

0 10 20 30 40 50 60 70
-0.2

0

0.2

0.4

0.6

0.8

time

X
B

(t
)

 
 

 Figure S18.18t.  XB response to XD  set-point change; +20% τ11  and  τ22 
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As noted in simulations above, model errors in K11 , K22  and τ11 are not so 
important, although the dynamic decoupler does not provide perfect 
control for XB in this case. System looks to be more sensitive to errors in 
τ22. 
 
 

18.19 
 
 
 a)  
 

i) Static considerations: 
 

Pairing according to RGA elements closest to +1: 
 
H1 – Q3,   pH1-Q1,   H2-Q4,   pH2 – Q6 

 

ii) Dynamic considerations: 

 

The some pairing results in the smallest time constants for tank 1. 

It is also dynamically best for tank 2 because it avoids the large θ/τ 

ratio of 0.8. 

 

iii) Physical considerations 

 

The proposed pairing makes sense because the controlled variables 

for each tank are paired with the inlet flows for that some tank. 

 

Because pH is more important than level, we might use the pairing, 

H1 – Q1 / pH1-Q3  , for the first tank to provide better pH control 

due to the smaller time delay (0.5 vs. 1.0 min). 

 

 b)  The new gain matrix for the 2 2×  problem is 

 

   K
0.42 0.41

0.32 0.32

 
=  − 

 

 

   From Eq. 18-34, 

 

   11

1
0.506

(0.41)( 0.32)
1

(0.42)(0.32)

λ = =−−
 

 

   Thus 
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0.506 0.494

0.494 0.506

 
=  

 
�  

 
RGA pairing:  H2 – Q4 / pH2-Q6. The pairing also avoids the large 

delay of 0.8 min. 
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Since level is tightly controlled, there is a no accumulation, and a material 

balance yields: 

 

   Overall:  wF – E wS – wP ≈ 0     (1) 

   Solute:    wFxF - wPxP    ≈ 0     (2) 

 

 

  Controlled variable: FP wx ′′ ,  

              Manipulated variables: sP ww ′′ ,  

 

  From (1): 

    

   wF  =   wS E + wP         

 

  From (2): 

 

   )( Ps
P

F
F

P

F
P wEw

w

x
w

w

x
x +==     (3) 

 

 

  Using deviation variables: 

 

   PsF wEww ′+′=′  

 

  Linearizing (3): 

 

  )()(
,,

s

wws

P
P

wwP

P
PP w

w

x
w

w

x
xx

sPsP

′
∂
∂+′

∂
∂+=  

 

  s
P

F
P

P

sF
P w

w

Ex
w

w

wEx
x ′





+′




 −
=′

2
     (5) 
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  Then the steady-state gain matrix is 
       
    Pw′                     sw′  
   

Px′        




 −
2

P

sF

w

wEx
        






P

F

w

Ex
   

 
   
  Fw′       1                          E  
   
 
  

 By using the formula in Eq.18-34, we obtain   
 

 λ11 = =
+

s

P

wE

w
1

1
22

s

s p

Ew

Ew w
= λ

+
 

12 21 111 p

s p

w

Ew w
λ = λ = − λ =

+
 

 
  So the RGA is 
 

    

s P

s p s p

sP

s p s p

Ew w

Ew w Ew w

Eww

Ew w Ew w

 
 + + 
 =
 
 
 + + 

�  

 
  So, if Ps wwE >  , the pairing should be Px′ - Pw′  /   Fw′ - sw′  

  So, if Ps wwE <  , the pairing should be Px′ - sw′    /  Fw′  - Pw′  

 
 
18.21 
 
 

a) The corresponding steady-state gain matrix is 
 

K
0.04 0.0005

0.22 0.02

− − 
=  − 

 

 
  Using the formula in Eq. 18-34, we obtain    λ11 = 1.16 
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  Thus the RGA is  
   

    
1.16 0.16

0.16 1.16

− 
=  − 
�  

 
 b) Pairing for positive relative gains requires y1-u1 and y2-u2. 
 
 
 
 
18.22 
 
 

For higher-dimension process (n>2) the RGA can be calculated from the 
expression 
   

    λij = Kij Hij 
 
  where Hij is the (i,j) element of H = (K-1)T 

 
  By using MATLAB, 
 
 

   K-1

62.23 122.17 58.02

84.47 170.83 83.43

1.95 14.85 13.09

− 
 = − − 
 − 

 

 

   H

62.23 84.47 1.95

122.17 170.83 14.85

58.02 83.43 13.09

− 
 = − − 
 − 

 

 
Thus the RGA is 

 

   

210.34 211.18 1.89

390.95 406.58 14.642

181.60 194.39 13.80

− 
 = − − 
 − 

�  

 
 

This RGA analysis shows the control difficulties for this process because 
of the control loop interactions. For instance, if the pairings are 1-3, 2-2, 
3-1, the third loop will experience difficulties in closed-loop operation. 
But other options not be better. 
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SVA analysis: 
 

 Determinant of  K = K   = 0.0034 
 The condition number = CN = 1845 
 
Since the determinant is small, the required adjustments in U will be very 
large, resulting in excessive control actions. In addition, this example 
shows the K matrix is poorly conditioned and very sensitive to small 
variations in its elements. 

 
 
 
18.23 
 

 
Applying SVA analysis: 
 

Determinant of  K = K   = -6.76 
The condition number = CN = 542.93 
 

The large condition number indicates poor conditioning. Therefore this 
process will require large changes in the manipulated variables in order to 
influence the controlled variables. Some outputs or inputs should be 
eliminated to achieve better control, and singular value decomposition 
(SVD) can be used to select the variables to be eliminated.  
 
By using the MATLAB command SVD, singular values of matrix K are: 
 
 

          ∑ = 



















0394.0

1576.1

9480.6

3682.21

 

 
 
Note that σ3/σ4 > 10, then the last singular value can be neglected. If we 
eliminate one input and one output variable, there are sixteen possible 
pairing shown in Table S18.23, along with the condition number CN. 
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Pairing number      Controlled variables       Manipulated variables     CN 
 
 1  y1,y2,y3                    u1,u2,u3                      114.29 

2  y1,y2,y3                  u1,u2,u4                      51.31 
3  y1,y2,y3                  u1,u3,u4                      398.79 
4  y1,y2,y3                       u2,u3,u4                      315.29 
5  y1,y2,y4                       u1,u2,u3                      42.46 
6  y1,y2,y4                       u1,u2,u4                      30.27 
7  y1,y2,y4                       u1,u3,u4                      393.20 
8  y1,y2,y4                       u2,u3,u4                      317.15 
9  y1,y3,y4                       u1,u2,u3                      21.21 
10  y1,y3,y4                       u1,u2,u4                      16.14 
11  y1,y3,y4                       u1,u3,u4                      3897.2 
12  y1,y3,y4                       u2,u3,u4                      693.25 
13  y2,y3,y4                       u1,u2,u3                      24.28 
14  y2,y3,y4                       u1,u2,u4                      20.62 
15  y2,y3,y4                       u1,u3,u4                      1332.7 
16  y2,y3,y4                       u2,u3,u4                      868.34 
 
Table S18.23.  CN for different 3x3 pairings. 

 
 

Based on having minimal condition number, pairing 10 (y1-u1,y3-u2,y4-u4) 

is recommended.  The RGA for the reduced variable set is 
 
 

1.654 0.880 0.226

0.785 3.742 1.957

0.1312 1.8615 2.7304

�
− 

 = − − 
 − 

 


