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 20.1 
 
 

a) The unit step response is 
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Therefore, 
 

[ ]10/)1(5/)1( 21)1(2)( −−−− −+−= tt eetSty  
 
For ∆t = 1.0, 
 

{ }...3096.0,2174.0,1344.0,06572.0,01811.0,0)()( ==∆= iytiyS i  

 
b) From the expression for y(t) in part (a) above  

 
y(t) = 0.95 (2)   at    t =37.8, by trial and error. 
 
Hence N = 38, for 95% complete response. 

 
 
20.2 
 
 
  Note that )()()()( sGsGsGsG mpv= .  From Figure 12.2, 
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  For a unit step change, ssP /1)( =  , and (1) becomes: 
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  Partial Fraction Expansion: 
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  Substitute into (2) and take inverse Laplace transform: 
 
   3/15/ 242)( tt

m eety −− +−=      (3) 

 
b) The new steady-state value is obtained from (3) to be ym(∞)=2 

 
For t = t99,   ym(t)=0.99ym(∞) = 1.98.  Substitute into (3)  
 
 3/15/ 9999 24298.1 tt ee −− +−=      (4)  
 
Solving (4) for t99 by trial and error gives t99 ≈ 79.5 min  
 
Thus, we specify that  ∆t =79.5 min/40 ≈  2 min   

 
Sample No Si  Sample No Si  Sample No Si 

1 -0.4739  16 1.5263  31 1.9359 
2 -0.5365  17 1.5854  32 1.9439 
3 -0.4106  18 1.6371  33 1.9509 
4 -0.2076  19 1.6824  34 1.9570 
5 0.0177  20 1.7221  35 1.9624 
6 0.2393  21 1.7568  36 1.9671 
7 0.4458  22 1.7871  37 1.9712 
8 0.6330  23 1.8137  38 1.9748 
9 0.8022  24 1.8370  39 1.9779 
10 0.9482  25 1.8573  40 1.9807 
11 1.0785  26 1.8751    
12 1.1931  27 1.8907    
13 1.2936  28 1.9043    
14 1.3816  29 1.9163    
15 1.4587  30 1.9267    

 
    
    Table S20.2.  Step response coefficients 
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20.3 
 
 

From the definition of matrix S, given in Eq. 20-20, for P=5, M=1, with Si 
obtained from Exercise 20.1, 
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From Eq. 20-58  
 
 Kc = (STS)-1ST 
 

Kc = [ ]1076.39206.19395.02589.00  = Kc1
T 

 
Because Kc1

T  is defined as the first row of  Kc . 
 
  Using the given analytical result, 
 

Kc1
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          =  [ ]2174.01344.006572.001811.00
06995.0

1
 

 
          =   [ ]1076.39206.19395.02589.00  

 
  which is the same as the answer obtained above using (20-58) 
   
 
 
 
20.4 
 
 

The step response is obtained from the analytical unit step response as in 
Example 20.1. The feedback matrix Kc is obtained using Eq. 20-57 as in 
Example 20.5. These results are not reported here for sake of brevity. The 
closed-loop response for set-point and disturbance changes are shown 
below for each case. MATLAB MPC Toolbox was used for the 
simulations. 



20-4 

i) For this model horizon, the step response is over 99% complete as in 
Example 20.5; hence the model is good. The set-point and disturbance 
responses shown below are non-oscillatory and have long settling times 
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    Figure S20.4a.  Controller i); set-point change. 
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    Figure S20.4b.  Controller i); disturbance change. 
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ii) The set-point response shown below exhibits same overshoot, smaller 
settling time and undesirable "ringing" in  u compared to part i). The 
disturbance response shows a smaller peak value, a lack of oscillations, 
and faster settling of the manipulated input. 
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  Figure S20.4c.  Controller ii); set-point change. 
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  Figure S20.4d.  Controller ii); disturbance change. 
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iii) The set-point and disturbance responses shown below show the same 
trends as in part i). 
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    Figure S20.4e.  Controller iii); set-point change. 
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  Figure S20.4f.  Controller iii); disturbance change. 
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iv) The set-point and load responses shown below exhibit the same trends as 
in parts (i) and (ii). In comparison to part (iii), this controller has a larger 
penalty on the manipulated input and, as a result, leads to smaller and less 
oscillatory input effort at the expense of larger overshoot and settling time 
for the controlled variable. 
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  Figure S20.4g.  Controller iv); set-point change. 
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  Figure S20.4h.  Controller iv); disturbance change. 
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20.5 
 
 

There are many sets of values of M, P and R that satisfy the given 
constraint for a unit load change. One such set is M=3, P=10, R=0.01 as 
shown in Exercise 20.4(iii). Another set is M=3, P=10, R=0.1 as shown in 
Exercise 20.4(iv). A third set of values is M=1, P=5, R=0 as shown in 
Exercise 20.4(i). 

 
 
 
 
 
20.6 
 
   

(Use MATLAB Model Predictive Control Toolbox) 
 

As shown below, controller a) gives a better disturbance response with a 
smaller peak deviation in the output and less control effort. However, 
controller (a) is poorer for a set-point change because it leads to 
undesirable "ringing" in the manipulated input. 
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  Figure S20.6a.  Controller a); set-point change 
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  Figure S20.6b.  Controller a); disturbance change. 
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  Figure S20.6c.  Controller b); set-point change. 
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  Figure S20.6d. Controller b); disturbance change. 

 
 
20.7 
 
  The unconstrained MPC control law has the controller gain matrix: 
 
   Kc = (STQS+R)-1STQ 
 
  For this exercise, the parameter values are: 
  m = r = 1 (SISO), Q=I, R=1 and M=1 
   

Thus (20-57) becomes 
 
   Kc = (STQS+R)-1STQ 

  Which reduces to a row vector:  Kc = 
[ ]
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20.8 
 
  

Inequality constraints on the manipulated variables are usually satisfied if 
the instrumentation and control hardware are working properly. However 
the constraints on the controlled variables are applied to the predicted 
outputs. If the predictions are inaccurate, the actual outputs could exceed 
the constraints even though the predicted values do not. 
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20.9 
 
   (Use MATLAB Model Predictive Control Toolbox) 
 
 a)   M=5  vs.  M=2
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       Figure S20.9a1.  Simulations for P=10 , M=5 and R=0.1I. 
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        Figure S20.9a2.  Simulations for P=10 , M=2 and R=0.1I. 
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b)   R=0.1I   .vs    R=I 
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       Figure S20.9b1.  Simulations for P=10 , M=5 and R=0.1I. 
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                      Figure S20.9b2.  Simulations for P=10 , M=5 and R=I. 
 

  Notice that the larger control horizon M and the smaller input weighting  
  R, the more control effort is needed.  
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20.10 
 
 
  The open-loop unit step response of Gp(s) is 
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  By trial and error, y(34) < 0.95,  y(36) > 0.95. 
 
  Therefore N∆t =36 or N = 18 
 

The coefficients { }iS  are obtained from the expression for y(t) and the 

predictive controller is obtained following the procedure of Example 20.5. 
The closed-loop responses for a unit set-point change are shown below for 
the three controller tunings 
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   (Use MATLAB Model Predictive Control Toolbox) 
 

a) M=5  vs.  M=2 
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Figure S20.11a1.  Simulations for P=10 , M=5 and R=0.1I. 
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       Figure S20.11a2.  Simulations for P=10 , M=2 and R=0.1I. 

 
 
b)   R=0.1I   .vs    R=I 
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      Figure S20.11b1.  Simulations for P=10 , M=5 and R=0.1I. 
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        Figure S20.11b2.  Simulations for P=10 , M=5 and R=I.. 
 
   


