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Thermodynamics (2) 

A pressure-temperature diagram 

• the sublimation curve 

• the fusion curve 

• the vaporization curve 

• the triple point 

• the critical point 
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Thermodynamics (2) 

A pressure-volume diagram 

• The isotherms 

– the subcooled-liquid and the 
superheated-vapor regions 

– isotherms in the subcooled-
liquid regions are steep 
because liquid volumes change 
little with large change in 
pressure 

• The two-phase coexist region 

• The triple point is the horizontal 
line 

• The critical point 

 

 

 

Fig 3.2 
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Thermodynamics (2) 

• Several processes are considered in thermodynamics: 

  

- Reversible:   

  

-Isobaric process: P  = constant 

 

- Isothermal process: T  = constant 

 

- Adiabatic process: Q  = 0 

 

- Isochoric process: V  = constant 

 

- Isentropic S=constant  

 

- Polytropic process:                               , where  is constant  

PdVdW 

• Remember: 
 Q and W are path functions, while U,V, H , and S are state functions. 

 In our text book,  Q and W are heat and work added to the system, 

respectively. 

constantPV
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Thermodynamics (2) 

Ideal gas 
• No interactions between molecules. 

• gases at pressure up to a few bars may often be considered 

ideal and simple equations then apply 

• the internal energy of gas depends on temperature only. 

– Z = 1; PV = RT 

– U = U (T) 

–   

 

 

– Mechanically reversible closed-system process, for a unit mass or a 

mole, 1st –law of thermodynamics : 
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Thermodynamics (2) 

• For ideal gas undergoing a mechanically reversible 

isobaric process: 
 PdVW

• For ideal gas undergoing a mechanically reversible 

isochoric process: 

• For ideal gas undergoing a mechanically reversible 

isothermal process: 
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Thermodynamics (2) 

• For ideal gas with constant heat capacities undergoing 

a mechanically reversible adiabatic process: 

 

 

 

 

 

 

– for monatomic gases,  

– for diatomic gases,  

– for simple polyatomic gases, such as CO2, SO2, NH3, and CH4, 
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Thermodynamics (2) 

• For ideal gas with constant heat capacities undergoing 

a mechanically reversible adiabatic process: 

 

 

 

 

 PdVW .constPV 
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Thermodynamics (2) 

• For ideal gas undergoing  polytropic reversible process:  
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Thermodynamics (2) 

Example 3.2 Air is compressed from an initial condition of 1 bar and 25°C to a 

final state of 5 bar and 25 °C by three different mechanically reversible processes in 

a closed system. (a) heating at constant volume followed by cooling at constant 

pressure; (b) isothermal compression; (c) adiabatic compression followed by 

cooling at constant volume. Assume air to be an ideal gas with the constant heat 

capacities, CV = (5/2)R and CP = (7/2)R. Calculate the work required, heat 

transferred, and the changes in internal energy and enthalpy of the air in each 

process. 
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Thermodynamics (2) 

Choose the system as 1 mol of air, contained in an imaginary frictionless piston 

/cylinder arrangement. 

 

For R = 8.314 J/mol.K, CV = 20.785, CP = 29.099 J/mol.K 

The initial and final molar volumes are: V1 = 0.02479 m3 and V2 = 0.004958 m3 

The initial and final temperatures are identical: ΔU = ΔH = 0 

(a) Q = CVΔT + CPΔT = -9915 J; W = ΔU - Q = 9915 J 

(b)                                                   J 3990ln
2

1 









P

P
RTWQ

(c) adiabatic compression:  K
V

V
TT 57.567

1

2

1
12 












bar
V

V
PP 52.9

2

1
12 












JTCW V 5600

cooling at constant V, W = 0. 

overall, W = 5600 J, Q = ΔU - W = -5600 J. 
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Thermodynamics (2) 

• The work of an irreversible process is calculated: 

– First, the work is determined for a mechanically reversible 

process. 

– Second, if the process produces work (negative value), the 

value for the reversible process is too large and must be 

multiplied by an efficiency. If the process requires work 

(positive value), the value for the reversible process is too 

small and must be divided by an efficiency. 

 

• Remember that changes in state functions as enthalpy and 

internal energy depend only on the initial and final states of the 

system.  

• Thus, previous equations that relate changes in state functions 

only are valid for ideal gases regardless of the process 

reversible/irreversible in both closed and open systems 

•  This is NOT true for Q or W since they are path function. 

Irreversible process  
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Thermodynamics (2) 

Example 3.3 An ideal gas undergoes the following sequence of mechanically 

reversible processes in a closed system: 

(a) From an initial state of 70°C and 1 bar, it is compressed adiabatically to 150 °C. 

(b) It is then cooled from 150 to 70 °C at constant pressure. 

(c) Finally, it is expanded isothermally to its original state. 

Calculate W, Q, ΔU, and ΔH for each of the three processes and for the entire cycle. 

Take CV = (3/2)R and CP = (5/2)R. If these processes are carried out irreversibly but 

so as to accomplish exactly the same changes of state (i.e. the same changes in P, T, 

U, and H), then different values of Q and W result. Calculate Q and W if each step 

is carried out with an efficiency of 80%. 
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Thermodynamics (2) 

Choose the system as 1 mol of air, contained in an imaginary frictionless piston 

/cylinder arrangement. For R = 8.314 J/mol.K, CV = 12.471, CP = 20.785 J/mol.K 

(a) For an ideal gas undergoing adiabatic compression, Q = 0 

ΔU = W =  CVΔT = 12.471(150 – 70) = 998 J 

ΔH = CPΔT = 20.785(150 – 70) = 1663 J 

(b) For the constant-pressure process: 

(c) Isotherm process, ΔU and ΔH are zero:  

J
P

P
RTWQ 1495ln

1

3 
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





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)1(

1

2
12 













Q = ΔH = CPΔT = 20.785(70 – 150) = -1663 J 

ΔU = CVΔT = 12.471(70 – 150) = -998 J 

W = ΔU – Q = 665 J 

Q = 0 – 1663 + 1495 = -168 J 

W = 998 + 665 – 1495 = 168 J 

ΔU = 0 

ΔH = 0 

Overall:  
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Thermodynamics (2) 

Irreversible processes: 

(1) For 80% efficiency: 

W(irreversible) = W(reversible) / 0.8 = 1248 J 

ΔU(irreversible) = ΔU(reversible) = 998 J 

Q(irreversible) = ΔU – W = -250 J 

(2) For 80% efficiency: 

(3) Isotherm process, ΔU and ΔH are zero:  

W(irreversible) = W(reversible) / 0.8 = 831 J 

ΔU = CVΔT = 12.471(70 – 150) = -998 J 

Q = ΔU – W = -998 – 831 = -1829 J 

Q = -250 – 1829 + 1196 = -883 J 

W = 1248 + 831 – 1196 = 883 J 

ΔU = 0 

ΔH = 0 

(4) Overall:  

W(irreversible) = W(reversible) x 0.8 = -1196 J 

Q = ΔU – W = 1196 J 

The total work required when the cycle consists of three irreversible steps is 

more than 5 times the total work required when the steps are mechanically 

reversible, even though each irreversible step is assumed 80% efficient. 
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Thermodynamics (2) 

Example. A 400g mass of nitrogen at 27 °C is held in a vertical cylinder by a 

frictionless piston. The weight of the piston makes the pressure of the nitrogen 0.35 

bar higher than that of the surrounding atmosphere, which is at 1 bar and 27°C. 

Take CV = (5/2)R and CP = (7/2)R. Consider the following sequence of processes: 

(a) Immersed in an ice/water bath and comes to equilibrium 

(b) Compressed reversibly at the constant temperature of 0°C until the gas volume 

reaches one-half the value at the end of step (1) and fixed the piston by latches 

(c) Removed from the ice/water bath and comes to equilibrium to thermal 

equilibrium with the surrounding atmosphere 

(d) Remove the latches and the apparatus return to complete equilibrium with its 

surroundings. 

Nitrogen may be considered an ideal gas. Calculate W, Q, ΔU, and ΔH for each step 

of the cycle.  
 

The steps: 

(a) 

 

(b) 

 

(c) 

 

(d) 

barCbarC Pconst
35.1,035.1,27   

232
2

1
,0,0 VVCVC Tconst

  

343 ,27,0 VVCVC Vconst   

barCPC
TT

35.1,27,27 14

4

  


mol
M

m
n 286.14
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Thermodynamics (2) 

Fig 3.9 

Example 3.4 in Smith Textbook, 6th Edition. 
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Thermodynamics (2) 

(a) JTnRVnPPdVnW 32071   JTnCHnQ P 1122411 

JWQUn 8017320711224111 

(b) 022  HU
J

V

V
nRTWQ 22487ln

2

3
22 

(c) 03 W JTnCUnQ V 801733  JTnCHn P 112243 

(d) the oscillation of the piston  

44 WQ 044  HU
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Thermodynamics (2) 

Example 3.6.Air flows at a steady rate through a horizontal insulated 

pipe which contains a partly closed valve. The conditions of the air 

upstream from the valve are 20°C and 6 bar, and the downstream 

pressure is 3 bar. The line leaving the valve is enough larger than the 

entrance line so that the kinetic-energy change as it flows through the 

valve is negligible. If air is regarded as an ideal gas, what is the 

temperature of the air some distance downstream from the valve? 

Flow through a partly closed valve is known as a throttling process. 

For steady flow system, the first law of thermodynamics is: 

WQmzguH
dt

mUd

fs

cv  















 2

2

1)(
0H

Ideal gas:  dTCH P 12 TT 

The result that ΔH = 0 is general for a throttling process. 
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Thermodynamics (2) 

Example 3.7 If the flow rate of the air is 1 mol/s and if the pipe has an inner 

diameter of 5 cm, both upstream and downstream from the valve, what is the 

kinetic-energy change of the air and what is its temperature change? For air, CP = 

(7/2)R and the molar mass is M = 29 g/mol. 

WQmzguH
dt

mUd

fs

cv  















 2

2

1)(

Upstream molar volume: 

mol
m

P

RT
V

236

1

1
1 10062.410

6

15.29314.83  



s

m
A

V
n

A
nu 069.2

1
1  



Downstream molar volume: 

12 2VV 
s

muu 138.42 12 

The rate of the change in kinetic energy: 

s
Juu

Mnum 186.0
2

)069.2138.4(
)10291(

22

1 22
3

2

1

2

22 









 









 

0
2

1 2 















 uT

M

C
m P

KT 0064.0
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Thermodynamics (2) 

Equations of State 

EOS 
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Thermodynamics (2) 

• An equation of state exists relating pressure, molar or 

specific volume, and temperature for any pure homogeneous 

fluid in equilibrium states. 

• An equation of state may be solved for any one of the three 

quantities: P, V, or T as a function of the other two. 

• Example:   

 

 

 

 

 

– For incompressible fluid (ideal situation), both β and κ are zero. 

– For liquids β is almost positive (liquid water between 0°C and 4°C is 

an exception), and κ is necessarily positive. 

– At conditions not close to the critical point, β and κ can be assumed 

constant:  

dP
P

V
dT

T

V
dV
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
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
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








Isothermal compressibility: 

TP

V

V














1
Volume expansivity: 

PT

V

V














1


dPdT
V
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 

)()(ln 1212

1

2 PPTT
V

V
 
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Thermodynamics (2) 

Virial equations of state 

• PV along an isotherm: 

•    

– The limiting value of PV as P →0 for all the gases:  

–   

–                               , with R as the proportionally constant. 

– Assign the value of 273.16 K to the temperature of the triple point 

of water: 

• Ideal gas: 

– the pressure ~ 0; the molecules are separated by infinite distance; 

the intermolecular forces approaches zero. 

–    

...)1( 322  PDPCPBacPbPaPV

  )(
*

TfaPV 

  RTaPV 
*

  16.273
*

 RPV t

 
Kmol

barcmPV
R t

3*

1447.83
16.273


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Thermodynamics (2) 

• The compressibility factor: 

 

• the virial expansion: 

 

• Another form:  

 

– the parameters B′, C′, D′, etc. are virial coefficients, 

accounting of interactions between molecules. 

– the only equation of state proposed for gases having a 

firm basis in theory. 

– The methods of statistical mechanics allow derivation 

of the virial equations and provide physical significance 

to the virial coefficients. 

...1 32  PDPCPBZ

RT

PV
Z 

Virial equations of state 

...1
32


V

D

V

C

V

B
Z
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Thermodynamics (2) 

Virial equations of state 









 ...1...1

3232 V

D

V

C

V

B

V

RT
P

V

D

V

C

V

B

RT

PV
Z

• The derivation of above relations: 

   -Get the following expression for P: 

 

 

 

   - Substitute P in:  

   - Compare the corresponding terms to get the relations between        

coefficients. 

...1 32  PDPCPBZ

RT

B
B 

2

2

)(RT

BC
C


 3

3

)(

23

RT

BBCD
D




• Relationship between the two types of virial coefficients 
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Thermodynamics (2) 

Application of the virial equations 
• Differentiation: 

 

 

• The virial equation truncated to two terms satisfactorily 

represent the PVT behavior up to about 5 bar 

 

 

• The virial equation truncated to three terms provides good 

results for pressure range above 5 bar but below the critical 

pressure 

 

• Remember that the virial coefficients are function of 

temperature only. 

...32 2 
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








PDPCB
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
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
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Thermodynamics (2) 

Example 3.8. Reported values for the virial coefficients of isopropanol vapor at 

200°C are: 

B = -388 cm3/mol and C = -26000 cm6/mol2. Calculate V and Z for isopropanol vapor 

at 200 °C and 10 bar by (1) the ideal gas equation; (2) two-term virial equation; (3) 

three-term virial equation. 

(1) For an ideal gas, Z = 1: 

mol
cm

P

RT
V

3

3934
10

15.47314.83





(2) two-term virial equation: 

(3) three-term virial equation: 

mol
cmB

P

RT
V

3

35463883934  9014.0
RT

PV
Z

13108633.9
)15.473)(14.83(

388 


 bar
RT

B
B

 
24

2

2

2

2

1014087.1
)15.473)(14.83(

)388(26000

)(







 bar
RT

BC
C

890.0)10(1014087.1)10(108633.911 2432  PCPBZ

Direct method: 

molcmPZRTV 33501/ 
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Thermodynamics (2) 

(3) three-term virial equation: 

mol
cm

V

C

V

B

P

RT
V

ii

i

3

221 3539
)3934(

26000

3934

388
139341 







 













Ideal gas value 

1st  iteration 

... 

After 5 iterations 
mol

cmVV
3

54 3488~  89.0
RT

PV
Z

Iterative method : 
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Thermodynamics (2) 

Benedict/Webb/Rubin Equation of State 

 where A0, B0, C0, a, b, c, a , and  are all constant for a given 

fluid.  

 It is used in the petroleum and natural-gas industries for light 

hydrocarbons and a few other commonly encountered gases. 
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Thermodynamics (2) 

Cubic equations of state  

• Simple equation capable of representing both 

liquid and vapor behavior. 

• The van der Waals equation of state: 

– a and b are positive constants for a given fluid. 

– unrealistic behavior in the two-phase region. In reality, 

two, within the two-phase region, saturated liquid and 

saturated vapor coexist in varying proportions at the 

saturation or vapor pressure. 

– Three volume roots, of which two may be complex. 

– Physically meaningful values of V are always real, 

positive, and greater than constant b. 

2V

a

bV

RT
P 



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Thermodynamics (2) 

Fig 3.12 
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Thermodynamics (2) 

A generic cubic equation of state 

• General form: 

 

– where b, θ, κ,λ and η are parameters depend on temperature and 

(mixture) composition. 

– Set η= b, θ= a (T), κ= (ε+σ) b, λ = εσb2, we have: 

 

 

– where ε and σ are pure numbers, the same for all substances, 

whereas a(T) and b are substance dependent. 

– Set ε = σ = 0, and a(T) = a is a substance-dependent constant to 

have  van der Waals EOS. 

–  Set ε = 0, σ = 1, to have Redlich/Kwong (RK) EOS: 

 

))((

)(
2 











VVbV

V

bV

RT
P

))((

)(

bVbV

Ta

bV

RT
P

 





)(

)(

bVV

Ta

bV

RT
P






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Thermodynamics (2) 

• Determination of van der Waals parameters : 

– The isotherm has inflection at the critical point: 

 

 

 

 

– Apply van der Waals at critical point:  

 

• 5 parameters (Pc, Vc, Tc, a(Tc), b) with 3 equations, solve to 

have:  

 

    

•   

 

• Unfortunately, it does not agree with the experiment. Each 

chemical species has its own value of Zc. 

2

cc

c
c

V

a

bV

RT
P 




0
;














crTV

P

c

c
c

P

RT
V

8

3


c

c

P

TR
a

22

64

27


c

c

P

RT
b

8

1


0

;

2

2














crT
V

P

8

3


c

cc
c

RT

VP
Z
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Thermodynamics (2) 

An equivalent, but more straightforward procedure:   

• Three repeated roots, V = Vc , at the critical point:  

• Rewriting van der Waals in polynomial: 

• Term-by-term comparison of Eqs. (A) and (B) provides three 

equations: 

• Perform elimination and substitution of Eqs. (C)-(E) to get: 
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See the Appendix B for more species….. 
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c

cr

P

TRT
Ta

22)(
)(




c

c

P

RT
b 

Parameters of  generic cubic EOS 

))((

)(

bVbV

Ta

bV

RT
P

 





Where  
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Thermodynamics (2) 

Parameters of  generic cubic EOS 

In Table 3.1 

– vwd: van der Waals equation 

– RK: Redlich/Kwong equation 

– SRK:Soave/Redlich/Kwong (SRK) equation 

– PR: Peng/Robinson (PR) equation 
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Thermodynamics (2) 

Two-parameter and three-parameter 

theorems of corresponding states 
• Two-parameter theorem: all fluids, when compared at the same 

reduced temperature and reduced pressure, have approximately the 

same compressibility factor, and all deviate from ideal-gas behavior to 

about the same degree. 

• Define reduced temperature and reduced pressure: 

 

• Not really enough to describe the state, a third corresponding-states 

parameter is required. 

– The most popular such parameter is the acentric factor (K.S. Pitzer, 1995): 

 

 

• Three-parameter theorem: all fluids having the same value of ω, when 

compared at the same reduced temperature and reduced pressure, and 

all deviate from ideal-gas behavior to about the same degree. 

c

r
T

T
T 

 
7.0

log0.1



rT

sat

rP

c

r
P

P
P 
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Thermodynamics (2) 

2-parameter/3-parameter EOS 

• Express Z as functions of Tr and Pr only, yield 2-

parameter corresponding states correlations: 

– The van der Waals equation 

– The Redlich/Kwong equation 

• The acentric factor enters through function 

α(Tr;ω) as an additional paramter, yield 3-

parameter corresponding state correlations: 

– The Soave/Redlich/Kwong (SRK) equation 

– The Peng/Robinson (PR) equation 
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Thermodynamics (2) 

• Vapor & Vapor-Like Roots of the Generic Cubic EOS 

 

 

• Multiply the Eq. by (V-b) and divide it by P: 

 

 

• Rearrange the Eq. as: 

 

 

• The Z equation multiply by P and divide by RT is: 

))((
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bVbV

bV

P

Ta
b

P

RT
V

 




))((
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





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

ZZ

Z
qZ

r

r

T

P

RT

bP


r

r

T

T

bRT

Ta
q






)()( 

start with V(ideal-

gas) and then 

iterate 

Remark. Equations of state which express Z as a function of Tr and Pr are said 

to be generalized, because of their general applicability of all gases and liquids. 
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bVbV
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P
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




))((
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P
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bV

 


start with Z=1 and then 

iterate 

40/54 Dr. Mohammad Al-Shannag 



Thermodynamics (2) 

• Liquid & Liquid-Like Roots of the Generic Cubic EOS 

 

 

• Rearrage the Eq. as: 

 

 

• Rearrange the Eq. as: 

 

 

 

 

• The Z equation (multiply by P and divide by RT) is: 

start with V=b and then 

iterate 

))((

)(

bVbV

bV

P

Ta
b

P

RT
V

 

















Vb

P

RT

Ta

P

bVbV

bV

)())(( 









 Vb

P

RT

Ta

P
bVbVbV

)(
))(( 








 







q

Z
ZZZ

1
))((

r

r

T

P

RT

bP


r

r

T

T

bRT

Ta
q






)()( 

start with Z= and then 

iterate 
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Thermodynamics (2) 

Example 3.9. Given that the vapor pressure of n-butane at 350K is 9.4573 bar, find 

the molar volumes of (1) saturated-vapor and (2) saturated-liquid n-butane at these 

conditions as given by the Redlich/Kwong equation. 

823.0
1.425

350
rT 2491.0

96.37

4573.9
rP

6048.6
)(







r

r

T

T
q


026214.0

r

r

T

P


(1) The saturated vapor 

))((
1











ZZ

Z
qZ Z starts at Z = 1 and converges on Z = 0.8305 

mol

cm

P

ZRT
V

3

2555

(2) The saturated liquid 








 







q

Z
ZZZ

1
))(( Z starts at Z = β and converges on Z = 0.04331 

mol

cm

P

ZRT
V

3

3.133
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Thermodynamics (2) 

Generalized correlations for gases 

• Pitzer correlations for the compressibility factor: 

 

– Z0 = F0 (Tr, Pr) 

– Simple linear relation between Z and ω for given values 

of Tr and Pr. 

– Of the Pitzer-type correlations available, the Lee/Kesler 

correlation provides reliable results for gases which are 

nonpolar or only slightly polar (App. E). 

– Only tabular nature (disadvantage) 

10 ZZZ 
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Thermodynamics (2) 

See the Appendix E for higher Tr 
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See the Appendix E for higher Tr 
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See the Appendix E for higher Tr 
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Thermodynamics (2) 

See the Appendix E for higher Tr 
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Thermodynamics (2) 

Pitzer correlations for the 2nd virial 

coefficient 

• Correlation: 

 

 

– Validity at low to moderate pressures 

– For reduced temperatures greater than Tr ~ 3, there 

appears to be no limitation on the pressure. 

– Simple and recommended. 

– Most accurate for nonpolar species. 

r

r

r

r
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P
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P
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Z 1011  10 ZZZ 
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Thermodynamics (2) 

Example 3.10. Determine the molar volume of n-butane at 510K and 25 bar by, (1) 

the ideal-gas equation; (2) the generalized compressibility-factor correlation; (3) the 

generalized virial-coefficient correlation. 

(1) The ideal-gas equation 

mol

cm

P

RT
V

3

1.1696

(2) The generalized compressibility-factor correlation 

200.1
1.425

510
rT 659.0

96.37

25
rP

the Lee/Kesler correlation 

865.00 Z 038.01 Z

the acentric factor 
200.0

873.010  ZZZ 
mol

cm

P

ZRT
V

3

7.1480

(3) The generalized virial-coefficient correlation 

200.1
1.425

510
rT 6.1

0 422.0
083.0

rT
B 

2.4

1 172.0
139.0

rT
B 

879.01 10 
r

r

r

r

T

P
B

T

P
BZ 

mol

cm

P

ZRT
V

3

1.1489

Table B1 

Tables E1 and E2:  
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Thermodynamics (2) 

Example 3.11. What pressure is generated when 1 (lb mol) of methane is stored in 

a volume of 2 (ft)3 at 122°F using (1) the ideal-gas equation; (2) the Redlish/Kwong 

equation; (3) a generalized correlation . 

(1) The ideal-gas equation 

atm
V

RT
P 4.212

2

)67.459122(7302.0





(2) The RK equation 

695.1
1.343

67.581
rT

2138.04.45

ZP
Pr 

atm
bVV

Ta

bV

RT
P 49.187

)(

)(








6

22

94.453
)(

)(
ft

atm

P

TRT
Ta

c

cr 
 34781.0 ft

P

RT
b

c

c 

(3) The generalized compressibility-factor correlation is chosen (high pressure) 

atmZ
Z

V

ZRT
P 4.212

2

)67.459122)(7302.0(





695.1
1.343

67.581
rT

Initial guess: Z = 1 and 

iterate to converge to Z = 

0.890 
atmP 0.189 the Lee/Kesler correlation 

Tables E1 and E2:  
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Thermodynamics (2) 

Example 3.12. A mass of 500 g of gases ammonia is contained in a 30000 cm3 

vessel immersed in a constant-temperature bath at 65°C. Calculate the pressure of 

the gas by (1) the ideal-gas equation; (2) a generalized correlation . 

(1) The ideal-gas equation 

bar
V

RT
P 53.27

834.0
7.405

15.338
rT

244.0
8.112

53.27
~ rP

(2) The generalized virial-coefficient correlation is chosen (low pressure, Pr ~ 3 ) 

mol

cm

n

V
V

t 3

2.1021

6.1

0 422.0
083.0

rT
B 

2.4

1 172.0
139.0

rT
B 

the acentric factor 
253.0

 
r

r

r

r

T

P

T

P
BBZ 541.011 10  

bar
V

ZRT
P 76.23
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Thermodynamics (2) 

Generalized correlations for liquids 

• The generalized cubic equation of state (low accuracy) 

• The Lee/Kesler correlation includes data for subcooled 

liquids 

– Suitable for nonpolar and slightly polar fluids 

• Estimation of molar volumes of saturated liquids 

– Rackett, 1970: 

 

• Generalized density correlation for liquid (Lydersen, 

Greenkorn, and Hougen, 1955):  

 

2857.0)1( rT
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Fig 3.17 
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1
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
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Thermodynamics (2) 

Example 3.13. For ammonia at 310 K, estimate the density of (1) the saturated 

liquid; (2) the liquid at 100 bar 

(1) Apply the Rackett equation at the reduced temperature 

7641.0
7.405

310
rT

887.0
8.112

100
rP

47.72cV

(2) At 100 bar 

242.0cZ

mol

cm
ZVV rT

cc

sat
3

)1(
33.28

2857.0




7641.0
7.405

310
rT

38.2r
Fig 3.17 

mol

cmV
V

r

c

3

45.30

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