UNIVERSITY OF JORDAN FACULTY OF ENGINEERING AND TECHNOLOGY CHEMICAL ENGINEERING DEPARTMENT

CHE 905322 - CHEMICAL ENGINEERING THERMODYNAMICS I

الاسم	:
الرقم الجامعي	·
المادة	: دینامیکا حراریة ۱ (۹۰۵۳۲۲)
الامتحان	: الأول
التاريخ	۲۰۰۳/۱۱/۱۰:
مدرس المادة	: د. على المطر

Question 1 (40 points). Select the **most correct** answer and circle it in the following multiple choice questions (MCQ). **More than one answer may be correct**, make your choices carefully and wisely.

1. In thermodyna a) System	amics, a fixed quantity of ma b) Closed system	ass selected for the purpos c) Open system	e of study is called a: d) Control volume
2. A specific pro	perty is also:		
a) An extensive property	b) The product of two intensive properties	c) An amount of mass dependent property	d) An intensive property
	system to be in thermal equiughout the system?	librium, which of the follo	owing properties must be
a) Mass	b) Pressure	c) Temperature	d) Volume
4. A cycle consis	sts of a series of processes th	nat:	
a) Eventually return to the first state of the first process	b) are continually repeated	c) are always in equilibrium or quasi- equilibrium	d) none of these
5. How many incompressible	dependent properties are req	uired to completely specif	y the state of a simple
a) 0	b) 1	c) 2	d) 3
	ainer is filled with a fluid what celeration, the contents of		001 m ³ /kg. At standard
a) 2010 N	b) 3220 N	c) 4900 N	d) 7830 N
7. Which temper a) 52°C	rature below is equivalent to b) 125°C	125°F? c) 602°R	d) 315 K
	n the barometer reads 755 m ure in the tire is:	nm Hg, a tire pressure gage	e reads 204 kPa. The
a) 100 kPa	b) 204 kPa	c) 1.54 m Hg	d) 2.29 m Hg
9. The boundarie	es of a system can be		
a) Real or imaginary	b) May be at rest or in motion	c) may change size or shape	d) All of these
a) Mechanical,	contact between the system b) Mechanical, thermal, and chemical.	c) Mechanical and	d) None of these
11. An extrinsic p	property is		
a) State function	b) path function	c) Dependent on the nature of the constituents of the system	d) not dependent on the nature of the constituents of the system
12. The equilibriu a) Nature of the system	m state is affected by b) Container	c) Surroundings	d) All of these
	tates can be classified as		
a) Stable and unstable	b) Stable, metastable, and unstable	c) Stable, neutrally stable, and unstable	d) Stable, neutrally stable and metastable

14. To measure very a) Thermometers	high temperatures, we useb) Cryometers	c) Pyrometers	d) Thermocouples
15. The different kin a) Shaft	ds of work that occur at the b) Deforming system boundaries, shaft and fields.	e system-surroundings bou c) Accompany mass flow only	andaries are d) All of these
16. Heat and work as a) Interactions between the system and its surroundings	- -	c) Energy in transit	d) A and C
17. Adiabatic proces a) A unique way		c) Three ways	d) None of these
a) Kinetic energy	, 63	c) Internal energy	d) Kinetic and potential energies
19. The internal energya) Microscopic energy		c) Both macro and microscopic energies	d) None of these
20. The first law of t a) No nuclear reactions	hermodynamics as derived b) No electro-magnetic fields	2	following assumptions d) A and B

Question 2 (30 points). An average car consumes about 5 L of gasoline a day, and the capacity of the fuel tank of the car is about 50 L. Therefore, a car needs to be refueled once every 10 days. Also, the density of gasoline ranges from 0.72 to 0.78 kg/L, and its lower heating value is about 44,000 kJ/kg. Suppose all the problems associated with the radioactivity and waste disposal of nuclear fuels are resolved, and a car is to be powered by U-235. The complete fission of 1 kg of U-235 releases 6.73×10¹⁰ kJ of heat. If a new car comes equipped with 0.1 kg of the nuclear fuel U-235, determine if this car will ever need refueling under average driving conditions.

Question 3 (30 points). A cyclic process is carried in five (5) steps on a closed system composed of one mole of a certain gas. The following table has some missing values. Fill in the missing values.

	$\Delta U(\mathbf{J})$	Q(J)	W(J)
12		1000	2000
23	1500		
34	500	-1500	
45	-1000		1000
51		2000	
123451		2000	