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Chapter 4

Interpolation and Curve Fitting

There are two general approaches for curve fitting that are distinguished from each other on
the basis of the amount of error associated with the data:

First, where the data exhibits a significant degree of error or noise:
The strategy is to derive a single curve that represents the general trend of the data. This
method is called curve fitting.

Second, where the data is known to be very precise:
The basic approach is to fit a curve or a series of curves that pass directly through each of the
points. Such data usually originated from tables; density of water and heat capacity of gasses

as a function of T. This method is called interpolation.
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CURVE FITTING

& Least Squares

1. Linear Regression.
2. Polynomial Regression.
3. Multiple Linear Regression.

1. Linear Reqgression

Obijective is to find a functional relation y = f(x), which best approximate a set of n data
points (X, Yi).

A) Straight Liney = a + bx
The difference between the data value, y;, and the represented by the equation is:

o, =Y, _(a+bxi)

By the principle of least squares, the equation will best fit the data when the sum of the
squares of the errors is a minimum.

:Zn:( Z[yI (a+bx,)|

i=1

One condition for S to be minimum is that the partial derivatives of S with respect to a and b
must be zero.
oS

=Yy ~(arbo)l-1)=0
0S
%=22[y —(a+bx))-%)=0
i=1
Simplifying:
Zn:y, —Zn:a—zn:bxi =0= Zn:y, = najtbzn:xI =
i=1 i=1 i=1 i=1 i=1
Zn:y,x, —aznzxI —bzn:xf _0=Y YiX; =aZn:xI +bzn:x,2 =0
i=1 i=1 i=1 i=1 i=1 i=1
Solving for a and b:
” y,—b ” X
a= i=1 i=1
n
nz ini Z yl XI
b — i<l i=1 i=1



B) Nonlinear equation.

Sometimes it is possible to transform a nonlinear equation to the linear form by proper

substitutions:
1)y = ab” 2) y=ax"
3) y = e(ax+b) 4) y = ae™
1
5)y =
)Y a+ bx

2. Polynomial Reqgression

We wish to approximate n data points (x;, yi) by a polynomial of degree m (m<n)

Y(X)=C, +C,% +CoX? +C, X2 + v, +C X"+ C X
Applying the principle of least squares:
5, =Y; —C, —C,%X, —C,X? —C, X + .o -C X" =C, X"
S = zn:((s ) =Zn“[yi —C, —C,% —CyX? =C, X + v, —c,x"-C . x"f
i=1 i=1
88 . 3 m-1 m
EZZZ[Y' C, —CoX —CyXZ = CyXE + oo —C x"-C,x"[-1)=0
1 i=1
aas =32y, =€, ~CpXy —~Cox? ~ X o —C X" = CpX™ =) =0
2 i=1
U
B 3oy, € - Cpx, ~Cox? ~Cx + —Cox™ =Cpx™ - x™) =0
oc. & Yi =L =X =LK A K F e mXi m+1%i i )=
aS s 2 3 m-1 m m
= =3 2]y, =€, —C,% = CyX —Cy X + o —Co X" =CoxX" - x")=0
m+1 i=1
Simplifying
r]y=nC +C nx+C nx.2+C nx3'+ ................ +C nx”"1+C nxm
i 1 2 i 3 i 4 i m i m+1 i
i=1 i=1 i=1 i=1 i=1 i=1
Zn:yix, =Clzn:x, +szn:xf +Cszn:xf +C4Zn:xl4 F e, +szn:xlm +Cm+1zn:x,"‘+l
i=1 i=1 i=1 i=1 i=1 i=1 i=1
U
Zn: Y= Clzn: X" +C22n:x,’” +Cy Y XM H+C, D XM + szn:xfm‘z +Cpy > X"
i=1 i=1 i=1 i=1 i=1 i=1 i=1
Zn:y,xim =C, n x" +C, n X" +Cszn:xim*2 +C, XM s +Cp > xIm +Cm+lzn: X2
i=1 i=1 i=1 i=1 i=1 i=1 i=1

These equations represent a system of linear equation which can be written as:



(D S A 35 R 35 O Yt YK
DRI N D X > X" > xmt
DI SR 3 AR P e xSy
U

Zyi
Zyixi
2YiX
U

DR AR P LD U ) P CL doximz x| Gy Doyt
_Z XTox™ Y™ Y XM DoxImE JTme Dy

The above system can be reduced to any degree. For example a 2™ the constants of a second
order polynomial can be obtained by solving the following system of linear equations:

n in zxiz C, Z Yi
zxi zxiz ZX? C,= Zyixi
inz qug ZXiA C3 Z ini2

N =

w

O0O0O<=00.0

3. Multiple Linear Regression

Frequently experimental data involve more than two variables.
The function can assume various forms: linear, polynomial, logarithmic, exponential, and
trigonometric.

A) Multivariable linear regression

F=C,+C,x+C,y+C,z
The least squares fit gives
n 2x Xy 27 e [XF
dxo XX D xy Y xz||c, > Fx
Xy o2 2y 2yr||G) LRy
Yz Y xx Yyz > 7? C, > Fz

B) Multivariable polynomial approximation
Consider the quadratic multivariable polynomial:
2=C, +C,x+Cy+C,x* +C,y* +Cyxy

Using the least squares technique, the following system of linear equations will be obtained:



n in Zyi inz Zyuz inyi C,
in zxiz ZXiYi ZX? zxiyiz zxizyi C,
DR TEEED I 7D 3 T 36 55 7R S5 AN 36 0 S | [oN
DX XXy 2 YxyE Xy (|G
SyvioYxy: YyE o Yy Yy Yy ||Ss
Sy Ty, Tayi Xy Txyi Sy

Coefficient of Determination (r?)

To find the coefficient of determination follow the following procedure:

1) Sr = Z(yl ~ Yealculated )2

Sl’
KA Py
4) St :Z(yi - 7)2
5) r.2 _ St - Sr _ Z(yl - 7)2 _Z(yi ~ Ycatculated )2

St - Z(yi - 7)2

& Nonlinear Reqgression

e There are many cases in engineering where nonlinear models must be fit the data.
e These models are defined as those which have a nonlinear dependence on their

parameters.

e There is no way that these equations can be manipulated so that it conforms to the

general form of the linear equations.

e As with linear least squares, nonlinear regression is based on determining the values

> ozx
zziyi
RS
PRA5
D> 7%y,

of the parameters that minimize the sum of the squares of the residuals.

e For nonlinear case, the solution must proceed in an iterative fashion.
e Successful solutions are often highly dependent on good initial guesses for the

parameters.

Algorithm:

1) Find [Z;] the matrix of partial derivatives of the function evaluated at the initial

guess, j.




Cof,  of,  of
6C, oC, oC,
of, of,  &f,
oC, oC, ocC,
of, of,  of,

Z_:

i7lec, oc, oc,
U
of,  of of

n n n

oC, oC, ocC,

Where n is the number of d:ata points

of, . . . . .
" js the partial derivatives of the function with respect to the C" parameter

evaluated at the n™ data point.

2) Find vector {D} contains the difference between the measurements and the
function values.
Y1~ f(Xl)
Yo — f(xz)
{D}: ys — f(x;)
U
Yo = fx,)
3)  Find[z,T[z,]and [z,] {D}
AC,
AC,
4) Find {AC}=1<AC, ; using the following equation:
U
AC,
I.[Zj]T[Zj]J{AC}: [ZJ}T{D}
5) Find the new values for the parameters using:
C.ju=C,; +AC,
C,;1=C,; +AC,
C3,j+1 = Cs,,— +AC,
U
C,j1=C,; +AC,

This procedure is repeated until the solution converges and falls below an acceptable
stopping criterion.
Ci,j+1_Ci,j

*100%

a

E. =
i,j+1



INTERPOLATION

A) Interpolation in one dimension.
B) Interpolation in two dimensions.

A) Interpolation in One Dimension

Polynomial interpolation:
e Lagrange interpolation
e Newton interpolation
e Spline interpolation

1) Lagrange Interpolation

/

First order

fix}

fix)

Third order

Lagrange interpolating polynomial can be represented by:
fn (X) = Z Li (X)f (Xi )
i=0

nis the order of polynomial

Li(x)

fix)

Second order

fix)

Fourth order

X=X,

j=0 Xi _Xj

[T product of




1) Linear interpolation (n=1)

I1)  Quadratic interpolation (n=2)

2 X—X; - -
LO-TT | X=X X=X
= Xo =X Xo =X X5 =X,
2 X—X _ -
LO)=T1 | X=X X=X,
0 X =X, X —Xg X, — X,

X=X X—X, X=X, X—X,
= —=f
Xy — X, Xo — X, (X°)+x1—xo X, — X, ()+

2) Newton Interpolation Polynomials

)] Linear interpolation (n=1)

fl(x) =85+ al(x - Xo)

atx, - f(x)= f(x,)

atx, > f(x)=f(x)

substitute and solve for the two constants a, and a,

ay = f(Xo)
o 1) ()

X=X, X=X,

X, = Xo X, — X,



I1)  Quadratic interpolation (n=2)

f,(X)=by +b,(x —xg)+b, (X — X, \x—%,)
atx, — f f(x,)

+b
(x)=
at x, > £(x)=f(x)
(x)=
d

atx, > f(x)=f(x,)
substitute and solve for the three constantsb,, b, and b,
by = f(Xo)
b = f(xl)_ f(xo)
1
X, — X,
f(xz)_ f(xl)_ f(Xl)_ f(xo)
b, = X; =X X —Xo
’ X3 = %o
f(Xz)_ f(Xl)_ f(Xl) f(Xo)
0= T IO) (L y XX XX )
X =X Xy = Xo

I11)  Higher order interpolation polynomials

There are two disadvantages for the Lagrange polynomial method for interpolation compared
to the divided-difference method:

More arithmetic operations are required

If we desire to add or subtract a point from the set used to construct the polynomial, we
essentially have to start over in the computations.

The divided-difference method avoids all of these computations.

Assume that the x's are not evenly spaced or even the values are arranged in any particular
order.

f,—f
flx,,x |]=—2+—2= fo[l] first divided — difference between X, and X;
X; = Xo
fIx, X, [— f|X,, X
f [XO,Xl, Xz]: [ L 2] [ 0 1] = fo[z] second divided — difference between X,, X, and X,
Xy =X
FIX) X e o X = T [Xg, Xy e o X
f[Xoyxll ............ Xn]: [1 2 n] [o 1 n—l]:fo[n]
Xy = Xp
n™ divided — difference between Xo s Xp s eereemnnnnnnnns , and X,
Xi fi f[Xi,Xi+1] f[Xi,Xi+1, Xi+2] X, Xi+1, Xi+2, Xi+3] | F[Xi,Xix1, Xiv2, Xie3, Xi+a]
Xo [fo=ao |f[xoxa]=as | f[XoXs, Xo] =@z | f[Xo,X1, X2, Xa] = @3 | f[Xo,X1, X2, X3, Xa] = @4
X1 |[fi fxw.xo] X1, X2, X3] f[X1.X2, X3, Xa]
X2 | fa fx2.X3] f[X2,X3, Xa]
X3 |fs f[x3,X4]
X4 f4




First divided-difference:

fl—fo fo—f

2 1
f[Xn, X ] = f[X,X5]=
0'"1 _ 2 _
17 %0 X0 =%
f,—f f,—f
F[Xy Xg] = 32 fxg, Xyl =43
X3 =%y X4 = %3
Second divided-difference:
f[Xo,Xl,XZ]Z f[Xl’XZ]_ f[XO’Xl]
X; =X
fIx,,x.1- f[x,,x
f[Xl,XZ,X3]: [ 2 3] [ 1 2]
X3 =X
f[XZ,X3,X4]: f[XS’X4]_f[X2’X3]
X, — X,

Third divided-difference:

f[Xl,Xz,XS]— f[Xo’Xlixz]
X3 =X

f[X21X34’X4]_ f[leXZ’Xs]
X, =X

f[X, X)X, X1 =

f[X11X21X31X4]=

Fourth divided difference:

f[Xl’ X21X3’ X4]_ f[xw Xl’ szxs]
X, — X,

Then a fourth order Newton's function can be written as:

f[xo1X11X21X3’X4]:

P4(X): ay +a1(x—x0)+a2(x—xo)(x—x1)+a3(x—xo)(x—x1)(x—x2)
+a4(X_XoXX_X1)(X_X2)(X_X )

3) Spline Interpolation

The disadvantage of using a single polynomial (of high degree) to interpolate a large number
of data points can be avoided using piecewise polynomials.

A) Piecewise Linear Interpolation

Suppose that there are four data points:

(%0, 0 ) 00, T 06 )) (%, (%, ) andl (g, F(x3))

XO<X1<X2<X3
These data points can be split into 3 intervals:
I, = [XO’Xl]’ I, = [lexz]’ and I, = [Xz’xs]

Three linear interpolating functions can be written one for each interval:



f(xo)+W(x—xo) Xo S X< X,
P(x)= f(xl)+%(x—xl) X, <X <X,
f(xz)+%(x—xz) X, X< X,

B) Piecewise Quadratic Interpolation

a; +b e, x

\j _f'(_l} J \

f{.rﬂ )

Quadratic interpolating functions can be written for each interval with different constant for
the second order equation:

C)

f.(x)=a, +b,x+c,x?
e There are 3 constant in this equation.

e For n+1 data points, there are n intervals

e There are 3 constants for each interval

e Then the number of unknowns is 3n

To find the values of these unknowns use the following information:

1)
2)

3)

4)

The function values must be equal at the interior knots, (this gives 2n-2 equation)

The first and last functions must pass through the end points, (this makes the number
of equations 2n)

The first derivatives at the interior knots must be equal, (this makes the number of
equations 3n-1)

Assume that the second derivative is zero at the first point, (this makes the number of
equations 3n)

Cubic Spline
f(x)=a, +bx+c,x* +d,x°
e There are 4 constant in this equation.
e For n+1 data points, there are n intervals
e There are 4 constants for each interval

e Then the number of unknowns is 4n

To find the values of these unknowns use the following information:

1)
2)

3)

The function values must be equal at the interior knots, (this gives 2n-2 equation)

The first and last functions must pass through the end points, (this gives 2 equations,
I.e. makes the total number of equations 2n)

The first derivatives at the interior knots must be equal, (this gives n-1 equation, i.e.
makes the total number of equations 3n-1)



4) The second derivatives at the interior knots must be equal, (this gives n-1 equation,
I.e. makes the total number of equations 4n-2)

5) Assume that the third derivatives are zero at the end knots, (this gives 2 equations, i.e.
makes the total number of equations 4n)

Interpolation in Two Dimensions

e The general interpolation problem for two (or more) independent variable is much
more difficult than for a single variable.

e Unless the function values are known on a rectangular grid of points, it is not easy
either to order the data points or to determine which of them should be used to find
the interpolated value at any particular point in the region.

1. The simplest form of interpolation in two dimensions expands the data matrix Z by
interleaving interpolates between every element.

X = X)) Xp perveeninns X, Jand y =[yy, Y. Yo

Then the interpolated values are found on the grid defined by the vector

xx:{xl,(lerXZ),xz,(Xz+X3), ........... ,M,xn}
2 2 2
[y Gatye) o atye) Yt V)
yy_|:y1! 2 1y21 2 groveenes l 2 !ym
2. Using bilinear interpolation functions

Z =a+hbx+cy+dxy

Using the data values at the four corners of the region.
Thus, the region Rj;, with data values:

(Xi +Yi )v (Xi Yia )v (Xi+1' Yi )v (Xi+l' yi+1)

There are four equations for the four unknownsa;;, b;, ¢;,and d;; .

Z(i, j)=a; +byx +¢;y, +d; XY,

( 0% i
Z(

(i

(i

i, j+1)= a; +byx +cyy i +diX Y.
Z

ij i
+1, j)=a; +b; Xy +C;Y; +d; XY,
Z +1 J+1) a +b XI+1+CIJyJ+1+dIJXI+lyJ+l

ij N+l



