

UNIVERSITY OF JORDAN CHEMICAL ENGINEERING DEPARTMENT

0905323 - CHEMICAL ENGINEERING THERMODYNAMICS 2

Name	
University ID	

Course		
ChE Thermodynamics II (905323)		
Exam	Midterm II	
Date	Thursday, 10/5/2007	
Time	50 minutes open book part	
Instructor	Dr. Ali Al-matar	

Problem	Full Mark	Mark
1	10	
2	10	
3	20	
4	60	
Total	100	

وقّع على القسّم التالي المتعلق بالغش الأكاديمي: اقسم بالله أنني لم اغش في هذا الامتحان ولم أساعد أي شخص على الغش سواءً لمنفعتي الشخصية أو لمنفعة الآخرين، وعلى هذا أوقّع. التوقيع:

UNIVERSITY OF JORDAN CHEMICAL ENGINEERING DEPARTMENT

0905323 - CHEMICAL ENGINEERING THERMODYNAMICS 2

- **1.** (10 marks) which of the following solutions should have the lowest boiling point? Justify your answer.
 - a. 0.01 m NaCl
 - b. 0.008 m CaCl₂
 - c. 0.006 m Mg(OH)₂
 - d. 0.005 m Na₂SO₄
 - e. 0.01 m sucrose
- **2.** (10 marks) which of the following solutions should have the lowest freezing point? Justify your answer.
 - a. 0.02 m NaCl
 - b. 0.012 m (NH4)₂SO₄
 - c. 0.012 m ScCl₃
 - d. 0.02 m KNO₃
 - e. $0.012 \text{ m Ce}(NO_3)_4$
- **3.** (20 marks) what is the osmotic pressure developed if one gram of a protein or polymer of molecular weight 60,000 is dissolved in 100 mL of water and placed in an osmometer at 25°C.
- **4.** (60 marks) Consider the benzene (1) and ethanol (2) system which exhibits an azeotrope at 760 mm Hg and 68.24°C containing 44.8 mole% ethanol. Calculate the composition of the vapor in equilibrium with an equimolar liquid solution at 760 mm Hg given the Antoine constants:

$$\log P_1^{\text{sat}} = 6.87987 - \frac{1196.76}{T + 219.61}$$
$$\log P_2^{\text{sat}} = 8.1122 - \frac{1592.86}{T + 226.18}$$

Use the van Laar equation to describe the activity coefficients in the liquid phase. Trial and errors solution is required; carry out two iterations basing your initial guess on an educated heuristic.