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PARTIAL DERIVATIVES AND ASSOCIATED RELATIONS

Derivative of a function at a specified point 
represents the slope of function at that point.

Geometric representation of total 
derivative dz for a function z(x, y).

SLOPE of the Function: Total Derivative: 
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❑ This is the fundamental relation for the total differential of a dependent 
variable in terms of its partial derivatives with respect to the independent 
variables. 

PARTIAL DERIVATIVES AND ASSOCIATED RELATIONS

❑ The order of differentiation is immaterial for 
properties since they are continuous point 
functions and have exact differentials. Thus,
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THE MAXWELL RELATIONS

❑The equations that relate the partial derivatives of properties P, v, T, 
and s of a simple compressible system to each other are called the 
Maxwell relations. 

❑They are obtained from the four Gibbs equations by exploiting the 
exactness of the differentials of thermodynamic properties.

Helmholtz function

Gibbs function
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❑ Maxwell relations are extremely valuable in thermodynamics 
because they provide a means of determining the change in entropy, 
which cannot be measured directly, by simply measuring the changes 
in properties P, v, and T. 

❑ These Maxwell relations are limited to simple compressible systems.
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THE MAXWELL RELATIONS
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THE MAXWELL RELATIONS
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Two more important relations for partial derivatives

Reciprocity relation:

Cyclic relation:

Demonstration of the 
reciprocity relation for 
the function: 
z + 2xy − 3y2z = 0.
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One Application: 
CLAPEYRON EQUATION for Phase Change

❑ Consider the third Maxwell relation:

❑ During phase change, Psat = f(Tsat) & independent of specific volume.  
Therefore, the partial derivative                     can be expressed as a 
total derivative (dP/dT)sat, which is the slope of the saturation 
curve on a P-T diagram at a specified state. 

❑ Slope is independent of the specific volume, and thus it can be 
treated as a constant during the integration of the third Maxwell 
relation between two saturation states at the same temperature. 

❑ The Clapeyron equation enables us to 
determine the enthalpy change asso-
ciated with a phase change, hfg, from 
knowledge of P, v, T data alone. 
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❑ For liquid-vapor phase-change process, the integration yields:

❑ During the phase-change process, the pressure also remains 
constant.  Therefore, from the following enthalpy relation, the 
Clapeyron equation is obtained:

Clapeyron equation 
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▪ At low pressures

▪ Treating vapor as 
an ideal gas

❑ The Clapeyron equation can be simplified for liquid–vapor and 
solid–vapor phase changes by utilizing some approximations.

▪ Substituting these equations into the 
Clapeyron equation:

▪ Integrating between two saturation states

❑ The Clapeyron–Clausius 
equation can be used to 
determine the variation of 
saturation pressure with 
temperature. 

❑ It can also be used in the 
solid–vapor region by 
replacing hfg by hig 
(enthalpy of sublimation) 
of the substance.

Clapeyron–Clausius 
equation
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Example 
Using only P-v-T data, estimate the enthalpy of vaporization of 
water at 45oC.
Solution:

Using the P-v-T data for water from Table A-4
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The actual value of hfg is 2394.0 kJ/kg.  

The Clapeyron equation approximation 

is low by about 1 percent due to the 

approximation of the slope of the 

saturation curve at 45oC.
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▪ This result helps to show that the 
internal energy of an ideal gas does 
not depend upon specific volume.  

▪ To completely show that internal 
energy of an ideal gas is independent 
of specific volume, we need to show 
that the specific heats of ideal gases 
are functions of temperature only.  

▪ We can derive the Relations (     Right) 
for dh and ds where:

 h = h(T,P)  and s = s(T,v) or s = s(T,P) 

▪ Internal energy of ideal gas depends only on temperature.
▪ Show that internal energy of ideal gas does not depend on specific volume.
▪ Let us apply the following partial derivative for an ideal gas:

Another Application: Ideal Gases 

For ideal gases:
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GENERAL RELATIONS FOR du, dh, ds, cv, cp for gases

1) The state postulate established that the state of a simple 
compressible system (gases) is completely specified by two 
independent, intensive properties.

2) Therefore, we should be able to calculate all the properties of a 
system such as internal energy, enthalpy, and entropy at any 
state once two independent, intensive properties are available. 

3) The calculation of these properties from measurable ones 
depends on the availability of simple and accurate relations 
between the two groups.

4) In this section we develop general relations for changes in 
internal energy, enthalpy, and entropy in terms of pressure, 
specific volume, temperature, and specific heats. 

5) Property values at specified states can be determined after  
selecting a reference state.
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Internal Energy Changes
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Enthalpy Changes
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Entropy Changes
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Specific Heats cv and cp
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❑For ideal gases, their internal energy depends only on temperature, 
but not on volume and pressure. If there are interactions between the 
gas molecules, their behavior is described by non-ideal (real) gas 
equations od state. 

❑These interactions cause a change in temperature if they are expanded 
or compressed. This change in temperature is subject of the Joule-
Thomson experiment. It describes the change in temperature of a gas 
as a result of a change in pressure.

❑The temperature behavior of a fluid during a throttling (h = constant) 
process is described by the Joule-Thomson coefficient.

THE JOULE-THOMSON COEFFICIENT
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1) If attraction dominates the interaction between the gas particles 

the gas cools down upon expansion, as energy is required to 

distribute the particles within the larger volume. The Joule-Thomson 

coefficient is positive in this case. 

2) If repulsion dominates the interaction between the gas particles, 

the gas heats up upon expansion and the Joule-Thomson coefficient 

is negative. 

3) For the ideal gas μ = 0, as the inner energy of the ideal gas only 

depends on temperature and not on pressure or volume.

THE JOULE-THOMSON COEFFICIENT



The Joule-Thomson Effect

❑ Isothermal J-T coefficient important in liquification of gases. 
❑ If the process occurs within a temperature and pressure range 

that ensures that the effect is positive (the gas temperature 
decreases as its pressure is reduced), then throttling results in 
gas cooling and can be successfully used to liquefy gases.

❑ For real gases:  μT ≠ 0
1) If μT > 0, then gas cools on expansion (desired effect).
2) If μT < 0, then gas heats on expansion at T > gas inversion 

temperature (critical temperature below which the gas 
expanding at constant enthalpy will experience a 
temperature decrease; and above which will experience a 
temperature increase).
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Constant-enthalpy lines of a substance
on a T-P diagram.

▪ Fluid temperature decreases during a throttling process that takes 
place on the left-hand side of the inversion line. 

▪ A cooling effect cannot be achieved by throttling unless the fluid is 
below its maximum inversion temperature (Figure).

THE JOULE-THOMSON COEFFICIENT
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THE JOULE-THOMSON COEFFICIENT
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THE ∆h, ∆u, AND ∆s OF REAL GASES

1) Gases at low pressures behave as ideal gases and obey the 
relation Pv = RT. The properties of ideal gases are relatively easy 
to evaluate since the properties u, h, cv, and cp depend on 
temperature only. 

2) At high pressures, gases deviate considerably from ideal-gas 
behavior, and it becomes necessary to account for this 
deviation.

3) In Chapter 3 we accounted for the deviation in properties P, v, 
and T by either using more complex equations of state or 
evaluating the compressibility factor Z from the compressibility 
charts. 

4) We extend the analysis to evaluate the changes in the enthalpy, 
internal energy, and entropy of non-ideal (real) gases, using the 
general relations for du, dh, and ds developed earlier.
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Enthalpy Changes of Real Gases

❑ The enthalpy of a real gas, in general, depends on the pressure as well 
as on the temperature. 

❑ Thus, the enthalpy change of a real gas during a process can be 
evaluated from the general relation for dh:

❑ For an isothermal process dT = 0, and 
the first term vanishes. 

❑ For a constant-pressure process, dP = 0, 
and the second term vanishes.

Questions on Applying to Different CASES:
▪ Non-isothermal ideal, Δh = 
▪ Isothermal Ideal, Δh = 
▪ Isothermal non-ideal, Δh = 
▪ Isobaric non-ideal, Δh = 
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❑Using a superscript asterisk (*) to denote an ideal-gas state, we can 
express the enthalpy change of a real gas during process 1-2 as:

Constant T

Constant T

Ideal gas 

Enthalpy Changes of Real Gases

enthalpy departure enthalpy departure
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❑  The difference between h and h* is called the enthalpy departure, 
and it represents the variation of the enthalpy of a gas with pressure 
at a fixed temperature. 

❑  The calculation of enthalpy departure requires a knowledge of the 
P-v-T behavior of the gas. 

❑  In the absence of such data, we can use the relation Pv = ZRT, where 
Z is the compressibility factor. 

❑  Substituting,

Enthalpy departure factor
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❑ The values of Zh are presented in graphical form as a function of PR 
(reduced pressure) and TR (reduced temperature) in the generalized 
enthalpy departure chart.

❑ Zh is used to determine the deviation of the enthalpy of a gas at a 
given P and T from the enthalpy of an ideal gas at the same T.

(from ideal gas tables)

Internal Energy Changes of Real Gases:

For a real gas during a process 1-2:

Using the definition

Note: 
Properties per mole



33

Entropy Changes of Real Gases

An alternative process path to 
evaluate the entropy changes 
of real gases during process 1-2.

General relation for ds

Using the approach in the figure

During isothermal process
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Entropy departure

Entropy 
departure factor

❑ The values of Zs are presented in graphical form as a function of PR 
(reduced pressure) and TR (reduced temperature) in the generalized 
entropy departure chart.

❑ Zs is used to determine the deviation of the entropy of a gas at a given 
P and T from the entropy of an ideal gas at the same P and T.

For a real gas during a process 1-2:

(from the ideal gas relations)
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