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Second-Order Differential 

Equations
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17.4 Series Solutions
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Series Solutions

Many differential equations can’t be solved explicitly in 

terms of finite combinations of simple familiar functions.

This is true even for a simple-looking equation like

y – 2xy  + y = 0

But it is important to be able to solve equations such as 

Equation 1 because they arise from physical problems and, 

in particular, in connection with the Schrödinger equation in 

quantum mechanics.
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Series Solutions

In such a case we use the method of power series; that is, 

we look for a solution of the form

y = f(x) =     cn xn  = c0 + c1 x + c2 x2 + c3 x3 + . . .

The method is to substitute this expression into the 

differential equation and determine the values of the 

coefficients c0, c1, c2, . . . . This technique resembles the 

method of undetermined coefficients.
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Series Solutions

Before using power series to solve Equation 1, we illustrate 

the method on the simpler equation y + y = 0 in Example1.

But it’s easier to understand the power series method when 

it is applied to this simpler equation.
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Example 1

Use power series to solve the equation y + y = 0.

Solution:

We assume there is a solution of the form

y = c0 + c1 x + c2 x
2 + c3 x

3 + . . . =

We can differentiate power series term by term, so

y  = c1 + 2c2 x + 3c3 x
2 + . . . =      ncn x

n – 1



7

Example 1 – Solution

y = 2c2 + 2  3c3x + . . . =     n(n – 1)cnx
n – 2

In order to compare the expressions for y and y more 

easily, we rewrite y as follows:

y =     (n + 2)(n + 1)cn + 2x
n

Substituting the expressions in Equations 2 and 4 into the 

differential equation, we obtain

(n + 2)(n + 1)cn + 2x
n  +      cnx

n  = 0                          

cont’d
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Example 1 – Solution

or

[(n + 2)(n + 1)cn + 2 + cn]x
n = 0

If two power series are equal, then the corresponding 

coefficients must be equal. Therefore the coefficients of xn 

in Equation 5 must be 0:

(n + 2)(n + 1)cn + 2 + cn = 0

n = 0, 1, 2, 3, . . .

cont’d
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Example 1 – Solution

Equation 6 is called a recursion relation. If c0 and c1 are 

known, this equation allows us to determine the remaining 

coefficients recursively by putting n = 0, 1, 2, 3, . . . in

succession.

Put n = 0:

Put n = 1:

Put n = 2:                  

cont’d
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Example 1 – Solution

Put n = 3:

Put n = 4:

Put n = 5:                  

cont’d
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Example 1 – Solution

By now we see the pattern: 

For the even coefficients, c2n = (–1)n

For the odd coefficients, c2n+1 = (–1)n

Putting these values back into Equation 2, we write the 

solution as

y = c0 + c1 x + c2 x
2 + c3 x

3 + c4 x
4 + c5 x

5 + . . .

cont’d
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Example 1 – Solution

Notice that there are two arbitrary constants, c0 and c1.

cont’d
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Series Solutions

Note 1:

We recognize the series obtained in Example 1 as being 

the Maclaurin series for cos x and sin x. Therefore we 

could write the solution as

y(x) = c0 cos x + c1 sin x

But we are not usually able to express power series 

solutions of differential equations in terms of known 

functions.
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Example 2

Solve y – 2xy + y = 0.

Solution:

We assume there is a solution of the form

y =      cnx
n

Then

y  =      ncnx
n –1

and

y =      n(n – 1)cn xn – 2  =      (n + 2)(n + 1)cn + 2x
n

as in Example 1.
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Example 2 – Solution

Substituting in the differential equation, we get

(n + 2)(n + 1)cn + 2x
n  – 2x      ncnx

n – 1 +      cnx
n = 0

(n + 2)(n + 1)cn + 2x
n  – 2ncnx

n  +       cnx
n = 0

[(n + 2)(n + 1)cn + 2 – (2n – 1)cn]x
n  = 0

cont’d
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Example 2 – Solution

This equation is true if the coefficient of xn is 0:

(n + 2)(n + 1)cn + 2 – (2n – 1)cn = 0

n = 0, 1, 2, 3, . . .

We solve this recursion relation by putting n = 0, 1, 2, 3, . . .

successively in Equation 7:

Put n = 0:

cont’d
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Example 2 – Solution

Put n = 1:

Put n = 2:

Put n = 3:

Put n = 4:

cont’d
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Example 2 – Solution

Put n = 5:

Put n = 6:

Put n = 7:

cont’d
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Example 2 – Solution

In general, the even coefficients are given by

and the odd coefficients are given by

The solution is

y = c0 + c1 x + c2 x2 + c3 x3 + c4 x4 + . . .

cont’d
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Example 2 – Solution

or

cont’d
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Series Solutions

Note 2:

In Example 2 we had to assume that the differential 

equation had a series solution. But now we could verify 

directly that the function given by Equation 8 is indeed a 

solution.

Note 3:

Unlike the situation of Example 1, the power series that 

arise in the solution of Example 2 do not define elementary 

functions.
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Series Solutions

The functions 

and

are perfectly good functions but they can’t be expressed in 

terms of familiar functions.

We can use these power series expressions for y1 and y2 to 

compute approximate values of the functions and even to 

graph them.
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Series Solutions

Figure 1 shows the first few partial sums T0, T2, T4, . . . 

(Taylor polynomials) for y1(x), and we see how they 

converge to y1.

Figure 1
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Series Solutions

In this way we can graph both y1 and y2 in Figure 2.

Note 4:

If we were asked to solve the initial-value problem

y – 2xy  + y = 0            y(0) = 1              y(0) = 1

Figure 2
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we would observe from this Theorem that

c0 = y(0) = 0           c1 = y(0) = 1

Series Solutions
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Series Solutions

This would simplify the calculations in Example 2, since all 

of the even coefficients would be 0. The solution to the 

initial-value problem is


