Chapter 4

ENERGY ANALYSIS OF
CLOSED SYSTEMS
(Control Mass)

Thermodynamics: An Engineering Approach
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ENERGY BALANCE FOR CLOSED SYSTEMS

E, — E. = AFE kJ
in out —__ system (kJ) Energy balance for any system
Net energy transfer Change in mtern;]]. Kinetic, undergoing any process
by heat, work, and mass potential, etc., energies
Eil‘] o E()l.ll — Sy \lum/df (kW)
Rate of net energy transter Rate of chunge in internal, Energy balance in the rate form
by heat, work, and mass Kinetic, potential, etc., energies

[ The total quantities are related to the quantities per unit time is:

Q=QAt, W=WAtx, and AE = (dE/dt)At (kJ)
€in — €out = A€ygem (kJ/kg) Energy balance per unit mass basis

net out Qnet in or net out Qnet in Energy balance for a cycle
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Q — Qnet,in — Qin o Qout
anl‘in o I'/Vnecl.mll — ﬁEh},&mn or Q — W = AF

W=W — Wout o Win

net,out

d Energy balance when sign convention is used (i.e., heat input and work
output are positive; heat output and work input are negative).

P

General Q- W=AE
Stationary systems Q- W =AU

Per unit mass g—w = Ae

Differential form &g — 0w = de

-

Various forms of the first-law relation

v for closed systems when sign
For a CVCIE AE - 0, thus Q =W. convention is USEd.

The first law cannot be proven mathematically, but no process in nature is known to
have violated the first law, and this should be taken as sufficient proof.



MOVING BOUNDARY WORK

Moving boundary work (P dV work): Quasi-equilibrium process:
The expansion and compression work in A process during which the
a piston-cylinder device. system remains nearly in
equilibrium at all times.
SW,=Fds = PAds = P dV a
2 W, is positive — for expansion
W, = J Pdv (kJ) W, is negative — for compression
1

A gas does a differential
amount of work oW, as it
forces the piston to move by The moving
a differential amount ds. boundary

The work associated
with a moving
boundary is called
boundary work.




MOVING
BOUNDARY WORK

I
| Process path
|
|
|

2

| dA=PdV

The area under the process curve
on a P-V diagram represents the

boundary work.

2 2
Area = A = J dA = J P dV
1 1

The net work done
during a cycle is the
difference between
the work done by the
system and the work
done on the system.

A

The boundary work
done during a process
depends on the path
followed as well as
the end states.

<V



Polytropic, Isothermal, and Isobaric processes

A The polytropic process can describe gas expansion or compression
which includes heat transfer. P=Cy™"

C, n (polytropic exponent) constants

Polytropic process work for any gas:

2 2 V?—n+1 . Vl—n+l P—;Vo _ P1V1
W, = f PdV = J cCV"dV=C— = ——
| —n + 1 1l —n

1

~

Ideal gas EOS: PV= mRT OR Pv = RT

Polytropic process work for ideal gas:
mR(T, — T,) gl

| — n

W, =

P\Vf'= PV}

PV = const.

GAS
Schematic and P-V diagram

for a polytropic process.

P& = @i=Iconst:

N

<y



Polytropic, Isothermal, and Isobaric processes

When n =1 (isothermal process)

2 2 Vs
W, = J PdV = J CVldVv = PVln(j)
1

| 1

When n = 0 (isobaric) process

szf PCZVZPO‘[ dV=Po(V2—V1)

1 1

. . Isentropic
When n = ©° (isometric) process Polytropic
What is the boundary work for a N Isobaric
- l‘»‘ :U
constant-volume process? U |isothermal \ / "
2 :
&
- = 1
_ Isochoric |j<n<k R
n=1.3 polytropic n = k
n— oo

n =k =Cp/Cv = 1.4 adiabatic (isentropic)

Specific volume, v



Energy balance for a constant-pressure expansion
or compression process

For a constant-pressure expansion

A Oor compression process:
General analysis for a closed P P

system undergoing a quasi- AU -|-Wb — AH
equilibrium, constant-
pressure process.
Eln o Euul — AESVSIC]I] Example:
; : P, kPa}
Net energy transfer Change in internal, kinetic,
by heat, work, and mass potential, etc., energies
0 0
Q — W= AU+ AKE + APE | | 2
Q o Wmlhcr - Wb = UZZ o UI :r Ha0 L
: m=25g
| P, =P, =300 kPa
Q mhn,r P()(VQ - Vl) = UQ - UI | Sat. vapor
_I __________ 5 min
Q — Woper = (U + PV,) — (U + P V) €g,,=371
H — U + PV (Jm Qout o Wb AU

Q - ()lhu — H2 - Hl I/Vc?.in - Qout — AH — r‘n(hQ o h’l)



SPECIFIC HEATS

Specific heat at constant volume, c,: The energy required to raise the
temperature of the unit mass of a substance by one degree as the
volume is maintained constant.

Specific heat at constant pressure, c,: The energy required to raise the
temperature of the unit mass of a substance by one degree as the
pressure is maintained constant.

m=1Kkg
Al =G

Specific heat = 5 kJ/kg -°C
) |

S5KkJ

Specific heat is the energy required
to raise the temperature of a unit
mass of a substance by one degree
in a specified way.

Constant-volume and

constant-pressure specific

heats ¢,and c,

(values are for helium gas).

(2)

(D)

m =1 kg
AT =15C
c,=3.12

-

V/ = constant

kg-°C

3.12 kJ

P = constant
m = 1Kkg
AT= 1°C
Cp = 5.19

-

kJ
kg-°C

5.19kJ



 The equations in the figure are valid for any substance
undergoing any process.

SPECIFIC A ¢, and ¢, are properties.

HEATS A ¢, is related to the changes in internal energy and ¢, to
the changes in enthalpy.

1 A common unit for specific heats is kJ/kg-°C or kJ/kg-K.
Are these units identical?

o a
3 _
AIR AIR c, :(@)
oT),
m=1kg m=1kg = the change in internal energy
with temperature at
s x. X
Formal definitions of ¢, and c,.
0.718 kJ 0.855 kJ P 5 |
h
The specific heat of a substance G = (ﬁ)
p

changes with temperature. = the change in enthalpy with

temperature at constant
Q: True or False? pressure

c, is always greater than c,




INTERNAL ENERGY and ENTHALPY of IDEAL GASES

Thermometer
Al h=u-+ Pv
WATER Joule showed h=u+ RT
using this Pv = RT
experimental
, : apparatus that y = u(T) h = h(T)
u=u(T)
fiipressoct pracuaied du = c,(T)dT dh = c,(T)dT

A cylinder filled with gas at high pressure connected via a stopcock to a second cylinder with gas at a low pressure. The
two cylinders were immersed in a water bath, and the stopcock was opened so that gas from the high-pressure cylinder
flowed into the evacuated cylinder. No heat was supplied to or lost from the system, nor did the gas do any work, so

the internal energy was constant during the expansion. Joule found no temperature fall as a result of the expansion.

Internal energy and enthalpy
change of an ideal gas:

2
For ideal gases, u, h, ¢, and c, vary with Ah=h, — h = J C (T) dT
temperature only. 1



SPECIFIC HEATS

O At low pressures, all real gases
approach ideal-gas behavior, and
therefore their specific heats depend
on temperature only.

O The specific heats of real gases at low
pressures are called ideal-gas specific
heats, or zero-pressure specific heats,
and are often denoted c, and c,j,.

O u and h data for a number of gases
have been tabulated.

0 These tables (See Textbook) are
obtained by choosing an arbitrary
reference point and performing the
integrations by treating state 1 as the
reference state.

AIR

T, K u, kl/kg h, kl/kg

0 0 0

300 214.07 300.19
310 221.25 310.24

In the preparation of ideal-
gas tables, 0 K is chosen as
the reference temperature.

12



Cp()

SPECIFIC HEATS

60 |-

Ideal-gas constant-pressure specific heats s
for some gases
(see Table A-2c for c, equations, NEXT). 40

TABLE A-2 Ar, He, Ne, Kr, Xe, Rn
20

Ideal—gas specific heats of various common gases (Concluded)

. 1 1 |
(c) As a function of temperature 1000 2000 3000

T =a+bT+cT2+ dT3 Temperature, K
fsl
(T in K, ¢, in kJ/kmol-K)

% error
Temperature

Substance Formula a b c d range, K Max. Avg.
Nitrogen N, 2890 -0.1571 x 102 0.8081 x 10-5 —2.873 x 10—° 273-1800 0.59 0.34
Oxygen 0, 25.48 1.520 x 102 —0.7155 x 10~° 1.312 x 10° 273-1800 1.19 0.28
Air — 28.11 0.1967 x 1072 0.4802 x 1075 —1.966 x 10~° 273-1800 0.72 0.33
Hydrogen H, 29.11 -0.1916 x 102 0.4003 x 105 —0.8704 x 10—° 273-1800 1.01 0.26
Carbon

monoxide Cco 28.16 0.1675 x 102 0.5372 x 105 —-2.222 x 107° 273-1800 0.89 0.37
Carbon

dioxide CO, 22.26 5.981 x 102 —3.501 x 105 7.469 x 107° 273-1800 0.67 0.22

Water vapor H,0 32.24 0.1923 x 1072 1.055 x 10-° —3.595 x 10~° 273-1800 0.53 0.24



Internal energy and enthalpy changes
when specific heat are taken constant

at an average value:

hfl - hl — Cp.a\-'g(TE - Tl)
AIR
/= constant AIR
T, =20°C P = constant
_20° T-=20°C
0, |T,=30C |
-» ] G
Au=c, AT Au=c,AT

U — Uy — Cu.avg(']é o Tl)

=7.18 kJ/kg = 7.18 kJ/kg

c,,‘

Approximation

(ki/kg)

Cp.avg

For small temperature
intervals, the specific heats
may be assumed to vary
linearly with temperature.

y &

I avg

The relation A u =c, AT is valid for

any kind of process, constant-

T,

volume or not, i.e., also valid for

constant-pressure process.

14
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Three ways of calculating Au and Ah

1. By using the tabulated v and h data.
This is the easiest and most accurate :
way when tables are readily available. calculating Au:

Three ways of

2. By using the c, or c, relations (Table A-
2c, see above) as a function of

temperature and performing the Au=u--u, (table)
integrations. This is very inconvenient 5 |

for hand calculations, but desirable for i
computerized calculations. The results Au=|c, (I)dl

obtained are very accurate. J

3. By using average specific heats. This is -
very simple and certainly very Au = Cy,avg Al
convenient when property tables are
not available. The results obtained are
reasonably accurate if the
temperature interval is not very large.

15



Specific Heat Relations of Ideal Gases

The relationship between c,, c,and R

h=u+ RT ’
dh=c,dT and du=c,dT ) On a molar basis
¢, =c¢, t R, (kJ/kmol - K)
CP
ALRILS Specific heat ratio: K = -
¢, =0.718 kl/kg - K N _ _ v
R =087 Ki/ke - K } ¢, = 1.005 klkg - K Q0 The specific ratio varies with
temperature, but this variation is
or very mild.
1 0 For monatomic gases (helium,
¢, =20.80 kJ/kmol - K } T, =29.114 kJ/kmol - K argon, etc.), its value is
o Sl essentially constant at 1.667.
The ¢, of an ideal gas can be d Many diatomic gases, including
p

air, have a specific heat ratio of

determined from a knowledge
about 1.4 at room temperature.

of ¢, and R.



INTERNAL ENERGY, ENTHALPY, and
SPECIFIC HEATS OF SOLIDS AND LIQUIDS

Incompressible substance:
= A substance whose specific volume (or density) is constant.
= Solids and liquids are incompressible substances.

LIQUID IRON
V; = constant e
c=cy=¢p

=0.45 kl/kg - °C

~ SOLID
V, = constanty

The ¢, and c, values of
incompressible substances are
identical and are denoted by c.

The specific volumes of
incompressible substances
remain constant during a process.

17



Internal Energy Changes (liquids & solids)

2
du = c, dI' = C(T.) dT Au = U, — Uy — [ C(T) dT (kJ/kg)
Au=c(lh—T)  (K/kg)

Enthalpy Changes (liquids & solids)
0

dh = du + vdP + Pdv =du + vdP h=u-+ Pv

Ah = Au+ vAP = ¢,,, AT + Vv AP (kJ/kg)
For solids, the term v AP is insignificant and thus Ah = Au = ¢, AT. For
liguids, two special cases are commonly encountered:

1. Constant-pressure processes, as in heaters (AP = 0): Ah = Au = ¢, AT

avg

2. Constant-temperature processes, as in pumps (AT = 0): Ah = v AP

hQPT = thT + Vf@ (P - Psat @ T) Table 3-38 h h I f
The enthalpy of a

A more accurate relation than: '@ p7=/lra 1 compressed-iquid



M
EXAMPLE 4-1 Boundary Work for a Constant-Volume Process m

|
A rigid tank contains air at 500 kPa and 150°C. As a result of heat transfer g

to the surroundings, the temperature and pressure inside the tank drop to m
65°C and 400 kPa, respectively. Determine the boundary work done during
this process.

SOLUTION Air in a rigid tank is cooled, and both the pressure and tempera-

ture drop. The boundary work done is to be determined. _—
Analysis A sketch of the system and the P-V diagram of the process are Air
shown in Fig. 4-6. The boundary work can be determined from Eq. 4-2 to be P, = 500 kPa
T. = 150°C # Heat
2 0 :
_ _ P, = 400 kPa
wf’_ﬁ PM_“ T, = 65°C
Discussion This is expected since a rigid tank has a constant volume and Jf**F#%
dvV = 0 in this equation. Therefore, there is no boundary work done during @ _ | |
this process. That is, the boundary work done during a constant-volume
process is always zero. This Is also evident from the P-V diagram of the
process (the area under the process curve is zero).
400 --——-—-———- 2
%
FIGURE 4-6

Schematic and P-V diagram for
Example 4-1.



o
m EXAMPLE 4-3 Isothermal Compression of an ldeal Gas

:A piston—cylinder device initially contains 0.4 m® of air at 100 kPa and

m 80°C. The air is now compressed to 0.1 m? in such a way that the tempera-
ture inside the cylinder remains constant. Determine the work done during
this process.

SOLUTION Air in a piston—cylinder device is compressed isothermally. The
boundary work done is to be determined.

Analysis A sketch of the system and the P-V diagram of the process are
shown in Fig. 4-8.

Assumptions 1 The compression process is quasi-equilibrium. 2 At specified
conditions, air can be considered to be an ideal gas since it is at a high tem-
perature and low pressure relative to its critical-point values.

Analysis For an ideal gas at constant temperature T,

(&
PV = mRT,= C or P=V

Pv =RT

20



T, = 80°C = const.

Y

I
I
I
1

-

0.4 V, m?

)
.V
—

FIGURE 4-8
Schematic and P-V diagram for

where C is a constant. Substituting this into Eq. 4-2, we have Example 4-3.

W —JEPdU—JIEJU—CJIﬁ = Cl E—PU’I E (4-7)
b_1 _ll'«"Ir N |U_nu1_llnul

In Eq. 4-7, P,V, can be replaced by P\, or mRT,. Also, V,/\/; can be
replaced by P,/P, for this case since PV}, = P, V..

Substituting the numerical values into Eq. 4-7 yields

0.1 1kJ
_ 3
W, = (100 kPa)(0.4 m )(m 5 4)(1 kPa_mi)

= —55.5Kk]

Discussion The negative sign indicates that this work is done on the system
(a work input), which is always the case for compression processes.

21



EXAMPLE 4-5 Electric Heating of a Gas at Constant Pressure

A piston—cylinder device contains 25 g of saturated water vapor that is main-
tained at a constant pressure of 300 kPa. A resistance heater within the
cylinder is turned on and passes a current of 0.2 A for 5 min from a 120-V
source. At the same time, a heat loss of 3.7 kJ occurs. (a) Show that for a
closed system the boundary work W, and the change in internal energy AU
In the first-iaw relation can be combined into one term, AH, for a constant-
pressure process. (b) Determine the final temperature of the steam.

SOLUTION Saturated water vapor in a piston—cylinder device expands at
constant pressure as a result of heating. It is to be shown that AU + W, =
AH, and the final temperature is to be determined.

Assumptions 1 The tank is stationary and thus the kinetic and potential
energy changes are zero, AKE = APE = 0. Therefore, AE = AU and internal
energy is the only form of energy of the system that may change during this
process. 2 Electrical wires constitute a very small part of the system, and
thus the energy change of the wires can be neglected.

Analysis We take the contents of the cylinder, including the resistance wires,
as the system (Fig. 4-13). This is a closed system since no mass crosses the
system boundary during the process. We observe that a piston—cylinder device
typically involves a moving boundary and thus boundary work W,. The pres-
sure remains constant during the process and thus P, = P,. Also, heat is lost
from the system and electrical work W, is done on the system.

22



(a) This part of the solution involves a general analysis for a closed system
undergoing a quasi-equilibrium constant-pressure process, and thus we con-
sider a general closed system. We take the direction of heat transfer Q to be
to the system and the work W to be done by the system. We also express the
work as the sum of boundary and other forms of work (such as electrical and
shaft). Then, the energy balance can be expressed as

Ein - E::-ut = il""-\!':“53,':atfi_|1:|
—————— —————
Net energy transfer Change in internal, kinetic,

by heat, work, and mass potential, efc., energies

0 0
O — W= AU + AKE + APE

Q0= Wyer — W, =0U, - U 00r

For a constant-pressure process, the boundary work is given as W, = F,(\, — W)).

P, kPa A

Quul =37k

Substituting this into the preceding relation gives
Q — Woher — B(Vo = V) =T, = U
However,

Py=P, =P — Q— Wy = (U, + BV, — (U, + AV)
Also H = U + PV, and thus
0~ Wy =H,—H, (K (4-18)

which is the desired relation (Fig. 4-14). This equation is very convenient to
use in the analysis of closed systems undergoing a constant-pressure quasi-
equilibrium process since the boundary work is automatically taken care of by
the enthalpy terms, and one no longer needs to determine it separately.

23

<Y



(b) The only other form of work in this case is the electrical work, which can
be determined from

1 kJ/s
W, = VIAr = (120 V)(0.2 A)(300 S}(wm VA) =172Kk]

P, = 300 kP
State 1: ! 4

Py sat. vapor

The enthalpy at the final state can be determined directly from Eq. 4-18 by
expressing heat transfer from the system and work done on the system as
negative quantities (since their directions are opposite to the assumed direc-
tions). Alternately, we can use the general energy balance relation with the
simplification that the boundary work is considered automatically by replac-
ing AU by AH for a constant-pressure expansion or compression process:

Ein - Euut

} hy = hy e 0k = 27249 kl/kg  (Table A-5)

AE

system
Net energy transfer Change in internal, kinetic,
by heat, work, and mass potential, etc., energies

Wein = Qow — W, = AU
W,in — Qo = AH = m(h, — h;) (since P = constant)
7.2k) — 3.7k) = (0.025 kg)(h, — 2724.9) kl/kg
h, = 2864.9 kl/kg

Now the final state is completely specified since we know both the pressure
and the enthalpy. The temperature at this state is

P, = 300 kPa
h, = 2864.9 ki/kg

State 2: } T, = 200°C  (Table A-6)

Therefore, the steam will be at 200°C at the end of this process. 24



]
m EXAMPLE 4-7 Evaluation of the Auw of an ldeal Gas

: Air at 300 K and 200 kPa is heated at constant pressure to 600 K. Determine

m the change in internal energy of air per unit mass, using (a) data from the air
table (Table A-17), (b) the functional form of the specific heat (Table A-2c),
and (c) the average specific heat value (Table A-2b).

SOLUTION The internal energy change of air is to be determined in three
different ways.

Assumptions At specified conditions, air can be considered to be an ideal
gas since it is at a high temperature and low pressure relative to its critical-
point values.

Analysis The internal energy change Au of ideal gases depends on the ini-
tial and final temperatures only, and not on the type of process. Thus, the
following solution is valid for any kind of process.

(a) One way of determining the change in internal energy of air is to read the
u values at 7, and T, from Table A-17 and take the difference:

Thus,
Au = u, — uy, = (434.78 — 214.07) kl/kg = 220.71 kJ/kg



(b) The c,(T) of air is given in Table A-2c in the form of a third-degree poly-
nomial expressed as

c,(T) = a + bT + cT?+ dTr?

where a = 28.11, b = 0.1967 x 1072, ¢ = 0.4802 x 107%, and d =
—1.966 x 10~°. From Eq. 4-30,

¢(T)=¢,— R, = (a—R)+ bT + cT*+ dI?

From Eq. 4-25,

2 T,
Al = J eT) dT = J [(a = R) + bT + ¢T?+ dT3dT
1

T,

Performing the integration and substituting the values, we obtain

Au = 6447 kJ/kmol

The change in the internal energy on a unit-mass basis is determined by
dividing this value by the molar mass of air (Table A-1):

A 6447 kI/kmol
e T = 2225kJ/kg

Au =
M 2897 kg/kmol

which differs from the tabulated value by 0.8 percent.

(¢) The average value of the constant-volume specific heat ¢, . is determined

from Table A-2b at the average temperature of (T, + T,)/2 = 450 K to be
¢ = C,@as0x — 0.733 kl/kg-K

v.avg

Thus,
Au = ¢,,,(T, — T;) = (0.733 kJ/kg-K)[(600 — 300)K]
= 220 kJ/kg



|
m EXAMPLE 4-11 Enthalpy of Compressed Liquid

|

m Determine the enthalpy of liquid water at 100°C and 15 MPa (a) by using

m compressed liquid tables, (b) by approximating it as a saturated liquid, and
(c) by using the correction given by Eaq. 4-38.

SOLUTION The enthalpy of liquid water is to be determined exactly and
approximately.

Analysis At 100°C, the saturation pressure of water is 101.42 kPa, and
since P > P_,, the water exists as a compressed liquid at the specified state.

satr

(a) From compressed liquid tables, we read

P = 15MPa

T = 100°C } h = 430.39 kq]-.r"kg (Tﬂble A—?)
This is the exact value.

(b) Approximating the compressed liquid as a saturated liquid at 100°C, as
Is commonly done, we obtain

h=higyec = 419.17k]/kg  (Table A-4)

This value is in error by about 2.6 percent.

(c) From Ea. 4-38,
hepr = h_.r'@ rt Vie (P = Pyer)
1kl
= (419.17 kJ/kg) + (0.001 m° kg)[(15,000 — 101.42) kPa]| ———
( g) + ( m” kg)[( ) El](1 kpa_mg)
= 434.07 k)/kg (Table A-4)

Discussion Note that the correction term reduced the error from 2.6 to
about 1 percent in this case. However, this improvement in accuracy is often
not worth the extra effort involved.
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