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PARTIAL DERIVATIVES AND ASSOCIATED RELATIONS

SLOPE of the Function: Total Derivative:
=7 @ |z =z y)
S(x)?t

z(x, y) Z(x + Ax, y + Ay)

A

f(x+Ax)
X, y+ Ay
x+Ax, y
X+ Ax, y+ Ay
Derivative of a function at a specified point Geometric representation of total

represents the slope of function at that point. derivative dz for a function z(x, y).
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PARTIAL DERIVATIVES AND ASSOCIATED RELATIONS

O This is the fundamental relation for the total differential of a dependent
variable in terms of its partial derivatives with respect to the independent

variables.
02 02 - . T v
dz = dx + v dz = M dx + N dy
{:J_,r y {:J)‘I . .

M = ( ?:) and N = (g)
Ox ), oy ).

oM 0’z (Eﬂ ’ 0’z
= — and = ——
oy ). Ox0Oy ox ), 0Oyox

Q The order of differentiation is immaterial for oM ( O] 'T)
1

properties since they are continuous point —
functions and have exact differentials. Thus, oy



THE MAXWELL RELATIONS

A The equations that relate the partial derivatives of properties P, v, T,
and s of a simple compressible system to each other are called the
Maxwell relations.

dThey are obtained from the four Gibbs equations by exploiting the
exactness of the differentials of thermodynamic properties.

du = T ds — Pdv a=u—1Is Helmholtz function
dh = Tds + vdP g = h — Ts  Gibbs function

da = du — Tds — sdI da = —sdl — P dv
dg =dh — Tds — sdTl dg = —sdl' + vdP
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TABLE 22.1

The four principal thermodynamic energies, their differential expressions, and
the corresponding Maxwell relations.

Thermodynamic Differential Corresponding
energy expression Maxwell relations

(), (5s),
i amemsever (7) <(2)
(v),= (&%),

oV
G dG = —-5dT + VdP =
af+vel (aP)T (aT)P

J Maxwell relations are extremely valuable in thermodynamics
because they provide a means of determining the change in entropy,
which cannot be measured directly, by simply measuring the changes
in properties P, v, and T.

U dU =TdS — PdV

A dA = —S5dT — PdV

d These Maxwell relations are limited to simple compressible systems.




THE MAXWELL RELATIONS

dU =T1dS — pdV

It clearly suggests a functional relation: [/ = U (.S,V)

Therefore, one can write: dU = (G_U) dS +(8—U) dV
oS )y oV )

From the two differential (aU j — (@U)
: . — — an R = —
forms it follows that: as ). v ). P

Now, we simply apply the [ 57 op
Euler Criterionandweget | — | =—| —
ov), \as),

a Maxwell relation:




THE MAXWELL RELATIONS

G=U-TS+pV

dG =dU -TdS — SdT + pdV +VdP

but dU =7dS — pdV, so

dG =TdS -TdS — pdV + pdV —SdT +Vdp
dG =-8dT +Vdp; so: G=G(T, p)

Then: dG=(a—Gj dT + - dp
oT ), p ),

By comparing

the two dG
forms.
oG
— (a_r‘) -
and

(6_6) -
op ),

By applying the Euler Criterion to the dG form obtained, T

we get another useful Maxwell relation:

0S (av

), \or

)

(__—-



Two more important relations for partial derivatives

Reciprocity relation: ( dX) ( Jz ) N ( ax ) B ]
dz 0x 9z / J J.,s,
Cyclic relation: (d:) (8}{) (8){) ( ) ( ) (
— )\ =) =—l—) —
dx / ,\dy /. dy / .

Function: z + 2xy — 3y 2z =0
2x) (a;‘ 2y
1) z= = —r - ) = ——
| 3y2 — 1 oxly  3y2 ]
Demonstration of the '
reciprocity relation for 3y°z—2 ox 3y> — 1
- 2) x = = — ( = ) - ==
the function: 2y az/y, v
z+2xy —3y?z=0. ) '
Thus ( (;)“') IR S
L0X /5
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One Application:
CLAPEYRON EQUATION for Phase Change —

[ The Clapeyron equation enables us to SOLID

determine the enthalpy change asso-
ciated with a phase change, hg,, from VAPOR

i(ap
|
|
knowledge of P, v, T data alone. T

P = ¢onst.
8T5sat

Ny

 Consider the third Maxwell relation: (US] — (OP]

ov ), \oT ),

1 During phase change, Psat = f(Tsat) & independent of specific volume.
Therefore, the partial derivative (8P/8T) can be expressed as a
total derivative (dP/dT)sat, which is the slope of the saturation
curve on a P-T diagram at a specified state.

[ Slope is independent of the specific volume, and thus it can be
treated as a constant during the integration of the third Maxwell

relation between two saturation states at the same temperature.
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 For liquid-vapor phase-change process, the integration yields:

(2]

S,—S —(dPJ (v, =v,)
g °f dr » g f

 During the phase-change process, the pressure also remains
constant. Therefore, from the following enthalpy relation, the

——

Clapeyron equation is obtained:
/70 N, _(dPJ )
—| = .
dh = Tc:ff»,'-l-l;d{’/ I \drl )
P hfg
j dh = j Tds = Tj ds ( dTlm T,

h —hf = hfg = TSL&

g Clapeyron equation



 The Clapeyron equation can be simplified for liquid—vapor and
solid—vapor phase changes by utilizing some approximations.

= At low pressures v >> Vf — Vf' =V
8 : J& 8
= Treating vapor as _ )
. g vap Vg, = RT/P L The Clapeyron—Clausius
an ideal gas ‘ :
equation can be used to
= Substituting these equations into the determine the variation of
Clapeyron equation: saturation pressure with
dP Ph,, temperature.
AT " - RT? O It can also be used in the

solid—vapor region by
replacing hg, by h;,

dP e (dT (enthalpy of sublimation)
p - R\ T2 of the substance.
sat sat

= Integrating between two saturation states

P, I (11 .
In| — = — — - Clapeyron—Clausius
Pl sat R T] T2 sat eq uation .




Example

Using only P-v-T data, estimate the enthalpy of vaporization of
water at 45°C.

Solution:

Using the P-v-T data for water from Table A-4

m* (dP AP P ossrc ~ Patous
Vi = (v, —Vq )@450C = (15.251-0.001010) ( j ;( j _ _sat@50°C t@40°C
sat sat, 45°C

kg \dT AT 50°C —40°C
e Rk _(1235-7.385)kPa _ o kPa
kg 10°K ' K
h, =Tv, [ 9
o=Vl gr ) The actual value of hy, is 2394.0 kJ/kg.
. Pa. k] The Clapeyron equation approximation
= (40+273.15)K(15.2506)(0.4965 K )m3kPa Is low by about 1 percent due to the

approximation of the slope of the
- 2371.1k_‘] saturation curve at 45°C.

kg



Another Application: Ideal Gases

" |nternal energy of ideal gas depends only on temperature.
= Show that internal energy of ideal gas does not depend on specific volume.
= Let us apply the following partial derivative for an ideal gas:

| | ] RT
(@J _ T(E—P) o Forideal gases: FP=—
T 1V

.
oT ).
= This result helps to show that the '_Z vV
internal energy of an ideal gas does (ﬂ) _ Tﬁ— P=P_P=0
not depend upon specific volume. 7 1%

oV
= To completely show that internal -

energy of an ideal gas is independent dh=C dT+|v— T(ﬁ] }fp
P
P

of specific volume, we need to show i oT
that the specific heats of ideal gases C [ op
are functions of temperature only. ds =—dT + ,\) dv
= We can derive the Relations (= Right) I o1/,
for dh and ds where: C, Ov
h = h(T,P) and s = s(T,v) or s = s(T,P) ds = ?dr B (N]p dp



1)

2)

3)

4)

5)

GENERAL RELATIONS FOR du, dh, ds, c,, c, for gases

The state postulate established that the state of a simple
compressible system (gases) is completely specified by two
independent, intensive properties.

Therefore, we should be able to calculate all the properties of a
system such as internal energy, enthalpy, and entropy at any
state once two independent, intensive properties are available.

The calculation of these properties from measurable ones
depends on the availability of simple and accurate relations
between the two groups.

In this section we develop general relations for changes in
internal energy, enthalpy, and entropy in terms of pressure,
specific volume, temperature, and specific heats.

Property values at specified states can be determined after
selecting a reference state.
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Internal Energy Changes

We choose the internal energy to be a function of 7 and v; that is, u =
u(T, v) and take its total differential (Eq. 12-3): e

au ou
du=\|— ) dl'+\— ) dv |aH=Tds+vapr
ol ), ov/r

dA = —SdT — PdV

Using the definition of ¢,, we have

. dG = —SdT + Vd P
ou
) dv (12-25)
T

du = c,dT + (
av

Now we choose the entropy to be a function of 7" and v; that is, s = s(7, v)

and take its total differential,

9 .
ds = (S) dT + (S) dv (12-26)
ol / ov/

Substituting this into the 7 ds relation du = T ds — P dv yields

ads ds
du = T() dT + [T() — P} dv (12-27)
oT / v/
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Equating the coefficients of d1" and dv in Eqs. 12-25 and 12-27 gives
(ﬂ) _ &
or ), T
au ds
() = T() — P (12-28)
W/ wv/r
Using the third Maxwell relation (Eq. 12-18), we get

u
EV T 6] v

u dP
) -r(3) -
v/ T ),

Substituting this into Eq. 12-25, we obtain the desired relation for du:

JP
() o]
9T ),

The change in internal energy of a simple compressible system associated
with a change of state from (7', v,) to (75, V,) 18 determined by integration:

" 2T [oP
U, — U; = J c, dT + J [T(—) — P] dv
r ol /],

Vi

du = c,dT +

16



Enthalpy Changes

The general relation for dh is determined in exactly the same manner. This
time we choose the enthalpy to be a function of 7 and P, that is, h = (T, P),
and take its total differential, I L

dh = (M) dT + (81?) AP |dH =Tds + vdP
T /) p oP ) ¢

dA = —SdT — PdV

Using the definition of ¢,, we have
dG = —SdT + vVdP

0/
dh = ) dT + ((H;)Td}’ (12-31)

Now we choose the entropy to be a function of 7 and P; that is, we take
s = s(T, P) and take its total differential,

0s os
ds = () dTl + () dP (12-32)
T /) p oP ) ;

Substituting this into the 7' ds relation dh = T ds + v dP gives

9s 9s
dh = T(S) dT + {v + T(s) } dP (12-33)
oT / p P/,




Equating the coefficients of dT and dP in Eqs. 12-31 and 12-33, we obtain
() -
or), T
( E)h) ( s )
— ) =v+T|— (12-34)
oP ), P /) ;
Using the fourth Maxwell relation (Eq. 12—-19), we have

oh T oV
) == v
oP ), oT ) p

Substituting this into Eq. 12-31, we obtain the desired relation for dh:

- A%
dh=(’pdT+|:r—T[f—;) }dp dh = C‘” dT + [V - T(;}T’) :| dP (12—35)
ol Jp - P

The change in enthalpy of a simple compressible system associated with a
change of state from (7', P,) to (75, P,) 1s determined by integration:

b A v
hy — h, = ¢, dT" + v—T\| — dP (12-36)
Ir P, ()T P

In reality, one needs only to determine either u, — u, from Eq. 12-30 or
h, — h, from Eq. 12-36, depending on which is more suitable to the data at
hand. The other can easily be determined by using the definition of enthalpy
h=u-+ Pv:

hy — hy, = u, —u, + (P,v, — P,v,) (12-37)
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Entropy Changes

The first relation is obtained by replacing the first partial derivative in the
total differential ds (Eq. 12-26) by Eq. 12-28 and the second partial deriva-
tive by the third Maxwell relatif)lll (Eq. 12-18), yielding

CV
ds = — dT +

T

and

Sy — ‘l] —

uTl

g ‘ il
r T \ar ),

(12-38)

(()P) dv
JaT /.,

(12-39)

The second relation is obtained by replacing the first partial derivative in the
total differential of ds (Eq. 12-32) by Eq. 12-34, and the second partial

derivative by the fourth Maxwell relation (Eq. 12-19), yielding

(

(

v
aT
(37
BV)
T
apP
(57

), ~ (39,

).

),

- ().

F

T

- (55),

"T: (.

- (),

T

uTl

ds = £ ar —

9
(V) dP
oT ),

4T —

(12-40)

(12-41)

.-.P‘(
vPl

av
— | dP
aT)P(

‘Either relation can be used to determine the entropy change. The proper

choice depends on the available data.



Specific Heats ¢, and c,

At low pressures gases behave as ideal gases, and their specific heats
essentially depend on temperature only. These specific heats are called zero
pressure, or ideal-gas, specific heats (denoted ¢, and c¢,,), and they are rel-
atively easier to determine. Thus it 1s desirable to have some general rela-
tions that enable us to calculate the specific heats at higher pressures (or
lower specific volumes) from a knowledge of ¢, or ¢,, and the P-v-T
behavior of the substance. Such relations are obtained by applying the test
of exactness (Eq. 12-5) on Eqgs. 12-38 and 12—40, which yields

(%) —of72) ase
v/, aT?* /],
a(}} (')2\/
() ()
oP ol =/ p

The deviation of ¢, from ¢, with increasing pressure, for example, is deter-
mined by integrating Eq. 12—43 from zero pressure to any pressure P along
an 1sothermal path:

and

((}) o (‘P(:})T - T

VAR
70 o=/ p



Another desirable general relation involving specific heats is one that relates
the two specific heats ¢, and ¢,. The advantage of such a relation is obvious:
We will need to determine only one specific heat (usually cp) and calculate
the other one using that relation and the P-v-T data of the substance. We
start the development of such a relation by equating the two ds relations
(Eqgs. 12-38 and 12-40) and solving for dT:

P T(aP/dT), s T(av/aT)p p

¢, = ¢, c, — C,

Choosing T = T(v, P) and differentiating, we get

JaT JdT
dT’ = () dv + () dP
v/ p JP /

Equating the coefficient of either dv or dP of the above two equations gives

the desired result:
oV oP
R T() () (12-45)
: JdT ) p\ oT ],



An alternative form of this relation is obtained by using the cyclic relation:

() )G ), = 1= Gn). - -(0).0),

L IV
Substituting the result into Eq. 12—45 gives

" av\* [ oP (1245

c, = — 0 —

v E)T P Jdv T %
This relation can be expressed in terms of two other thermodynamic proper-

ties called the volume expansivity 8 and the isothermal compressibility «,
which are defined as (Fig. 12—-10)

= l(du) (12-47)
B="\or ;
and
= I(W) 12-48
“T T u\ap I ( :
Substituting these two relations into Eq. 12—46, we obtain a third general
relation for ¢, — ¢
P vV
VT3’

c, — C, = 1249
" v o ( )

22



THE JOULE-THOMSON COEFFICIENT

 For ideal gases, their internal energy depends only on temperature,
but not on volume and pressure. If there are interactions between the
gas molecules, their behavior is described by non-ideal (real) gas
equations od state.

dThese interactions cause a change in temperature if they are expanded
or compressed. This change in temperature is subject of the Joule-
Thomson experiment. It describes the change in temperature of a gas
as a result of a change in pressure.

dThe temperature behavior of a fluid during a throttling (h = constant)
process is described by the Joule-Thomson coefficient.

)T (< (0 temperature increases
:
w=\— wry = 0 temperature remains constant
C (4 o L W,
(| > 0 temperature decreases



THE JOULE-THOMSON COEFFICIENT

1) If attraction dominates the interaction between the gas particles
the gas cools down upon expansion, as energy is required to
distribute the particles within the larger volume. The Joule-Thomson
coefficient is positive in this case.

2) If repulsion dominates the interaction between the gas particles,
the gas heats up upon expansion and the Joule-Thomson coefficient
Is negative.

3) Fortheideal gas u =0, as the inner energy of the ideal gas only
depends on temperature and not on pressure or volume.

T, = 20°C " T,{2 20°C
P, =800 kPa P> =200 kPa

24



The Joule-Thomson Effect

d Isothermal J-T coefficient important in liquification of gases.
1 If the process occurs within a temperature and pressure range
that ensures that the effect is positive (the gas temperature
decreases as its pressure is reduced), then throttling results in

gas cooling and can be successfully used to liquefy gases.

 Forreal gases: pu;#0

1) Ifu;>0, then gas cools on expansion (desired effect).

2) If u; <0, then gas heats on expansion at T > gas inversion
temperature (critical temperature below which the gas
expanding at constant enthalpy will experience a
temperature decrease; and above which will experience a
temperature increase).




THE JOULE-THOMSON COEFFICIENT

" Fluid temperature decreases during a throttling process that takes
place on the left-hand side of the inversion line.

= A cooling effect cannot be achieved by throttling unless the fluid is
below its maximum inversion temperature (Figure).

T A
Maximum inversion

Synoptic Table 2.9* Inversion temperature
temperatures (77), normal freezing (7,) and
boiling (T,) points, and Joule-Thomson
coefficient () at 1 atm and 298 K

T/K TJK T/K p/(Kbar™)

Ar 723 838 873

CO, 1500 194.7  +1.10
He 40 42 —0.060
N 621 633 774 +0.25

2

Ll

* More values are given in the Data section. P

ezs Constant-enthalpy lines of a substance
on a T-P diagram. 2

© 2006 Peter Atkins and Julio de Paula



THE JOULE-THOMSON COEFFICIENT

Next we would like to develop a general relation for the Joule-Thomson
coefficient in terms of the specific heats, pressure, specific volume, and
temperature. This is easily accomplished by modifying the generalized rela-

tion for enthalpy change (Eq. 12-35)

For an i = constant process we have dh = 0. Then this equation can be

rearranged to give
l T( av) (aT) (12-52)
— |V — — — _ = _ —_
('.'!” (')T P (')P h o

which is the desired relation. Thus, the Joule-Thomson coefficient can be
determined from a knowledge of the constant-pressure specific heat and the
P-v-T behavior of the substance. Of course, it is also possible to predict the
constant-pressure specific heat of a substance by using the Joule-Thomson
coefficient, which is relatively easy to determine, together with the P-v-T
data for the substance.

dh = ¢, dT +

27



THE Ah, Au, AND As OF REAL GASES

1)

2)

3)

4)

Gases at low pressures behave as ideal gases and obey the
relation Pv = RT. The properties of ideal gases are relatively easy
to evaluate since the properties u, h, ¢, and c, depend on
temperature only.

At high pressures, gases deviate considerably from ideal-gas
behavior, and it becomes necessary to account for this
deviation.

In Chapter 3 we accounted for the deviation in properties P, v,
and T by either using more complex equations of state or
evaluating the compressibility factor Z from the compressibility
charts.

We extend the analysis to evaluate the changes in the enthalpy,
internal energy, and entropy of non-ideal (real) gases, using the
general relations for du, dh, and ds developed earlier.

28



Enthalpy Changes of Real Gases

[ The enthalpy of a real gas, in general, depends on the pressure as well
as on the temperature.

1 Thus, the enthalpy change of a real gas during a process can be
evaluated from the general relation for dh:

T, r P, .
Vv
hz — h] — Cp dl + [U — T(—) ] dP
"TJ "P, ()T P

 For an isothermal process dT =0, and T
the first term vanishes. Actual v O
process
 For a constant-pressure process, dP =0, path
and the second term vanishes.

79
T ks
Questions on Applying to Different CASES: |
= Non-isothermal ideal, Ah =
= |sothermal Ideal, Ah = Alternative

. IoCessS
= |sothermal non-ideal, Ah = / &
= |sobaric non-ideal, Ah =




A Using a superscript asterisk (*) to denote an ideal-gas state, we can
express the enthalpy change of a real gas during process 1-2 as:

_ _ ok ko ok % _
hy =y =((hy — ) B (05 — w5) + = )
enthalpy departure enthalpy departure
) R IV P2 IV
hy, — h5 =0 + [u — T() } dP = {V — T() } dP
Jps ol ) plr=1, Ip, 1"/ plr=r,
) ) 1 1 Constant T
hs —hy] = ¢, dT + 0 = CPU(T) dT
T, T, Ideal gas
. K v P v
hy —h, =0+ v—T|— dP = — v—T|— dP
Jp, ol ) plr=1, Ip, T ) plr=1,

Constant T

30



 The difference between h and h* is called the enthalpy departure,
and it represents the variation of the enthalpy of a gas with pressure
at a fixed temperature.

[ The calculation of enthalpy departure requires a knowledge of the
P-v-T behavior of the gas.

[ In the absence of such data, we can use the relation Pv = ZRT, where
Z is the compressibility factor.

d Substituting,
~ P .
( 0z ) dP )
? ctua 2 o~ N
J0 () T P P g'oce:s X 4

(h* — h); = —RT~

path 5

1

T =TT, and P = P_Py a #
Z; ( )T — T2 ( C

— ) d(In Py) proces
IDR /

1 RT R

H=Cr “()

olp

Enthalpy departure factor 31



 The values of Z, are presented in graphical form as a function of P,
(reduced pressure) and T, (reduced temperature) in the generalized
enthalpy departure chart.

4 Z, is used to determine the deviation of the enthalpy of a gas at a
given P and T from the enthalpy of an ideal gas at the same T.

For a real gas during a process 1-2:

hE o hl — (hZ o h])ideul o RTC[‘(ZJ’I: o Z!fl)
(]_32 _.-El)*

ideal (from ideal gas tables)

Ej — El — (Ez o El)idez]l R I (fo’:- - Zfi’])

Note:
Properties per mole

Using the definition

h=1i+ PV =i+ ZRT
Uy — Uy = (Ez_l_) R.(Z,T, - Z\T))



General relation for ds

Using the approach in the figure
S, — 8, = (55 = s5) + (s5 — 85) + (s — s7)

+ (s = sa) + (s = s1)
During isothermal process

(sp — 5;:)? = (sp — Sﬁ;)r + (5'0 - S;i:)]"

[ ()| (),
o \aT /), L\ T /,

v =ZRT/IP v* = vy, = RT/P

1

[ 500 ]

(sp = Sp)r =

T &

Actual
T, process path
Tl I~

Alternative
process path

An alternative process path to
evaluate the entropy changes
of real gases during process 1-2.

33



I' =T, and P = P_P,

Ccr

SE = S)pp (P 17
7 = ( Jr = , {Z — 1+ TR<,( ) } d(In Pg) Entropy
" )y Ty /) p. departure factor

(§* — §);p  Entropy departure

 The values of Z; are presented in graphical form as a function of P,
(reduced pressure) and T, (reduced temperature) in the generalized
entropy departure chart.

 Z_is used to determine the deviation of the entropy of a gas at a given
P and T from the entropy of an ideal gas at the same Pand T.

For a real gas during a process 1-2:

?2 o T’l - (TE o ;I>idcnl o Ru(ij o le>

S 7 51 — ("'Ij o "'Il)i(h':;ll o R(Z

Na

—Z,)

(S5 = Si)igeat  (from the ideal gas relations)

34



f(x)

f(x+Ax)

S(x)

EXAMPLE 12-1 Approximating Differential Quantities
by Differences

The ¢, of ideal gases depends on temperature only, and it is expressed as
c,(T) = dh(T)/dT. Determine the ¢, of air at 300 K, using the enthalpy data
from Table A—17, and compare it to the value listed in Table A-25b.

SOLUTION The ¢, value of air at a specified temperature is to be determined
using enthalpy data.

Analysis The c, value of air at 300 K is listed in Table A-2b to be
1.005 kJ/kg-K. This value could also be determined by differentiating the
function A(T) with respect to T and evaluating the result at T = 300 K.
However, the function A(T) is not available. But, we can still determine the
c, value approximately by replacing the differentials in the c,(T) relation by
differences in the neighborhood of the specified point (Fig. 12-2):

G — [dh(ﬂ} _ [Ah{T)} _ h(305 K) — h(295 K)
p dT Jy_s0x L AT Joo s00k (305 — 295) K
_ (305.22 — 295.17) kl/kg nD,dfke

= 1.005 kJ/kg K
(305 — 295) K

305.22

20517

xX+Ax Xx




O
EXAMPLE 12-3 Verification of Cyclic and Reciprocity Relations m

£l
Using the ideal-gas equation of state, verify (a) the cyclic relation, and (b) the g
reciprocity relation at constant P. =

SOLUTION The cyclic and reciprocity relations are to be verified for an

ideal gas.
Analysis The ideal-gas equation of state Pv = RT involves the three variables

P, v, and T. Any two of these can be taken as the independent variables, with
the remaining one being the dependent variable.

(a) Replacing x, y, and z in Eq. 12-9 by P, v, and T, respectively, we can
express the cyclic relation for an ideal gas as

oP\ (av\ (oT dx r“ "}
= —] —
(av)r(aT)p(aP>u EJ:V (}' (}

where ‘

P = P(v. T)—E_,("P) — M

% av

v—v(lDT)—E (d—v) =
: P_’aT,,

P T
T = T(P. v)——"_><" ) =
v

R oP



Substituting yields

() -

which is the desired result.

(b) The reciprocity rule for an ideal gas at P = constant can be expressed as

(ff_v) | (‘_> _ |
aT)p  (8TIov), az/, (9z/ox),

Performing the differentiations and substituting, we have
R_1 _R_R

—
P PR P P

Thus the proof is complete.
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EXAMPLE 124 Verification of the Maxwell Relations

Verify the validity of the last Maxwell relation (Eq. 12-19) for steam at 250°C
and 300 kPa.

|
|
|
|
H
Analysis The last Maxwell relation states that for a simple compressible
substance, the change in entropy with pressure at constant temperature is
38

equal to the negative of the change in specific volume with temperature at
constant pressure.

()2 ()
aP )t~ \aT/p
(3)

AP J1=1250C

Sa00kpa — 5200 kPa
(400 — 200) kPa |7 = 2s0°C

_(i_v)
AT /P =300kPa

| Vaoore T Vanoc
(300 — 200)°C |p = 300 kPa

1~

-

(7.3804 — 7.7100) kJ/kg-K .
(400 — 200) kPa

=

(0.87535 — 0.71643) m*/kg
(300 — 200)°C

I

—0.00165 m¥/kg:-K = —0.00159 m/kg'K



: EXAMPLE 12-5 Evaluating the h,, of a Substance from

L the P-v-T Data
u

W Using the Clapeyron equation, estimate the value of the enthalpy of vaporiza-
' tion of refrigerant-134a at 20°C, and compare it with the tabulated value.

SOLUTION The h,, of refrigerant-134a is to be determined using the Clapeyron

equation.
Analysis From Eq. 12-22,

_ dP
hfg = Tvg dT »

where, from Table A-11,
Ve = (V, = Vg o = 0.036012 — 0.0008160 = 0.035196 m’/kg

(d_P) :(E) _ Pa@nuc ~ Paaiec
dT) gove  \AT/opc 24°C — 16°C

_ 646.18 — 504.58 kPa
8°C

= 17.70 kPa/K

since AT(°C) = AT(K). Substituting, we get
hg, = (293.15 K)(0.035196 m’/kg)(17.70 kPafK)(ij)
1 kPa-m
= 18262 kJ/ke
The tabulated value of hy at 20°C is 182.33 kJ/kg. The small difference

between the two values is due to the approximation used in determining the
slope of the saturation curve at 20°C.
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EXAMPLE 12-7 Internal Energy Change of a van der Waals Gas :

|
Derive a relation for the internal energy change as a gas that obeys the van g
der Waals equation of state. Assume that in the range of interest ¢, varies m
according to the relation ¢, = ¢; + ¢, T, where ¢, and ¢, are constants.

Analysis The change in internal energy of any simple compressible system
in any phase during any process can be determined from Eq. 12-30:

T2 Vs
P
csar s [[1(22) — #]av
JT| | aT L0
The van der Waals equation of state is

RT a

Uy — ) =

P = _
v — b v?
Then
(ap) R
aT/), v —b
Thus,
aP RT RT
() ez
aT/ v—>b v—»b v y?
Substituting gives
T, L,
Hy — Uy = (c, + ¢, AT + — dv
JT v

Integrating yields

c, 11
Uy, — My = CJ[TZ—TJ]+E'(T§—T|2]+:I(U—— u)
1 7

which is the desired relation.



m EXAMPLE 12-9 The Specific Heat Difference of an Ideal Gas
|

m Show that ¢, — ¢, = R for an ideal gas.

|

SOLUTION It is to be shown that the specific heat difference for an ideal
gas is equal to its gas constant.

Analysis This relation is easily proved by showing that the right-hand side
of Lg. 12-46 is equivalent to the gas constant R of the ideal gas:

T(au)z(af))
cC — C,— — — -
S aT/p\av /.

RT (ap) RT P
P=——>|—] =—=——
v ov/r v v

-
A ),

¢, — ¢, =R

Substituting,

Therefore,
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u
m EXAMPLE 12-10 Joule-Thomson Coefficient of an ldeal Gas

H
m Show that the Joule-Thomson coefficient of an ideal gas is zero.

|
SOLUTION It is to be shown that w = O for an ideal gas.
Analysis For an ideal gas v = RT/P, and thus

(a_v)_ﬁ
aT)p P

Substituting this into Eq. 12-52 yields

—1 d —1 R 1
pn=—[v—T(—U)]=—[v—T—] = ——(Ww—-v)=0
c T/ p Cp P ¢,

Discussion This result is not surprising since the enthalpy of an ideal gas is
a function of temperature only, # = h(T), which requires that the temperature
remain constant when the enthalpy remains constant. Therefore, a throttling
process cannot be used to lower the temperature of an ideal gas (Fig. 12-14).

T A

FIGURE 12-14

The temperature of an ideal gas
remains constant during a throttling
process since h = constant and

T = constant lines on a T-P
diagram coincide.

h = constant line

oY

P, P,
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EXAMPLE 12-11 The Ah and As of Oxygen at High Pressures

Determine the enthalpy change and the entropy change of oxygen per unit
mole as it undergoes a change of state from 220 K and 5 MPa to 300 K and
10 MPa (a) by assuming ideal-gas behavior and (b) by accounting for the
deviation from ideal-gas behavior.

Solution Oxygen undergoes a process between two specified states. The
enthalpy and entropy changes are to be determined by assuming ideal-gas
behavior and by accounting for the deviation from ideal-gas behavior.

Analysis The critical temperature and pressure of oxygen are T_, = 154.8 K
and P, = 5.08 MPa (Table A-1), respectively. The oxygen remains above its
critical temperature; therefore, it is in the gas phase, but its pressure is
quite high. Therefore, the oxygen will deviate from ideal-gas behavior and

should be treated as a real gas.
(a) If the O, is assumed to behave as an ideal gas, its enthalpy will depend

on temperature only, and the enthalpy values at the initial and the final tem-
peratures can be determined from the ideal-gas table of O, (Table A-19) at
the specified temperatures:
{Hz - H]}il]-l:-':l] = Ez,ideal - ELi:lml
= (8736 — 6404 ) kJ/kmol
= 2332 kJ/kmol



The entropy depends on both temperature and pressure even for ideal gases.

Under the ideal-gas assumption, the entropy change of oxygen is determined
from

P

(2= 51)igen = 52 — 59 — R,In—

10 MPa

= (205.213 — 196.171 ) k] /kmol - K — (8.314 kJ/kmol - K)I
( ) kI/kmol - K — (8.314 KJ/kmol - K)ln ———-

= 3.28 kJ/kmol - K

(b) The deviation from the ideal-gas behavior can be accounted for by deter-

mining the enthalpy and entropy departures from the generalized charts at
each state:

T, 220K
e _
‘T, 1548K
e Z, =053,Z, =025
P,  5MPa | |
Pp = — = = 0.98

P. 5.08MPa
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and

T, 300K “
L ETITS
o ' Z, = 048, Z, = 0.20
P, = 2= 2 197
:~ p_ 5.08 MPa J

Then the enthalpy and entropy changes of oxygen during this process are
determined by substituting the values above into Egs. 12-58 and 12-63,

hy — hy = (hy = hy)igen — RI(Zn, — Z4)
= 2332 kJ/kmol — (8.314 kJ/kmol - K)[154.8 K(0.48 — 0.53)]
= 2396 kJ/kmol
and
5= 8= (52~ 5y )igen — RAZ,, - Z,)
= 3.28 kJ/kmol - K — (8.314 kJ/kmol - K)(0.20 — 0.25)
= 3.70 kJ/kmol - K

Discussion MNote that the ideal-gas assumption would underestimate the

enthalpy change of the oxygen by 2.7 percent and the entropy change by
11.4 percent.
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