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Residual Gibbs Energy

Chemical equilibria establishes the equality of the molar Gibbs
energy of the phases that are present.

Alternative forms suitable for calculations can be obtained.
First, express the Gibbs energy in terms of its residual:

G=G"“+G"

This equation can be written for the any phase e.g., liquid and

vapor.

= The ideal-gas term is the same in both phases because it depends only on
temperature and pressure, which are the same in both phases.

= Conclusion: residual Gibbs energy of the phases are also equal:

G‘LR :GVR




Definition of Fugacity

The equality of residual Gibbs energies
among phases is equivalent to the chemical
equilibria equation, but has the advantage
that it involves residual properties, whose
calculation does not require a reference
state.

definition:

f —Pexp = ¢P

Fugacity coefficient is defined as

G- G-

Fugacity is introduced using the following |
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Chemical equilibrium in Terms of Fugacity

Since the residual Gibbs energy is the
same in both phases, the fugacity at ,
saturation satisfies the conditions: J

fV =f"
# =4

The equality of fugacities is an
alternative  statement of the
necessary and sufficient condition for
phaseequmbrlum

It is the basis for all phase equilibria -
calculations, whether we are dealing with ﬂ R
pure substances or with mixtures. “

=t The equality of the fugacity coefficients is
a special result and applies to pure
substances only.

sUl m

(3]

snd-snines

.,

4

ssaulelawayda ‘SSaUTJIOITSURIY

iA1Toesny
104 SpJom
I3y10 aJe 1eym

‘3aouadsauena ‘ssausnoraesny

‘AiT1eaawayda ‘A3T1T1Rl0A
‘sousuewaadwt ‘3dusTsueal



Fugacity in the Ideal-Gas State

2= The limiting values of fugacity and its coefficient in the
ideal-gas limit follow easily by noting that G® = 0 in this

|imit: " 0 0.0 0
’ I
limf =f° =P
P—-0
Iim - G :1 0.0
P—)O¢ ¢




Relationship of Fugacity to the Gibbs Energy

‘= The term fugacity comes from the Latin fugere (“to

flee”)

= Refers to the tendency of species to “escape” to the more
stable phase.

= Fugacity is an auxiliary property related to the Gibbs
energy which is a fundamental thermodynamic property
at equilibrium.

G(T,P)=G,(T,P,—>0)+RT In UL =G, +RT Inf—
f,(T,P,—>0) f,

= At a constant T and from definition of G

P
dnt— Y gp o i jV—dP
f RT

0 RT 0 P—-0




Why Use Fugacity?

= Fugacity is equivalent to the Gibbs energy with respect
to defining the conditions of phase equilibrium.

~ Fugacity Gibbs energy:

e Does notrequire a e Requires a reference
reference state. state.

e Has a well defined e |ts value in the ideal-
(and simple) value in | gas state (P—> 0)
the ideal-gas state. approaches —eo,




Roadmap to Fugacity

Equation of State
(EOS)

Corresponding
States Theory (CSP)

Vapor

Tabular volumetric
data

EOS

Phase

Liquid

Poynting

Solid Poynting




Calculation of Fugacity for Compressed Liquids—Poynting Equation

= Molar volume is essentially independent of pressure for

compressed liquids: ’
P Critical Isotherm (T=Te)
AR PP P
fO P—0 RT RT ’ ‘I
Poynting factor ’

= A practical result is obtained if we choose the initial
state to be the saturated liquid at the prescribed T:

fT,P)=f (T ,Psat)exp{(P _Psat)vL}

RT

_ gsat sat sat (P o Psat)
=¢= (T ,PT)P (T)exp{ T VL:|




Example 7.4-Matsoukas: Saturated Liquid
Calculate the fugacity and fugacity coefficient of saturated liquid water at 25°C.

Solution The fugacity of the saturated liquid is equal to the fugacity of the saturated vapor
fL =‘}C,[\rr — (]bsat Psat

The saturation pressure at 25 °C is 0.03166 bar and at such low pressure the vapor phase is ideal, that is, ¢= ~ 1.
Therefore, the fugacity is equal to the saturation pressure,

f1 =fv~ 0.03166 bar,
and the fugacity coefficient is 1.

1;0 Fugacity Coefficient Solver - >

Add one or more species to the system, then enter a temperature and pressure. The fugacity
coefficients are listed in the summary table. The mole values in the summary table may be edited.

Species in System Surimarny

1. H20 -Water # |Moles @, @,
1 0.9935 0.9995

4dd.. |  Remove | Edt. |

-Fugacity Coefficient
{* Peng Robinson " Lee Kesler

Temperature of System

29815 |k |

Pressure of System

003166 |bar v

View Equations. .. Remove Al




Example 7.5-Matsoukas: Poynting Factor
Calculate the fugacity and fugacity coefficient of water at 25°C, 100 bar, using data

from the steam tables.

Solution Under these conditions water is a compressed liquid; therefore, the Poynting equation will be used. The
liquid volume at 25 °Cis Vi = 1.003 cm3/g = 18 x 10-¢* m3s/mol. The Poynting factor is

(100 — 0.03166) x 10°

_ 4 _ 1.075.
(R.314)(298) "

exp | (18 x 107°)

From this we calculate the fugacity, assuming the fugacity coefficient at saturation to be 1 because pressure is very
low:
f= ¢=tP=t x (1.075) = 0.034 bar.
The fugacity coefficient is
~ 0.034 bar

- = 3.4 x l()‘—4. (P Fugacity Coefficient Solver
1({) bar

Add one or more species to the system, then enter a temperature and pressure. The fugacity
coefficients are listed in the summary table. The mole walues in the summary table may be edited.

Species in System Surnrary

1. H20 - Water # |Moles |@. @
1 1 00002909  (0.0002309

Add. |  Remove |  Edt. |

~Fugacity Coefficient
{* Peng Robinson i Lee Kesler

Pressure of System

|1I]D Ibar j Wiew Equations... Remave Al

Temperature of System

29815 |K ﬂ




Calculation of Fugacity Using Tabulated Properties

== Self-read




Fugacity From Compressibility Factor

== Transform the integration of fugacity to Compressibility

obtain the result: Factor
PV
" (Z -1 L ==
Ing = j )P RT | ( )
P—0

Experimental

. J

== Use the truncated virial EOS:

7 =1+ B (T )P — Tabular
RT
ng=2 -1 Equation of

State (EOS)

& J




Example 7.7-Matsoukas: Fugacity of Steam
Estimate the fugacity of steam at 300°C and 70 bar if the only information available
is the density of steam at this state, 33.898 kg/m3.

Solution We assume that the truncated virial is valid at this state (we will return to this assumption). The molar
volume of steam at these conditions is

@ Fugacity Coefficient Solver - X
- ) 1 4 1 Add one or more species to the system, then enter a temperature and pressure. The fugacity
1 — — [ ] -{ }2” r-’ Il_]_ ‘III kg — r’ : ;‘} l 4 _.-"' 1( ] Ill ".{ l].].';}]. . coefficients are listed in the summary table. The mole values in the summary table may be edited.
:{: i_ H !: ;‘H ! ¢ Species in System Summary
1. HZ0 - Water [# |Moles | @ @
ey eqe N 1 1 0.8279 08273

The compressibility factor is
) (70 x 10* Pa)(5.314 x 1074 m® /mol) S
J'{ SO ; P —— = (]. J H[][]l\.“\'). Add... | Bemove | Edit... | 5 4 Cosfficiert

i { ugacity Coefficien

(hril-]: '].'I l“'“‘]' I\ ){I M P;' ]'" I{.} (? Pes:‘lg Robinson " Lee Kesler

Temperature of System Pressure of System

[200 [ =[] [bar  ~]

Wiew Equations... Remaove Al

The fugacity coefficient is

Ing =1—0.7T80685 = —0.219315 = ¢ =0.803

and the fugacity is
f=(0.803)(70 bar) = 56.2 bar.

Comments To assess the validity of the truncated virial we check with a generalized compressibility chart. The
reduced coordinates of water at this state are
73.15 K 70 bar
= —(.588, P, = ———— =0.317.
647.096 K ' 2200.64 bar

IS

From Figure 2-8 we see that the reduced pressure is fairly low and the isotherm does not exhibit significant
nonlinearity. Therefore, the assumption that the isotherm is linear is acceptable. This should be confirmed by an
independent calculation of the fugacity from a different method. In Example 7.6 we calculated the fugacity using eq.
(7.13) and found f = 57.92 bar. The present calculation is within 3% of that value.



The Virial EOS

Second virial coefficients are easily obtained in compilations or estimated using
Pitzer’s Correlation.

Third virial coefficients and higher are not easily obtained or estimated.
Virial EOS is ustallv triincated to the second term-

100 [ ] 4,000
- 2,000
0 0
T 7 §
© - —2,000 ©
£ : €
‘E —100 1 - —4,000 ¢
S I )
sa) 1 O
I
—200 | / i
Boyle’s temperature :
(B=0) I
—300 ' ' ' -
0 100 200 300 400
T/K

For —ve B: Z < 1 (Attractive forces)
For +ve B: Z > 1 (Repulsive forces)
For Boyle’s temperature B =0 and Z = 1 (Attractive = repulsive forces)




Pitzer’s Correlations for Second Virial Coefficients

== Applies to nonpolar gases

Z—1+BP g Ir
" RT T,
BP.

= B° +wB?
RT, @

) 0.422
B® = 0.083 — ——
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Figure 3.14: Comparison of correlations for Z”. The virial-coefficient correlation is represented by the
straight lines; the Lee/Kesler correlation, by the points. In the region above the dashed line the two
correlations differ by less than 2%.




Example: Estimate the compressibility factor for steam at 300°C and 70 bar.
Compare your result to the value given in steam tables at these conditions.

Tc (K)

Pc (bar)

Pr

Tr

BO

Bl

Bhat

VA

B (m3/mol)
V (m3/mol)

Vsteam (m3/kg)

0.344 R (J/mol.K) 8.314
647.3 T (K) 573.15

220.48 P (bar) 70

0.317489

0.885447

-0.42969
-0.14771
-0.4805
0.82771
-0.00012
0.000563 V(m3/kg) 0.031303

0.0442




Generalized Compressibility Factor C

1.3 /(
1.2 1/
1.1 T, =4
4__--—""—’3/
1 [
0.9 == — 2| /
0.8 ; s §§\\ T~ /
07 Vaporliquid \§ NN \\ s
o . dome N
N e
~N 0.6 \‘\\\\\\\\ 1.34
e —
0.5 A\ \ 1.2
0.4
1.1
0.3 1.05 #
1.0 /
05 I )_//
0.8 0.9 d
0.1 } i
T.— 0.7 | A.f
0 1 |
0.01 0.1 P 1 10
FIGURE 7-14 Compressibility factor for a compound with @ = O for use in the Lee-Kesler
equation.
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FIGURE 7-15 Compressibility correction factor for a compound with @ = 1 for use in the

[ee-Kesler equation.

Based on Lee B, Kesler MG, °A Genesalized Thermodynzmic Conelation Based on

Thrze-Parameter Conesponding States”, AICHE J., 213), 510527, 197,

Based on Lee 8.1, Kesler M.G., “AGeneralized Thermodynamic Comelation Based on

Three-Parameter Corresponding States”, AIChE J, 21(3),510-527, 1975




Fugacity from Generalized Graphs

:= The residual Gibbs energy can be calculated from the
residual enthalpy and entropy.

HR HRO HR1
RT.  RT, RT,

SR SR’O SR,l
RT.  RT.  RT,

& Charts have been developed to utilize the Lee-Kessler
equation of state with corresponding states theory (
reduced units).

Ing =Inp%+wln ¢!
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FIGURE 7-19 Correction to the molar entropy residual function for a compound with w = 1, as

FIGURE 7-17 Correction to the molar enthalpy residual function for a compound with , . ,
determined using the Lee-Kesler equation.

w = 1, as determined using the Lee-Kesler equation.
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Figure 7.1 Corresponding states correlation for the fugacity coefficient in reduced coordinates—
simple fluid term. Based on the Lee—Kesler equation of state.
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Figure 7.2 Corresponding states correlation for the fugacity coefficient in reduced coordinates—

correction term. Based on the Lee—Kesler equati()n of state.



Example 7.13-Kortesky Determine the fugacity and the fugacity coefficient
of ethane at a pressure of 50 bar and a temperature of 25°C using
generalized correlations.

SOLUTION We begin by finding P,, 1), and w:

po= L o 20bar s nd 1= = 282K 08w = 0.009
"T P, 487bar - "0 U1, T 30ssk 0 T Y
In $°=-0.216 In ¢1=-0.060
log Qe = log © + @ log oM = —(.222

Gt = 0.60

foth = @etnP = 0.60 X 50 = 30[bar]

there are significant deviations from ideality. Since ¢<1, we surmise that
attractive forces dominate. This result is expected since the system is around
the critical point of ethane, where intermolecular interactions are large.



Example 7.8-Matsoukas: Calculate the fugacity of benzene at T = 64°C, P = 34 bar
using the Lee-Kesler method.

Solution With T. = 562.1 K, P. = 48.9 bar, the given conditions correspond to T, = 0.6, P, = 0.7. From tables E13,

E15, we find by interpolation, ¢° = 0.04415, ¢+ = 0.02145. Notice that these values are printed in italics indicating
that the state is liquid. The fugacity coefficient is

¢ = (0.04415)(0.02145)e2 = 0.0197
and the fugacity is f = ¢P = (0.0197)(34) = 0.67 bar.

CP Fugacity Coefficient Solver — X

Add one or more species to the system, then enter a temperature and pressure. The fugacity
coefficients are listed in the summary table. The mole values in the summary table may be edited.
Species in System Summary

1. CEHE - Benzene i |Mnles |¢?; |¢Ji
1 1 0.01926

add.. |  Remove | Edt. |

-Fugacity Coefficient
{" Peng Robinzon (¢ Lee Kesler

Pressure of System

|34 | bar j

Temperature of System

[t <]

Yiew Equations... Remove All




Example 7.8-Matsoukas: alternate solution using Poynting method

P Saturation Pressure Calculator — x

Select a Species

| CEHE - Benzene ~] Edt. |

Enter values for one of the fields below and press Solve on the other field. Eg Equation of State Solver o X
PSat TSat Select a Species
IDESSSB lba || Sohe | I54 |'c | Soke | |CEHE - Benzene v| Edt. |
Antoine Equation
- . Select a species, enter values for two of the . .
sat i _ ___cman Tmin = 685 ['Cl fields below and press Solve on the thid field. | SPecies Propetties
In 2 [bar] = 9.2806 Tr e =
7[Cl + 2208 7 =104 [0 Pressure
ma |u5998 | |5sz1 K | |uuc|4?47 |
|1 38 |har LI Salve
Cp Fugacity Coefficient Solver — X
Add ies to the he d The fugaci Temperature B fe 20
to the system, ter a temperat ) I
Coaicients are Eiad i the summary able. The mols vaiues in e susaary table may b ecind o T save D022 || | [4834bar | | | [0.005238 |
Species in System Summary
1. CBHE - Benzene # [Moles [ |@: Phase -Omega rz[1}
1 1 09808 0.9808 Molar Volume |Limid | |u212 | |-D.EIJ232 |
|0.00009642 |mi/mol ¥| |  Solve
Methad
d.. dit... i i -Robi (
Ad | Remove | E | Fugacky Cosficent i* Generalized Compressibility Charts " Peng-Robinson Equation of State
Temperature of System Pressure of System Dol cal Yoo ‘ Vi E .
Y - = View Equations...
b4 I c J IDESSSSS Ibal J View Equations... | Remave All |

f(-l-,P):¢sat(-|-,Psat)Psat(T)eXp (P I;-:? )VL

(34 —0.599998) x 10°
8.314(64 + 273.15)

= 0.9808(0.599998)(1.1217) = 0.6601bar

= 0.9808(0.599998) exp (0.00009642)



Fugacity from Cubic Equations of State

= Convert the integration from volume explicit to pressure
explicit to obtain:

In¢:lnf(T’P)= 1 -V[(%_dev}—anJr(Z—l)

P RT .2,
Soave-Redlich-Kwong (SRK) Peng-Robinson (PR)
_RT  a(T) »_ RT a(T)
v—b v(v+Db) v—b v(v+b)+b(v-Db)
(RTC)2 (RTC)2

a(T) = 0.42748 a(T) a(T) =0.45724

C C

a(T) =1+ K[l—\/_l_li} a(T) :l-H{l_\/Tlij

x=0.480+1.57w—0.1760° x =0.37464 +1.54220 — 0.269920°
RT, RT.

a(T)

b=0.07779

C C

b =0.08664




Cubic EOS Coefficients in Compressibility Form

Z°+a,Z°+aZ +a,=0

vaw | srk [PR ]
—1—-B —1 -1+ B
A A'—B'—B" A'—2B'—3B"
_AIBI _A|B| _AIBI + B|2+ B|3
0.3750 0.3333 0.3074
' aP . bP Initial Guess for solution
A'= > B'=—— Vapor (Vapor like): ideal gas (Z=1).
(RT ) RT Liquid: Reduced covolume (Z= B).




Solution Methodology for SRK EOS

N p N (3 Find ain SRK EOS )
1. Obtain (7;;2;0). 2. Find bin SRK EOS. eterminer, K =0.480+1.570—0.1760°
eDetermine a. T
eDetermine a(7).
al) =1+« f—
RT, ( T, J
I:)C
RT
\ J \ J a(l)=0. 42748( 9 (T )
\_ c
5. Evaluate the cubic constants in the Zexpression.
4 ] A 4 ]
6. Solve the cubic for the SRK 4. Determine reduced
roots and determine if they parameters A' and B.
fall in the subcooled liquid, a —1
superheated vapor, a A'—B'— B> A'= aP B'= —bP
supercritical or the two ! (RT )2 RT
phase coexistence region. g —A'B'
. J L J
3 2
Z°+a,l "+l +a,=0




Roots of a Cubic

T

One real root (molar
volume of supercritical
fluid)

Two negative or conjugate
complex roots with no

P
physical significance)
. P

‘Roots of cubic EOS‘

representing molar volume
of the critical fluid.

-

Van der Waals isotherms

critical point

' loca
\ maximum

T>T.
T=T.
T<T.

________________

'minimum ' '
b -

Maximum positive root for
vapor molar volume

T<T,

Minimum positive real root
for liquid molar volume if >
B

_I__I__I_I_I__I_

Intermediate real root for
spinodal or metastable
limits.

Three equal real roots ‘

Vc v



Fugacity Expressions for PR and SRK EOS

= SRK
f A" [zZ+B'
InE:(Z —1)—In(Z—B)—§In[ - }
2 PR
f o iy an A Z+1+42)B
InP_(Z 1)-In(Z -B") 2\/§B'In{2+(1—\/§)81

= Requires the compressibility factor at the pressure and
temperature of interest.

= If the polynomial equation for Z has three real roots, the
proper root must be selected based on the phase of the

= system.




Example 7.9-Matsoukas: Fugacity from the SRK
Calculate the fugacity of CO, vapor at 4.5°C, 15 bar, using the SRK equation.

Solution The critical constants and acentric factor of carbon dioxide are T. = 304.2 K, P. = 73.8 bar, and @ = 0.225.
The parameters of the SRK equation are

a = 0.3983 J m*?/mol? A = 0.112141,

b = 2971 x107° m?*/mol B = 0.0193049.

The cubic equation for Z is

-0.00216488 + 0.0024639Z — Z=- + Z3 = 0,

and has three real roots:

Z, = 0.0401352, Z. = 0.0599377, Z, = 0.899927.

Since the phase is vapor we select the largest root, Z = 0.899927. The fugacity coefficient is
¢ = 0.008240,

and the fugacity is

f=1(0.908246)(15 bar) = 13.62 bar.



Effect of 7and Pon the Fugacity

it The effect of temperature and pressure upon the
fugacity can be derived and are given by:

RT(alnf(T,P)j :V:(é_gj
P ) oP ).

(a[mm,p)/p]] __h(T,P)=h"(T,P)

oT RT?




Saturation Pressure from Equations of State

[‘\U r - . Jl. [
4 ethyleng at 260 K

For phase equilibrium in a
single-phase system; the
equilibrium criterion establishes :
the  relationship  between :
pressure and temperature at

saturation:

¢V(T,Psat) — qu(ijsat) ot

This equation can be solved for

P2t by trial and error. e

P2tis defined below 7. e




Algorithm

Numerically, we seek a pressure

Enter T P, @

such that the fugacity coefficients !
at L and Vare the same. Enter T and E_uims:dra.lu-:u:-rf-"

This may be done by trial and

error.

[

Guess a pressure and solve for the

Ciompaute a and b using
Egs. 6.7-1, 6.7-2, amd 6.7-3

¥

Compute A and 8 where

V| A=aPRTIand B = PRRT

compressibility factor. Y
- . . Salve Eq. 6.7-5 for Z' and ZY
=t In this region, there are always three !

[

real roots.

The smallest root to calculate the
fugacity coefficient of the liquid and
the largest root to calculate the
fugacity coefficient of the vapor.

If the two fugacity coefficients are not
equal, we pick another pressure and

Compaute F¥ by substituting
Z¥ into Eq. 74-14a

1

Compute - by substinuting
Zlinto Eq. 7.4-14b

i

[~1| 'r—' -1 | - 0.0 ?

/ N

Print the equilibrinom
(vapor) pressurs

repeat until and ¢ agree to hel

within an acceptable tolerance. '

Exit or repeal calculaticon
for ancdher lemperature

From Sandler, page 323.



Phase Diagrams from Equations of State

=t To obtain the properties of a pure
fluid at any prescribed T and P, we -
need

== An equation of state

#t The ideal-gas heat capacity as a =

function of temperature.

=t The equation of state allows the
calculation of: g

=2 all residual properties and R

From Sandler, page 304.

=t the determination of the phase
boundary, namely of the saturation
pressure and the properties of the

saturated phases. :
Readly for your first
=t Thus we have the tools to compute course project.
the entire phase diagram of the
pure fluid.

o
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