

CHEMICAL ENGINEERING THERMODYNAMICS II (0905323) 06. BUBBLE-P AND DEW-P USING RAOULT'S LAW

ALI KH. AL-MATAR (<u>aalmatar@ju.edu.jo</u>)

Chemical Engineering Department
University of Jordan
Amman 11942, Jordan

Outline

- **WINTER** VLE Calculations: Ideal Solutions
- **Hierarchy of Complexity**
- **Bubble-***P*: Concept and Algorithm
- Dew-*P*: Concept and Algorithm
- **Examples**

VLE Calculations: Ideal Solutions

Hierarchy of Complexity

Bubble-*P*: Concept and Algorithm

Dew-*P*: Concept and Algorithm

Input T and {y_i}

Obtain Antoine's equation constants for the components

Evaluate {P_i^{vap}} at the prescribed T

Output P and $\{x_i\}$

Obtain $\{x_i\}$

Obtain total pressure

$$x_i = \frac{y_i P}{P_i^{\text{vap}}}$$

$$\sum_{i=1}^{C} x_i = 1 \Rightarrow P = \frac{C}{C}$$

Example: Bubble-P

Consider the system: benzene, toluene and m-xylene (BTX). A liquid solution of these components has the composition $\mathbf{x} = \{0.4, 0.3, 0.3\}$ for the components in their respective order at T = 300 K. Wanted: find the equilibrium pressure and vapor compositions at the prescribed conditions.

	хi	Α	В	С	P*	xiP*	yi=xiP*/P
Benzene	0.4	9.2806	2788.51	-52.36	0.138105	0.055242	0.773166
Toluene	0.3	9.3935	3096.52	-53.67	0.041706	0.012512	0.175113
m-Xylene	0.3	9.5188	3366.99	-58.04	0.012318	0.003695	0.051721
				P)	0.071449	1

K _i		
1.932914	α_{12}	3.311427
0.58371	α_{13}	11.21155
0.172404	α_{23}	3.385715

Example: Dew-P

Consider the system: benzene, toluene and m-xylene (BTX). A vapor phase of these components has the composition $\mathbf{y} = \{0.4, 0.3, 0.3\}$ for the components in their respective order at T = 300 K. Wanted: find the equilibrium pressure and liquid compositions at the prescribed conditions.

	yi	А	В	С	P*i	yi/P*i	xi=yiP/P*i
Benzene	0.4	9.2806	2788.51	-52.36	0.138105	2.896337	0.084089
Toluene	0.3	9.3935	3096.52	-53.67	0.041706	7.193255	0.20884
m-Xylene	0.3	9.5188	3366.99	-58.04	0.012318	24.35432	0.707072
				Р		0.029033	1

K _i		
4.756892	α_{12}	3.311427
1.436509	α_{13}	11.21155
0.424285	α_{23}	3.385715

Quiz

- Determine the bubble point pressure for an equimolar binary system of components A and B. The vapor pressure of A and B are 10 and 12 kPa, respectively.
- Would you recommend ordinary distillation to separate these components? Justify your answer.

ECOnsider the system: ethanol/and phenol at 1 bar. Would you consider applying Raoult's law to this system? Justify your answer.

