

UNIVERSITY OF JORDAN CHEMICAL ENGINEERING DEPARTMENT

905322 – CHEMICAL ENGINEERING THERMODYNAMICS 1

الأسم الجامعي : الرقم الجامعي : المادة : ديناميكا حرارية ١ (٩٠٥٣٢٢) الامتحان : الأول التاريخ : ١١١٢٠٠٠ مدرس المادة : د. علي مطر

العلامة	العلامة الكاملة	السؤال
	37.5	1
	30.0	۲
	20.0	٣
	12.5	٤
X	X	٥
X	X	٦
	1	المجموع

وقع على القسر التالي المتعلق بالغش الأكاديمي:

اقسم بالله أنني لم اغش في هذا الامتحان ولم أساعد أي شخص على الغش سواءً لمنفعتي الشخصية أو لمنفعة الآخرين، وعلى هذا أوقع.

التوقيع:

Student Name:

	(A)	(B)	(C) •	(D)
00		(B) OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO		
02	0	0	0	•
08	0	0	•	0
04	•	0	0	0
06		0	0	0
00	0	•	0	0
00	0	•	0	0
0 2 0 3 0 4 0 6 0 6 0 7 0 3 0 9 1 0 1 0 1 0 1 5 0 6 0 7 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9	0	0	0 0 0 0	•
09	0	0		0
00	0	0	•	0
00	0	0	0	
02	0	0		0
08	0	0	0 0 0	
04	0		0	0
06	0	0	0	
06	0	0	0	
00	0	0		0
08	0	0	0	
09		0	0	0
	0	0	•	0
20	0		0	0
22	0	0	0	
2 3	0		0	0
24	0	0		0
26	O		0	0

Fill the circles completely.

Don't fill more than one circle for each question. If there are more than one circles filled, you will get a zero for

No answers on the questions sheet will be accepted. Use a black/blue pen not a pencil.

Question 1 (37.5 points)

Select the most correct answer and circle it in the provided answers sheet. More than one answer may be correct, make your choices carefully and wisely.

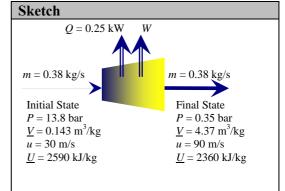
	1. A Joule-Thompson		a) Isanthalaia	d) Isaharia
	•		c) Isenthalpic	d) Isobaric
	2. Usually, a jet fighte	er operates at Mach numb	ers	
a)	$\mathbf{M} < 0$	b) $M < 1$	c) $0 < M < 1$	d) $M > 1$
		rom a vapor to a liquid is		
a)	Vaporization	b) Evaporation	c) Condensation	d) a & b
	4. The value of vapor	pressure above the critica	al point is	_
	None existent	ſ	c) 1 atm	d) infinity
	5. The value of the lat	ent heat of vaporization a	at the critical point is	
		_	_	d) infinity
a)	zero	b) Same as triple point value	value	d) illimity
	6 An ideal gas unders	oing a throttling process	from (300 K 100 bar) to	o a final pressure of 1
		nal temperature of the gas		•
<i>a</i>)			c) 350 K	d) 400 K
a)	230 K	0) 300 K	c) 330 K	u) 400 K
	7. The outlet stream of	f a turbine is called		
a)	Driving fluid	b) Exhaust	c) Suction	d) Discharge
	8. An isentropic proce	ess is equivalent to		
	reversible isothermal		c) irreversible adiabatic	d) reversible adiabatic
			process	process
	O. The cost of the second		1	
		tracted from a turbine is a		D. F
	•	, 0	c) Lower than the	d) Equivalent to 100%
ISE	entropic work	isentropic work	isentropic work	efficiency
	10.A compressor take	s a stream at 1 bar and co	ompresses it to 81 bars. H	low many stages are
	required to achieve	this compression assumi	ing a compression ratio o	of 3 per stage?
a)	2	b) 3	c) 4	d) 5
				ľ
	11. The device used to	increase the velocity of	a fluid stream at the expe	ense of pressure is the
			c) Converging section	d) b & c
	12. The location in a c	converging-diverging sect	tion at which the velocity	becomes sonic is the
a)	Slit	b) Neck	c) Throat	d) Mouth
		verging section, the value	e of the pressure ratio at	which the velocity
	becomes sonic is	1) P P 0) D /D 0	1) 0 P /P 1
a)	$P_2/P_1 < 0$	b) $P_2/P_1 > 0$	c) $P_2/P_1 = 0$	d) $0 < P_2/P_1 < 1$
	14. Which one of thes	e quantities is not conser	ved?	
			c) Energy	d) a & c

15. What is the range of typical efficiencies for turbines and compressors?						
a) 0.4 – 0.5	b) 0.5 – 0.6	c) 0.6 – 0.7	d) 0.7 – 0.8			
16. The device used to	o move large flow rates o	f gases at low pressure ra	ntio is called			
a) Fan	b) Blower	c) Compressor	d) a & b			
17. Differential balance						
a) Changes in an interval of time	b) Changes between two moments of time	c) Instantaneous rates	d) None of these			
18. The boundaries of	the system can be move	d by	•			
a) Expansion	b) Contraction	c) System movement	d) All of these			
19. Heat can be suppl	ied to or removed from a	system by using				
a) Jackets and Coils	b) Stirring	c) Direct mixing	d) a & c			
difference is 10 m.	20. Water falls in a certain area in Ma'in – Jordan flows at a rate of 1.0 m ³ /s and the elevation difference is 10 m. If a turbine was to be installed there to generate electricity, what is the theoretical power that can be extracted from this water fall?					
a) 98 MW	b) -98 MW		d) 98 kW			
21. The RHS of the first law of thermodynamics is a collection of terms that take place						
a) Within the system	b) Across system		d) None of these			
boundaries	boundaries	system boundaries				
22. Heat and work are						
a) Energy in transit	b) Path functions	c) State functions	d) a & b			
23. A 0.1 atm vacuum	n pressure is equivalent to	an absolute pressure of				
a) 1.1 atm	b) 0.9 atm	c) 1.0 atm	d) -0.1 atm			
24. The temperature r	neasuring device used to	measure very low temper	ratures is			
a) Thermocouple	b) Pyrometer	· · ·	d) a & b			
25. When the number	of degrees of freedom is	zero; the system is called	i 1			
a) Variant	b) Invariant		d) Three phased			

Question 2 (30 points)

A turbine operating under steady flow conditions receives steam at the following state: pressure 13.8 bar, specific volume $0.143~\text{m}^3/\text{kg}$, specific internal energy 2590 kJ/kg, velocity 30 m/s. The state of the stream leaving the turbine is as follows: pressure 0.35 bar, specific volume 4.37 m³/kg, specific internal energy 2360 kJ/kg, velocity 90 m/s. Heat is rejected to the surroundings at the rate of 0.25 kW and the rate of steam flow through the turbine is 0.38 kg/s.

- 1. Calculate the power developed by the turbine.
- 2. What is the efficiency for this turbine?
- 3. Comment on the contributions of the various terms.


Open system

Steady-state conditions

For ideal work an isentropic case (adiabatic reversible) process

Negligible PE

Steam tables are applicable for the properties

Calculations & Comments

1. The first law subject to the assumptions listed above reduces to

$$0 = -m\frac{(u_2^2 - u_1^2)}{2} - m(\hat{H}_2 - \hat{H}_1) + Q + W$$

a. Calculate change in KE per unit mass as

$$\Delta KE = \frac{(u_2^2 - u_1^2)}{2}$$
$$= \frac{(90^2 - 30^2)}{2} = 3600 \text{ J/kg}.$$

- b. Calculate change in the enthalpy remembering that H = U + PV.
 - i. internal energy

$$\Delta U = (\hat{U}_2 - \hat{U}_1)$$

= $(2360 - 2590) \times 10^3 = -230 \times 10^3 \text{ J/kg}.$

ii. PV term

$$\Delta(P\hat{V}) = (P_2\hat{V}_2 - P_1\hat{V}_1)$$

$$= \frac{10^5}{10^3}(0.35 \cdot 4.37 - 13.8 \cdot 0.143) = -44390 \text{ J/kg}.$$

iii. Enthalpy change

$$\Delta \hat{H} = \Delta \hat{U} + \Delta (P\hat{V})$$

= -230,000 - 44,390 = -274,390 J/kg.

5

c. Calculate the sum of power output from the turbine

$$W + Q = m \frac{(u_2^2 - u_1^2)}{2} + m(\hat{H}_2 - \hat{H}_1) = -270,790 \text{ J/kg}$$

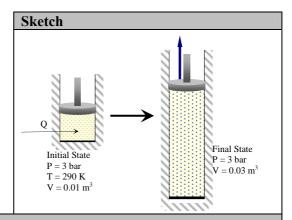
$$W = (0.38)(-270,790) + 250 = -102,650 \text{ J/s} = -102.7 \text{ kW}.$$

2. The efficiency of the turbine is the ratio of actual power to ideal (isentropic power) which is the enthalpy change. Therefore,

$$\eta = \frac{W}{W_{\rm S}} = \frac{-102,650}{(0.38)(-274390)} = 0.9845 = 98.45\%$$

3. Clearly, this turbine is very close to being isentropic i.e., the contribution due to KE and heat loss does not amount to more than 1.5% of the ideal turbine work.

Being organized for the solution of such problems can save you precious time during the exam. Tabulate such problems in a table containing all contributions in the initial state, final state, and the change between these two states.


Operating Conditions				
	Initial	Final	Change	
T(K)	?	?	Decrease	
P(bar)	13.8	0.35	Decrease	
\underline{V} (m ³ /kg)	0.143	4.37	Increase	
<i>u</i> (m/s)	30	90	Increase	
m (kg/s)	0.38	0.38	Steady-State	
Contributions to	energy balance			
	Initial	Final	Change	
PE (J/kg)			0	
KE (J/kg)			3600	
$P\underline{V}(J/kg)$			-44,390	
<u>U</u> (J/kg)	2590×10^3	2360×10^3	-230,000	
\underline{H} (J/kg)			-274,390	
Q(J/kg)			250 (W)	
W(J/kg)		·	-102.7 (kW)	
η (%)			98.45	

Question 3 (20 points)

Oxygen (molar mass 32 kg/kmol) expands reversibly in a cylinder behind a piston at a constant pressure of 3 bar. The volume initially is $0.01~\text{m}^3$ and finally is $0.03~\text{m}^3$. The initial temperature is 17°C . Assume oxygen to be an ideal gas and take $C_P = 0.917~\text{kJ/kg.K}$.

- 1. Calculate the work and state its direction.
- 2. Calculate the heat supplied during the expansion and state its direction.
- 3. What is the final temperature of the oxygen?

Assumptions
Oxygen is an ideal gas
Closed system
No shaft work
Negligible PE and KE
Reversible process
_

Calculations & Comments

1. The cylinder expands which means that the system is doing work. Therefore, we expect to have a minus sign. The work occurs at isobaric conditions. Consequently, it is given by:

$$W = P(\overline{V}_2 - \overline{V}_1)$$

= $(3 \times 10^5)(0.01 - 0.03) = -6000 J.$

- 2. The heat is being supplied to the system which means that the system is gaining energy. Therefore, we expect to have a positive sign. For a closed system at isobaric conditions
 - a. obtain the final temperature of oxygen in the cylinder from the ideal gas law

$$T_2 = T_1 \cdot \frac{V_2}{V_1}$$

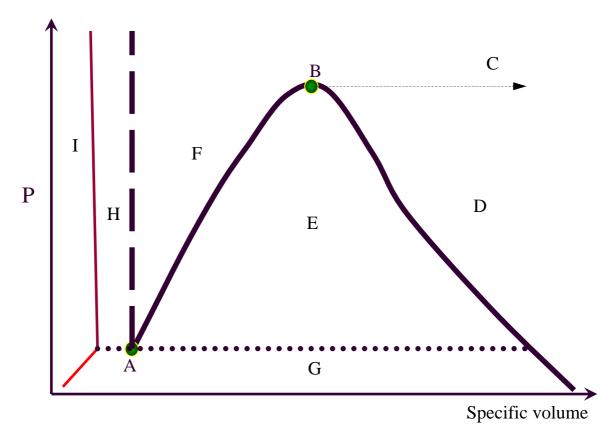
= 290 \cdot \frac{0.03}{0.01} = 870 K

b. calculate the mass of oxygen in the cylinder from the ideal gas law

$$m = \frac{M_{\text{Oxygen}} PV}{RT_1}$$
$$= \frac{(32)(3 \times 10^5)(0.01)}{(8314)(290)} = 0.0398 \text{ kg}$$

c. calculate the heat supplied from the enthalpy of an ideal gas

7


$$Q = mC_P(T_2 - T_1)$$

= (0.0398)(0.917)(870 - 290) = 21180 J.

3. From the last part the final temperature is 870 K.

Operating Conditions				
	Initial	Final	Change	
T(K)	290	870	Increase	
P(bar)	3	3	_	
$V(\text{m}^3)$	0.01	0.03	Expansion	
m (kg)	0.0398	0.0398	Closed system	
Contributions to energy balance				
	Initial	Final	Change	
$\Delta H(J)$			21,180	
Q(J)			21,180	
W(J)			-6,000	

Question 4 (13 points)

Fill the table below for each of the regions labeled with a letter. State the name of the point (region) and the number and name of phase(s) existing in them. Use S for Solid, L for Liquid, V for Vapor, and SC for Supercritical fluids.

Area (point)	Name	Phase(s)	Marks
A	Triple point	3 Phases (S, L, V)	2
В	Critical point	1 Phase (Fluid)	1
С	Fluid region	1 Phase (SC: Supercritical fluid)	1
D	Vapor region	1 Phase (V: Vapor)	1
E	V-L coexistence region	2 Phase (V + L)	2
F	Liquid region	1 Phase (L)	1
G	Solid-Vapor Region	2 Phase (S + V)	2
Н	S-L Region	2 Phase (S + L)	2
I	Solid Region	1 Phase (S)	1