

CHEMICAL ENGINEERING THERMODYNAMICS II (0905323) 07. BUBBLE-T AND DEW-T USING RAOULT'S LAW

ALI KH. AL-MATAR (<u>aalmatar@ju.edu.jo</u>)

Chemical Engineering Department
University of Jordan
Amman 11942, Jordan

Outline

- Difficulty Compared to Bubble-P and Dew-P
- **##** Brute Force Solution of Bubble-T and Dew-T
- **Bubble-***T*: Concept and Algorithm
- Dew-*T*: Concept and Algorithm
- **Examples**

Difficulty Compared to Bubble-P and Dew-P

- In Bubble-T and Dew-T, known are P and either \mathbf{y} or \mathbf{x} .
 - Temperature is not known
 - Therefore, vapor pressure is not known apriori.
 - \blacksquare Vapor pressure is a nonlinear function of T!
 - Consider Antoine equation, which is a simple vapor pressure model:

$$\ln P_i^{\text{vap}} = A_i - \frac{B_i}{T + C_i} \rightarrow P_i^{\text{vap}} = \exp \left(A_i - \frac{B_i}{T + C_i} \right)$$

Example 1 Clearly, temperature dependence is exponential.

Brute Force Solution of Bubble-T and Dew-T

$$P = \sum_{i=1}^{C} x_{i} P_{i}^{\text{vap}} = \sum_{i=1}^{C} x_{i} \exp \left(A_{i} - \frac{B_{i}}{T + C_{i}} \right)$$

Binary
$$P = x_1 \exp\left(A_1 - \frac{B_1}{T + C_1}\right) + x_2 \exp\left(A_2 - \frac{B_2}{T + C_2}\right)$$

Dew-T

$$P = \frac{1}{\sum_{i=1}^{C} y_{i} / P_{i}^{\text{vap}}} = \frac{1}{\sum_{i=1}^{C} \frac{y_{i}}{\exp\left(A_{i} - \frac{B_{i}}{T + C_{i}}\right)}}$$

Binary
$$P = \frac{1}{y_{1} / \exp\left(A_{1} - \frac{B_{1}}{T + C_{1}}\right) + y_{2} / \exp\left(A_{2} - \frac{B_{2}}{T + C_{2}}\right)}$$

Example: Bubble-T

Consider the system: benzene, toluene and m-xylene (BTX). A liquid solution of these components has the composition $\mathbf{x} = \{0.4, 0.3, 0.3\}$ for the components in their respective order at P = 0.07145 bar. Wanted: find the equilibrium temperature and vapor compositions at the prescribed conditions.

Solution for Bubble-T

$$P = \sum_{i=1}^{C} x_i P_i^{\text{vap}} = x_1 P_1^{\text{vap}} + x_2 P_2^{\text{vap}} + x_3 P_3^{\text{vap}}$$

$$= x_1 \exp\left(A_1 - \frac{B_1}{T + C_1}\right) + x_2 \exp\left(A_2 - \frac{B_2}{T + C_2}\right) + x_3 \exp\left(A_3 - \frac{B_3}{T + C_3}\right)$$

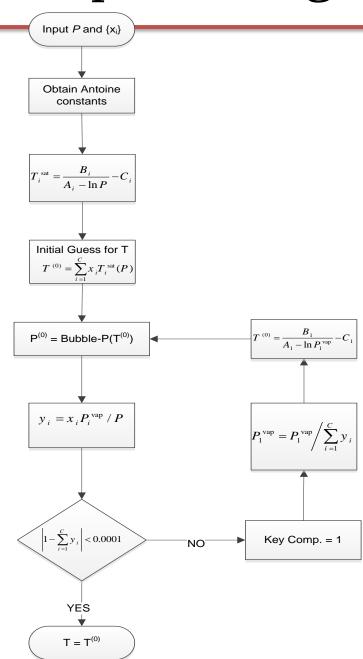
	xi	А	В	С	P*i	xiP*i	yi=xiP*i/P
Benzene	0.40000	9.2806	2788.51	-52.3600	0.13811	0.05524	0.77317
Toluene	0.30000	9.3935	3096.52	-53.6700	0.04171	0.01251	0.17511
m-Xylene	0.30000	9.5188	3366.99	-58.0400	0.01232	0.00370	0.05172
					Pcal	0.07145	1.00000
					Pcal-Pgiven	0.00000	
Given P (bar)	0.071449						
Assumed T (K)	300		ķ	(i			
				1.93291	(α12	3.31143
			0.58371			α13	11.21155
				0.17240		α23	3.38572

Example: Dew-T

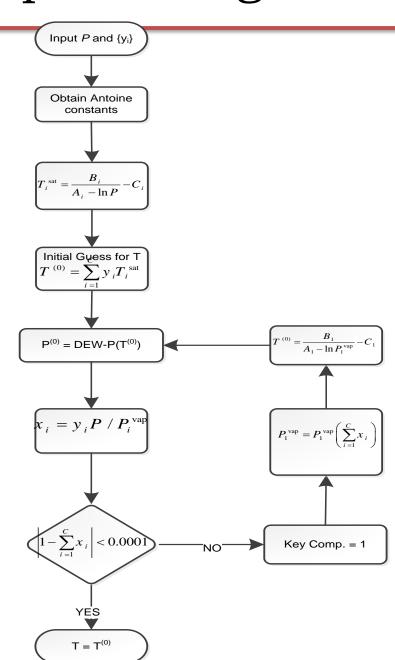
Consider the system: benzene, toluene and m-xylene (BTX). A vapor phase of these components has the composition $\mathbf{y} = \{0.4, 0.3, 0.3\}$ for the components in their respective order at P = 0.02903 bar. Wanted: find the equilibrium temperature and liquid compositions at the prescribed conditions.

Solution for Dew-T

$$P = \frac{1}{\sum_{i=1}^{C} y_{i} / P_{i}^{\text{vap}}} = \frac{1}{y_{1} / P_{1}^{\text{vap}} + y_{2} / P_{2}^{\text{vap}} + y_{3} / P_{3}^{\text{vap}}}$$


$$= \frac{1}{y_{1} / \exp\left(A_{1} - \frac{B_{1}}{T + C_{1}}\right) + y_{2} / \exp\left(A_{2} - \frac{B_{2}}{T + C_{2}}\right) + y_{3} / \exp\left(A_{3} - \frac{B_{3}}{T + C_{3}}\right)}$$

	yi	Α	В	С	P*i	yi/P*i	xi=yiP/P*i	
Benzene	0.4	9.2806	2788.51	-52.36	0.13809	2.89656	0.08409	
Toluene	0.3	9.3935	3096.52	-53.67	0.04170	7.19388	0.20884	
m-Xylene	0.3	9.5188	3366.99	-58.04	0.01232	24.35670	0.70707	
				Р		0.02903	1.00000	
			Pcal-					
				Pgiven		0.00000		
Given P (bar)	0.02903							
T (K)	299.9983							
Ki								
				4.75697	(α12	3.31146	
				1.43652	(α13	11.21178	
				0.42428		α23	3.38575	



Bubble-*T*: Concept and Algorithm

Dew-*P*: Concept and Algorithm

Example: Bubble-T Solution

Consider the system: benzene, toluene and m-xylene (BTX). A liquid solution of these components has the composition $\mathbf{x} = \{0.4, 0.3, 0.3\}$ for the components in their respective order at P = 0.07145 bar. Wanted: find the equilibrium temperature and vapor compositions at the prescribed conditions.

Solution using Excel

Example: Dew-T Solution

Consider the system: benzene, toluene and m-xylene (BTX). A vapor phase of these components has the composition $\mathbf{y} = \{0.4, 0.3, 0.3\}$ for the components in their respective order at P = 0.02903 bar. Wanted: find the equilibrium temperature and liquid compositions at the prescribed conditions.

Solution using Excel

