A gas mixture exiting from sour-gas treatment process contains 35 mol% CO_2 and 65 mol% H_2S . For design of a separation process to separate these components, it is necessary to determine their fugacity in the mixture. The following data is available

	CO ₂ (1)	$H_2S(2)$	(1-2)
$T_{\rm c}\left({\rm K}\right)$	304.2	373.2	
P _c (bar)	73.8	89.4	
$v_{\rm c}$ (m ³ /molx10 ⁶)	94.0	98.5	
$z_{\rm c}$	0.274	0.284	
ω	0.225	0.100	
$B_{\rm i}({\rm m}^3/{\rm molx}10^6)$	-7.34	-31.6	

- a) Calculate the fugacity of the H_2S if the mixture is at $350^{\circ}C$ and 101.3 bars. Assume that $k_{12} = 0.08$ and use the virial EOS.
- b) Estimate as in part (a) but using the Lewis-Randall rule.

c) Estimate as in part (a) but assuming ideal gas mixture model.

d) Comment on your results..

The following experimental tie-lines of the system $\lim (1) + \lim (2) + PDO(3)$

PDO-rich phase		Lim-rich phase			
x_1	x_2	x_3	x_1	x_2	x_3
0.01	0.000	0.99	0.99	0.000	0.01
0.02	0.08	0.90	0.70	0.25	0.05
0.06	0.16	0.78	0.65	0.28	0.07
0.10	0.24	0.66	0.55	0.32	0.13
0.13	0.27	0.60	0.42	0.35	0.23
0.14	0.28	0.58	0.31	0.39	0.30

- a. Use the provided ternary diagram to plot the given tie line data. Clearly show the components on the vertices of the triangle.
- b. Which solvent is more selective towards linalool: limonene or 13PDO?
- c. Locate on the diagram a mixture of the composition (0.45, 0.10, 0.45) and clearly label it as point **M**. Calculate the fraction of the Limonene-rich phase and 13PDO-rich phase assuming the mass of the mixture is 1 kg.

d. Provide an estimate to the plait point (don't plot just judge from tie line data)

At 20° C, the density of a 20% by mass ethanol-water solution is 968.7 kg.m⁻³. Given that the partial molar volume of ethanol in the solution is 52.2 cm^{-3} .mol⁻¹, calculate the partial molar volume of the water.

Let A denote water and B ethanol. The total volume of the solution is $v = x_i + x_j$. We

know $\frac{\sqrt{8}}{8}$; we need to determine x_A and x_B in order to solve for $\frac{\sqrt{8}}{4}$. Assume we have 100 cm^3 of solution; then the mass is

$$0.9687 \frac{g}{cm^3} \mathbf{\Omega}00 \mathbf{Q}m^3 = 96.87 \text{ g}.$$

of which

$$m_A = 0.8$$
 6.87 **9** 77.496 g water $m_B = 0.2$ **6**.87 **9** 19.374 g ethanol

Convert the masses into their molar equivalents

$$n_A = \frac{77.496}{18.02} = 4.3006 \text{ mol water}$$
 $n_B = \frac{19.374}{46.07} = 0.42053 \text{ mol ethanol}$
 $n = n_A = n_B = 4.3006 = 0.42053 = 4.7211 \text{ mol}$
 $v = \frac{100}{4.7211} = 21.182 \text{ cm}^3/\text{mol}$
 $x_A = \frac{4.3006}{4.7211} = 0.91093$
 $x_B = 1 \le 0.91093 = 0.08907.$

Now, evaluate the partial molar volume of water as

$$v = x_A \frac{\sqrt{2}}{x_A} = \frac{1}{x_B} \frac{\sqrt{2}}{x_B}$$
 $v = \frac{\sqrt{2}}{x_A} = \frac{21.182 \times 0.08907 \text{ G} 2.2 \text{ O}}{0.91093} = 18.149 \text{ cm}^3/\text{mol}.$

This value of partial molar volume of water is essentially the same as that of pure water. This is to be expected since water is concentrated in this solution.