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Ordinary Differential Equations 

 

 
 
Initial Value Problems 
 
1) First Order Ordinary Differential Equation 
 
A- Euler's Method 
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Where: f(xi,yi) is the differential equation evaluated at xi and yi. 

h is the step size. 
 
B- Heun's Method 
 
The slope at the beginning of an interval 
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is used to extrapolate linearly to yi+1  

( )hyxfyy iii
P
i ,1 +=+  

 
In Heun's method the yp

i+1 calculated is not the final answer but an intermediate prediction. 



It provides an estimate of yi+1 that allows the calculation of an estimated slope at the end of 
the interval: 
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Thus, the two slopes can be combined to obtain an average slope: 
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This average slope is then used to extrapolate linearly from yi to yi+1 using Euler's method: 
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This is called a corrector equation. 
 
C- The improved polygon method 
 
This technique uses Euler's method to predict a value of y at the midpoint of the interval: 
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Then this predicted value is used to estimate a slope at the midpoint: 
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D- Runge-Kutta Methods 
 
Many variations exist but all can be cast in the form: 
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where ( )hyx ii ,,φ is called an increment function. 
The increment can be written in general form: 
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where the a's are constants and the k's are: 
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• First Order Runge-Kutta Method 
 
If n = 1  
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This is Euler's method. 
 
• Second Order Runge-Kutta Method 
 
If n = 2  
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a1, a2, p1, q11 are evaluated by setting ( )hkakayy ii 22111 +=+ equal to a Taylor series 
expansion to the second-order term. 
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There are 3 equations with 4 unknowns. 
We must assume a value of one of the unknowns in order to determine the other three. 
 
If a2 = 1/2 
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This is similar to Heun's method. 



If a2 = 1 
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This is the improved polygon method. 
 
If a2 = 2/3 (Raltson's Method) 
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• Third Order Runge-Kutta Method 
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• Fourth Order Runge-Kutta Method 
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• Higher Order Runge-Kutta Methods 
 

Butcher's fifth order RK method 
 

( )

( ) hkkkkkyy

hkhkhkhkhkyhxfk

hkhkyhxfk

hkhkyhxfk

hkhkyhxfk

hkyhxfk

yxfk

ii

ii

ii

ii

ii

ii

ii

⎥⎦
⎤

⎢⎣
⎡ +++++=

⎟
⎠
⎞

⎜
⎝
⎛ +−++−+=

⎟
⎠
⎞

⎜
⎝
⎛ +++=

⎟
⎠
⎞

⎜
⎝
⎛ +−+=

⎟
⎠
⎞

⎜
⎝
⎛ +++=

⎟
⎠
⎞

⎜
⎝
⎛ ++=

=

+ 654311

543216

415

324

213

12

1

73212327
90
1

7
8

7
12

7
12

7
2

7
3,

16
9

16
3,

4
3

2
1,

2
1

8
1

8
1,

4
1

4
1,

4
1

,

 

 
Fehlberg Runge-Kutta 
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2) Systems of First Ordinary Differential Equations 
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o The system requires that n initial conditions be known at the starting value of x. 
o All previous methods can be extended to the system of equations. 
o The procedure for solving a system of equations simply involves applying the one-

step techniques for every equation at each step before proceeding to the next step. 
 
3) Higher Order Ordinary Differential Equations 
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Can be converted to a system of two first-order ODE by a simple change of variables: 
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The initial conditions: 
( ) ( ) 10 0  and  0 αα =′= yy  

These initial conditions become: 
( ) ( ) 10 0  and  0 αα == vu  

 
For higher order ODE 
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Boundary Value Problems 
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1) The Shooting Method 
 
It is based on converting the boundary value problem to an equivalent initial value problem. 
A trial and error approach is then implemented to solve the initial value version. 
For nonlinear boundary value problems, perform three applications of the shooting method 
and use a quadratic interpolating polynomial to estimate the proper boundary condition. 
 
2) Finite-Difference method 
 
Finite divided differences are substituted for the derivatives in the original equation. 
The differential equation is transformed to a set of simultaneous algebraic equations that can 
be solved as before. 
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This equation is applies to each of the interior nodes of the rod as an example. 
The first and the last interior nodes, Ti-1 and Ti+1 are specified by the boundary conditions. 
The resulting set of linear equations will be tridiagonal.  


