University of Jordan Faculty of Engineering and Technology Chemical Engineering Department

ChE 905322 - Chemical Engineering Thermodynamics I

الاسم	:
الرقم الجامعي	:
المادة	: دینامیکا حراریة ۱ (۹۰۵۳۲۲)
الامتحان	: النهائي
التاريخ	Y · · £\1\19:
مدرس المادة	: د. على المطر

	١٢	11	١.	٩	٨	٧	٦	٥	٤	٣	۲	١	السوال
Ī							٣.	١.	١.	١.	١.	۳.	العلامة الكاملة
													العلامة

وقع على القسم التالي المتعلق بالغش الأكاديمي:

اقسم بالله أنني لم اغش في هذا الامتحان ولم أساعد أي شخص على الغش سواءً لمنفعتي الشخصية أو لمنفعة الآخرين، وعلى هذا أوقع.

التوقيع:

Question 1 (30 points)

Select the most correct answer and circle it in the provided answers sheet. More than one answer may be correct, make your choices carefully and wisely.

	ing substances is not a co	_	1) MATICE 100
a) NH ₃	b) HFC-134a	c) CH ₃ Cl	d) HCFCD-123
-	s abandoned as refrigerar		
a) Toxicity	b) Not safe in handling	c) Caused ozone layer depletion	d) Very costly
3. How is the efficience	y in liquefaction processe		
a) Gas produced per		c) Liquefied gas to feed	d) Liquefied gas
unit work supplied	produced per unit work		produced per cooling
11	in the compressor		load
4. The Linde process d	iffers from simple liquefa	action process by:	
a) Recycling the gas			d) Uses a turbine instead
stream from the flash	stream from the flash	instead of a turbine	of a throttling valve.
drum	drum		_
5. The Joule-Thompson	n expansion (throttling pr	rocess), occurs at a consta	ant
a) Entropy	b) Volume	c) Enthalpy	d) Pressure
6. Which one of the fol	llowing is not fossil fuel?		
		c) Fuel cells	d) Coal
7. Which ideal cycle be	elow is used to describe a	"real" steam power plan	t?
a) Brayton	b) Otto	c) Rankine	d) Carnot
8. Which ideal cycle is	used to describe the gas-	turbine engine	
a) Brayton	b) Otto	c) Rankine	d) Carnot
9. Otto and Diesel engi			
a) Internal combustion		c) Compression ignition	
	e between the Otto and D	_	
•	b) Heat addition	c) Compression	d) Expansion
	e between a turbo-jet eng		
	b) Turbo-jet engine	c) Turbo-jet engine do	
			is not compressed in
their oxidizing agent.	agent, rockets do not.	agent, rockets do.	turbo-jet, in rockets it is
			compressed.
	ollowing is considered a		
a) Chlorates	b) Chlorides	c) Perchlorates	d) hypochlorates
	nechanism of generating p		_
a) Expansion valves		c) Piston-cylinder	d) Direct electricity
	echanism of generating p		
		c) Piston-cylinder	d) Direct electricity
	of typical compression rat		
a) 4-8	b) 7-10	c) 12-22	d) 18-30
	of typical compression rat b) 7-10	c) 12-22	d) 18-30
a) 4-8 17. Mach numbers high	,	C) 12-22	u) 18-30
a) Sub-sonic	b) Sonic	c) Super-sonic	d) Ultra-sonic
	es can be achieved by whi	, I	d) Olda-sollic
a) Turbines	b) Porous plugs	c) Adjustable valves	d) B and C
/	of typical efficiencies for		/
a) 0.4-0.5	b) 0.5-0.6	c) 0.6-0.7	d) 0.7-0.8
/	,		sed to achieve this is called
a) Pump	b) Compressor	c) Blower	d) Turbine
	t streams of a compressor	,	a, ratolic
	b) Discharge & suction		d) Diffuse & suction
			t pump (H) are related by
		c) $COP_H = COP_R$	

23. What is the critical compressibility factor predicted by the van der Waal's equation of state?							
a) 0.29	b) 0.30	c) 0.31	d) 0.375				
24. In general the value of Pitzer's acentric factor is							
a) Negative.	b) Positive.	c) 0.	d) Infinity.				
25. To use the Peng-Robinson EOS in a corresponding states theory, it would yield a theory with							
	b) Two parameters						
26. To estimate the saturated liquid molar volume, the correlation recommended usually is							
a) Pitzer	b) Rackett	c) Any equation of state	d) Virial equation				
27. The ratio of specific heats for NH ₃ would approximately be:							
a) 1.67	b) 1.4	c) 1.3	d) 1.0				

28. The transition from solid to gas is called

a) Vaporization b) Fusion c) Melting d) Sublimation

29. A vapor at a pressure below its saturation pressure is called

a) Subcooled b) Superheated c) Critical d) Supercritical

30. The energy flow due to magnetic or an electric field is classified as a type of

a) Heat transfer b) Shaft work c) Work d) Electromagnetic energy.

Question 2 (10 points)

An inventor claims to have developed a refrigerator that maintains the refrigerated space at 2°C while operating in a room where the temperature is 25°C and has a COP of 13.5. Is there any truth to his claim?

Question 3 (10 points)

Steam at 700 bar and 600°C enters a throttling valve where it is expanded to 10 bars.

- 1. What is the phase of the outlet stream?
- 2. What is the rate of entropy generation?

Question 4 (10 points)

Air is heated in a heat exchanger by hot water. The water enters the heat exchanger at 45°C and experiences a 20°C drop in its temperature. As the air passes through the exchanger, its temperature is increased by 25°C. Determine the ratio of mass flow rate of the air to the mass flow rate of the water.

Question 5 (10 points)

Determine the enthalpy of combustion of gaseous normal octane (n-C₈H1₈) at the standard reference state. Assume water in the products is in the liquid form.

Question 6 (30 points)

Steam enters the turbine of a power plant operating on the Rankine cycle at 3,300 kPa and exhausts at 50

- 1. Determine the thermal efficiency of the cycle and the quality of the exhaust steam from the turbine for turbine-inlet stream temperatures 500°C
- 2. If the turbine had an efficiency of 0.80, determine its impact on the thermal efficiency of the process.

Student Name:

	(A)	(R)	(C)	(D)
00	(A) O	(B) O	(C) O	0
00	Ö	Ö	Ö	Ö
06	Ö	Ö	0	Ö
00	0	Ö	Ö	Ö
06	0	Ö	0	Ö
06	0	0	O	0
00	0	0	0	0
08	0	0	0	0
09	0	0	0	0
00	0	0	0	0
00	0	0	0	0
00	0	0	0	0
00	0	0	0	0
00	0	0	0	0
06	0	0	0	0
06	0	0	0	0
00	0	0	0	0
08	0	0	0	0
00	0	0	0	0
20	0	0	0	0
20	0	0	0	0
22	0	0	0	0
28	0	0	0	0
2 9	0	0	0	0
26	0	0	0	0
9 6	0	0	0	0
90	0	0	0	0
28	0	0	0	0
20	0	0	0	0
80	0	0	O	0

Fill the circles completely.

Don't fill more than one circle for each question. If there are more than one circles filled, you will get a zero for that question. No answers on the questions sheet will be accepted.

Use a black/blue pen not a pencil.