

CHEMICAL ENGINEERING THERMODYNAMICS II (0905322) 12 -Minimization of the Gibbs Energy

ALI KH. AL-MATAR (aalmatar@ju.edu.jo)

Chemical Engineering Department
University of Jordan'
Amman 11942, Jordan

Outline

- **Justification**
- **Formulation**
- **Formulation Steps and Solution Methodology**
 - **Solution Methodology : Material Balances**
 - **Solution Methodology**: Lagrange Multipliers
 - Solution Methodology: Define your objective function
 - Solution Methodology: Partial Differentiation
 - **Solution** Methodology: Solve the System of Equations

Justification

- Equilibrium constants does not lend itself to standardization so as to allow general programs to be written.
- An alternative criterion of equilibrium is based on the fact that at equilibrium the total Gibbs free energy of the system has its minimum value.
 - Applied to multiple reactions, this criterion is the basis for a general scheme of computer solution.

Formulation

The total Gibbs free energy of the system (considered a single phase here for simplicity)

- **The problem is to find the vector of mole fractions** $\{n_i\}$ such that
 - \blacksquare minimizes G for a specified P and T, $G_{T,P} = G(n_1, n_2, \dots, n_N)$
 - **Subject to the constraints of material balances.**
- The solution is based on Langrangian multipliers.

Formulation Steps and Solution Methodology

- 1. Formulate <u>material balances</u> basing them on <u>atomic balances</u> (*w* balances).
- 2. Introduce Lagrange multipliers λ_k (w multipliers) and combine with the material balances.
- 3. Define an **objective function** by adding the sum of material balances combined with the Lagrange multipliers.
- 4. Take the <u>partial derivatives</u> of the objective function with respect to the moles of each chemical species present in the system (*N* equilibrium equations) and set them equal to zero since this is a necessary condition for the minimum.
- **Solve** the resulting N + w, usually nonlinear, equations to obtain the vector of equilibrium mole fractions that minimizes the Gibbs free energy.
- 6. This is a general procedure unlike the equilibrium constants which requires elaboration and formulation for each problem.

Solution Methodology: Material Balances

1. Formulate the constraining equations, i.e., the material balances

- a. Reacting molecular species are not conserved. However, total number of atoms of each element is constant.
- b. Subscript *k* identifies a particular atom.
- c. A_k is the total number of atomic masses of the k^{th} element in the system determined by the initial constitution in the system.
- d. Let a_{ik} be the number of atoms of the k^{th} element present in each molecule of chemical species i.
- e. The material balance on each element *k* is

$$\sum_{i} n_{i} a_{ik} = A_{k} , k = 1, \dots, w$$

$$\sum_{i} n_{i} a_{ik} - A_{k} = 0 , k = 1, \dots, w$$

Solution Methodology: Lagrange Multipliers

Introduce the Lagrange multipliers λ_k , one for each element balance

$$\lambda_k \left(\sum_i n_i a_{ik} - A_k \right) = 0$$
 , $k = 1, \dots, w$

Sum over k to obtain

$$\sum_{k} \lambda_{k} \left(\sum_{i} n_{i} a_{ik} - A_{k} \right) = 0$$

Define the objective function by combing the sum of the Lagrange multipliers and the total Gibbs free energy of the system

$$F = G + \sum_{k} \lambda_{k} \left(\sum_{i} n_{i} a_{ik} - A_{k} \right)$$

- The objective function F is identical with the Gibbs free energy of the system (G) since the summation term is zero.
- The partial derivatives of F and G with respect to the $\{n_i\}$ are different, because F incorporates the constraints of the material balance.

Solution Methodology: Partial Differentiation

 \blacksquare The minimum value of F (and G) when all of the partial derivatives are zero

$$\left(\frac{\partial F}{\partial n_i}\right)_{T,P,n_i\neq i}=0$$

Take the required derivatives and set them to zero

$$\left(\frac{\partial F}{\partial n_{i}}\right)_{T,P,n_{j}\neq i} = \left(\frac{\partial G}{\partial n_{i}}\right)_{T,P,n_{j}\neq i} + \sum_{k} \lambda_{k} a_{ik} = 0 \quad , i = 1,\cdots, N$$

$$\mu_{i} + \sum_{k} \lambda_{k} a_{ik} = 0 \quad , i = 1,\cdots, N$$

$$G_{i}^{\circ} + RT \ln \frac{f_{i}}{f_{i}^{\circ}} + \sum_{k} \lambda_{k} a_{ik} = 0 \quad , i = 1,\cdots, N$$

For gas phase reactions and standard states as the pure ideal gases at 1 bar (or 1 atm)

$$G_i^{\circ} + RT \ln \frac{f_i}{P^{\circ}} + \sum_k \lambda_k a_{ik} = 0$$
 , $i = 1, \dots, N$

If G_i° is arbitrarily set to zero for all elements in their standard states, then for compounds $G_i^{\circ} = \Delta G_{fi}^{\circ}$

$$\Delta G_{fi}^{\circ} + RT \ln \frac{y_i \phi_i P}{P^{\circ}} + \sum_k \lambda_k a_{ik} = 0 \quad , i = 1, \dots, N$$

Solution Methodology: Solve the System of Equations

The final expression for the equilibrium equations constitutes N equations, one for each chemical species and there are w atomic balances resulting in N+w equations that are to be solved simultaneously for the mole fractions and Lagrange multipliers.

