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Review

it Write down the first and second Ilaws of
thermodynamics analysis for an isolated system.

2= What are the implications for the derivation you’ve just
carried out?

Matter
~—

Open system Closed system Isolated system




Criterion for Equilibrium: Isolated System

== Start with energy and entropy balances for a closed system with:
== Constant volume.
= No heat exchanged between the system and its surroundings (adiabatiq.

O:j_U:Q_ P?j_v dU
¢ t ——=0=U =const.
4S Q | dt
. SR > ds
gen —=S >0
dt T dt gen
Sgen >0

2= At equilibrium in a closed system at constant Uand V-

S = maximum
S = maximum




Entropy Function Behavior

2= The entropy function is monotonically increasing during
the approach to equilibrium (entropy generation is
always positive).
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Equilibrium Conditions for Closed System: Constant (U, V)

= Single component, single phase closed adiabatic system
with constant volume [constant (U, W].

= Divide into two nonuniform subsystems by an imaginary
boundary.

% Nonuniform may include different 7and/or Pinitially.

= These two subsystems are open to flow of heat and
mass across the internal boundary.
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Balance Equations

= Overall material and energy balances, note that the total
volume is the sum of the two subsystems’ volumes:

n=n'+n" =constant = dn' = —-dn"

U=U'+U" =constant = dU"' = —-duU"
V =V'+V" =constant = dvV' = —dv"

S=§'+s"
& This is natural since the system is isolated from the
surroundings. The loss in one subsystem must appear in

the other as gain.




Mathematical Derivatives and Mapping to First Law

2= Consider the entropy to be a function of (U, V,NV). From
the definition of partial and total derivatives:

| | |
ds' :(_55 j au +[ﬁj av' {ﬁj in
ou’ )i N Jyi o on’ )iy

I 1 I
ds" = (ﬁuj du" +(£..] av' +[as_”j dn'
aU V|| ’n|| av U“,n” an U|| ,V”

2= First law of thermodynamics for an open system:

i @du v n




2= From the equality of the thermodynamic function and

the energy balance for each subsystem we can write

| |
dS' = = du' +—av' -9 gn

Tl Tl Tl
I I
ds" =T%du“ +:Tdv“ —?Tdn”
dS =dS' +dS"
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Equilibrium Conditions

= S'is @ maximum, or dS = O for all system variations at
constant (n, U, V).

= Consequently, the individual terms are zeros. Therefore,
the equilibrium conditions are:

1 1 I ]
-|-_| - TT =T =T For a single-component, single-
p!  p! phase system, this implies that
—=——=P' =P"  the composite system should

T T be uniform!
9_' g_“:> gl _qll




ILLUSTRATION 7.1-2
Proving the Equality of Gibbs Energies for Vapor-Liquid Equilibrium

Use the information in the steam tables of Appendix A.III to show that Eq. 7.1-9c¢ is satisfied at
100°C and 0.101 35 MPa.

SOLUTION

From the saturated steam temperature table, we have at 100°C and 0.101 35 MPa

H" = 419.04 kJ /kg HY =2676.1 kJ /kg
St =1.3060k]/(kgK) SV =7.3549kJ/(kg K)

Since G = H — T'S, we have further that

2L = 419.04 — 373.15 x 1.3069 = —68.6 kJ /kg
and
GV =2676.1 — 373.15 x 7.3549 = —68.4 kJ /kg

which, to the accuracy of the calculations here, confirms that GL = gV (or, equivalently, that
G = GV) at this vapor-liquid phase equilibrium state. []



Stability Analysis

== A stable equilibrium state will be established when Sis a
maximum. The first derivative is equal to zero.

#= To check for maximum conditions, we have three
possible values of the second derivative

d2s

\

-
d?S5=0:inflection
point of Sor a
metastable
equilibrium state.

d25< 0 : maximum
value of Sor a true
equilibrium state.

.

d25> 0 : minimum

value of Sor a an
unstable

equilibrium state.
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MNonequilibrium
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Closed Systems at Constant (7, 1)

= Suppose that we have a closed system such that it is:
¥ Constant volume system.

‘¥ The adiabatic assumption is relaxed i.e., thereis heat exchange
between the system and its surroundings to keep the system
isothermal.

= Energy and entropy balances

Eliminate the Qterm between the

d_U — ' energy and entropy balances and
dt use the isothermal conditions.
N > TdS = d(TS)
dt:Q+Sge”‘0 d(U-TS) dA -
=— =TS, <0

dt dt




Equilibrium Criterion

== Temperature is always positive, so is the entropy

generation term. The negative of their product must be
negative.

d(U-TS) _ dA:_TS-en <0
dt dt |

== Helmholtz energy must be a minimum at equilibrium.

at equilibrium in a closed
system at constant 7and V/

A=U —TS = minimum
a=u-TS =minimum




Closed Systems at Constant (2, 7)

= Suppose that we have relaxed the assumptions of
constant volume and adiabatic systems such that the
system is:
:= Constant pressure (isobaric).

= There is heat exchange between the system and its
surroundings to keep the system isothermal.

‘= The energy and entropy balance equations for this
system reduces to:

du - d(PV

e =q-piloo- S
dt

d> Q+S gen = 0

dt T




Equilibrium Criterion for Closed Systems at Constant (72, 7)

Eliminate the Q term between the energy and entropy balances
to obtain:

du _d(PV) _d(TS) _

TS,
dt dt dt |
d(U +PV =TS .
G )96 _ 15 <o
dt dt |

& Temperature is always positive, so is the entropy generation term.
The negative of their product must be negative.

Gibbs energy must be a minimum at equilibrium.

at equilibrium in a closed

system at constant 7and P

G =H —-TS =minimum
g =h —=Ts = minimum




Open Systems at Constant (2, 7)

Suppose that we have
= Constant pressure (isobaric) system, and

= There is heat exchange between the system and its surroundings to keep
the system isothermal.

= There is an element of fluid moving with the velocity around it.

The system is chosen such that there is no convected mass flow
into or out of the system.

Such an element of mass in a pure fluid is a system closed to the
flow of mass.

Consequently, it is treated exactly like closed systems discussed
before depending on the constraints.

at equilibrium in an open

system at constant 7and P

G =H -TS =minimum
g =h -Ts =minimum




Stability Criteria

== Without mathematical derivation, the following pair of
criterion must be satisfied to have a stable phase:

i Heat capacity at a constant volume must be positive (Thermal
stability criterion).
ou
oT A

2= Isothermal compressibility must be positive (Mechanical
stability criterion).

—1(8vj (an
K = >0=>| — | <0
v \OP |\ N J;




Summary

2= The derived equilibrium and stability criteria are valid
for multicomponent systems.

Isolated, adiabatic, Constant (U, V) S = Max d25<0
fixed boundary ds=0

Isothermal, closed, Constant (7,V) A=Min d24>0
fixed boundary dA=0

Isothermal, isobaric, Constant (7,P) G = Min d2G>0
closed dG=0

Isothermal, isobaric, Constant (7,P,m) G = Min d2G>0
open moving with fluid dG=0

velocity




Types of Equilibria and Equilibrium

it Three types of equilibria must be satisfied to have
equilibrium established under all constraints

== Thermal equilibrium

T I :T Il ::T N
2= Mechanical equilibrium

P'=p" =...=p"
=2 Chemical equilibrium

g' =9" ==9




lllustration 7.2-1

Use Steam Tables to show that the stability conditions are satisfied for superheated
steam.

SOLUTION

[tis easiest touse Eq. 7.2-13 in the form (0P /0V )p < 0, which requires that the volume decrease
as the pressure increases at constant temperature. This is seen to be true by using the superheated

steam table and observing that V' decreases as P increases at fixed temperature. For example,
at 1000°C

P (MPa) 0.50 0.8 1.0 1.4 1.8 2.5
V(m?*/kg) 1.1747 0.7340 0.5871 0.4192 0.3260 0.2346

Proving that Cy, > 0 or Cx, > 0 1s a bit more difficult since

oo oU
Vo\ar
14

and the internal energy is not given at constant volume. Therefore, interpolation methods must
be used. As an example of how the calculation is done, we start with the following data from the
superheated vapor portion of the steam tables.



P =1.80 MPa P = 2.00 MPa
T (°C)  V (m®kg) U(klkg)  V(mPke) U (Kkg)

800 0.2742 3657.6 0.2467 3657.0
900 0.3001 3849.9 0.2700 3849.3
1000 0.3260 4048.5 0.2933 4048.0

To proceed, we need values of the internal energy at two different temperatures and the same
specific volume. We will use P = 2.00 MPa and 7" = 1000°C as one point; at these condi-
tions V' = 0.2933 m?/kg and U = 4048.0 kJ /kg. We now need to find the temperature at which
V = 0.2933 m3/kg at P = 1.80 MPa. We use linear interpolation for this:

T —800  V(T,1.80 MPa)— V(800°C, 1.80 MPa) ~ 0.2933 — 0.2742
900 — 800  V/(900°C,1.80 MPa) — V(800°C, 1.80 MPa)  0.3001 — 0.2742

so that T = 873.75°C. Next we need the internal energy U at T = 873.75°C and P = 1.80 MPa
(since at these conditions V' = 0.2933 m?/kg). Again using linear interpolation,



873.75 — 800 U(873.75°C, 1.80 MPa) — U(800°C, 1.80 MPa)

900 — 800 [7(900°C, 1.80 MPa) — U/(800°C, 1.80 MPa)

U(873.75°C, 1.80 MPa) — 3657.6
3849.9 — 3657.6

we find that

U(873.75°C, 1.80 MPa) = U/(873.75°C, 0.2933 m®/kg) = 3799.4 kJ /kg

Finally, replacing the derivative by a finite difference, and for the average temperature [i.e.,
T = (1000 + 873.75) /2 = 936.9°C], we have

Cyv(T =936.9°C, V = 0.2933 m*/kg)
U7(1000°C, 0.2933 m?/kg) — U(873.75°C, 0.2933 m3/kg)
1000°C — 873.75°C

e
L)

4048.0 — 3799.4 kJ
= = 1.969 —— > 0
1000 — 873.75 kg K

Similarly, we would find that C'v > 0 at all other conditions. |



2= This presentation is based in its majority on §7.1 and
7.2: Sandler, Stanley |. Chemical, biochemical, and
engineering thermodynamics. John Wiley & Sons, 2017.
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