UNIVERSITY OF JORDAN FACULTY OF ENGINEERING AND TECHNOLOGY CHEMICAL ENGINEERING DEPARTMENT ## CHE 905322 - CHEMICAL ENGINEERING THERMODYNAMICS I | الاسم | : | |---------------|------------------------------| | الرقم الجامعي | · | | المادة | : دینامیکا حراریة ۱ (۹۰۵۳۲۲) | | الامتحان | : الأول | | التاريخ | ۲۰۰۳/۱۱/۱۰: | | مدرس المادة | : د. على المطر | **Question 1 (40 points).** Select the **most correct** answer and circle it in the following multiple choice questions (MCQ). **More than one answer may be correct**, make your choices carefully and wisely. | 1. In thermodyna a) System | amics, a fixed quantity of ma
b) Closed system | ass selected for the purpos
c) Open system | e of study is called a: d) Control volume | |--|---|--|--| | 2. A specific pro | perty is also: | | | | a) An extensive property | b) The product of two intensive properties | c) An amount of mass dependent property | d) An intensive property | | | system to be in thermal equiughout the system? | librium, which of the follo | owing properties must be | | a) Mass | b) Pressure | c) Temperature | d) Volume | | 4. A cycle consis | sts of a series of processes th | nat: | | | a) Eventually return to
the first state of the
first process | b) are continually repeated | c) are always in
equilibrium or quasi-
equilibrium | d) none of these | | 5. How many incompressible | dependent properties are req | uired to completely specif | y the state of a simple | | a) 0 | b) 1 | c) 2 | d) 3 | | | ainer is filled with a fluid what celeration, the contents of | | 001 m ³ /kg. At standard | | a) 2010 N | b) 3220 N | c) 4900 N | d) 7830 N | | 7. Which temper a) 52°C | rature below is equivalent to b) 125°C | 125°F?
c) 602°R | d) 315 K | | | n the barometer reads 755 m
ure in the tire is: | nm Hg, a tire pressure gage | e reads 204 kPa. The | | a) 100 kPa | b) 204 kPa | c) 1.54 m Hg | d) 2.29 m Hg | | 9. The boundarie | es of a system can be | | | | a) Real or imaginary | b) May be at rest or in motion | c) may change size or
shape | d) All of these | | a) Mechanical, | contact between the system b) Mechanical, thermal, and chemical. | c) Mechanical and | d) None of these | | 11. An extrinsic p | property is | | | | a) State function | b) path function | c) Dependent on the nature of the constituents of the system | d) not dependent on the nature of the constituents of the system | | 12. The equilibriu a) Nature of the system | m state is affected by b) Container | c) Surroundings | d) All of these | | | tates can be classified as | | | | a) Stable and unstable | b) Stable, metastable, and unstable | c) Stable, neutrally stable, and unstable | d) Stable, neutrally stable and metastable | | 14. To measure very a) Thermometers | high temperatures, we useb) Cryometers | c) Pyrometers | d) Thermocouples | |--|---|---|--| | 15. The different kin a) Shaft | ds of work that occur at the b) Deforming system boundaries, shaft and fields. | e system-surroundings bou
c) Accompany mass
flow only | andaries are d) All of these | | 16. Heat and work as a) Interactions between the system and its surroundings | - - | c) Energy in transit | d) A and C | | 17. Adiabatic proces a) A unique way | | c) Three ways | d) None of these | | a) Kinetic energy | , 63 | c) Internal energy | d) Kinetic and potential energies | | 19. The internal energya) Microscopic energy | | c) Both macro and microscopic energies | d) None of these | | 20. The first law of t a) No nuclear reactions | hermodynamics as derived b) No electro-magnetic fields | 2 | following assumptions d) A and B | **Question 2 (30 points).** An average car consumes about 5 L of gasoline a day, and the capacity of the fuel tank of the car is about 50 L. Therefore, a car needs to be refueled once every 10 days. Also, the density of gasoline ranges from 0.72 to 0.78 kg/L, and its lower heating value is about 44,000 kJ/kg. Suppose all the problems associated with the radioactivity and waste disposal of nuclear fuels are resolved, and a car is to be powered by U-235. The complete fission of 1 kg of U-235 releases 6.73×10¹⁰ kJ of heat. If a new car comes equipped with 0.1 kg of the nuclear fuel U-235, determine if this car will ever need refueling under average driving conditions. **Question 3 (30 points).** A cyclic process is carried in five (5) steps on a closed system composed of one mole of a certain gas. The following table has some missing values. Fill in the missing values. | | $\Delta U(\mathbf{J})$ | Q(J) | W(J) | |--------|------------------------|-------|------| | 12 | | 1000 | 2000 | | 23 | 1500 | | | | 34 | 500 | -1500 | | | 45 | -1000 | | 1000 | | 51 | | 2000 | | | 123451 | | 2000 | |