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Homogeneous Linear Systems with 

Constant-Coefficient.
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General Solution
If the constant matrix A in the system (1) has a linearly 

independent set of n eigenvectors, then the corresponding 
solutions y(1), … , y(n) in (4) form a basis of solutions of (1), 
and the corresponding general solution is
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So far, the discussion has been focused on systems of first-
order ODEs. The reason for this is that, beside being an 
important case for many physical systems, all higher 
order equations can be converted to a system of first 
order ODEs. As a general example, 

An nth-order ODE
y(n) = F(t, y, y’, … , y(n−1))
can be converted to a system of n first-order ODEs by setting
y1 = y, y2 = y’, y3 = y”,     … ,      yn = y(n−1).

Conversion of an nth-Order ODE to a System
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This system is of the form
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EXAMPLES

Write the following equation as a set of first order ODE’s then 
solve using the matrix solution technique:

y” + 3y’ + 2y = 0

Write the following equation as a set of first order ODE’s.

y”’ – 5y” – 22y’ + 56y = 0.
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We shall now concentrate on systems (1) with constant 
coefficients consisting of two ODEs

(6) y’ = Ay; in components,

By comparison to a single ODE of a similar form (y’ = ay, 
which has a solution of the form y = Ceλx), such a system of 
equations has a solution of the form:
y = ueλx

Where u is an n X n matrix of constants. Then we obtain:
y’ = λueλx = Ay = Aueλx    

 Aueλx = λueλx

How to find solutions to system of ODEs
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Eliminating eλx from both sides we get:
Au = λu
This equation states that if we multiply matrix A by matrix 
u we obtain the same matrix u multiplied by a scalar λ. 
Such a problem is called the eigenvalue problem and can be 
written as :
(A – λI)u = 0                
Where (I) is the identity matrix and must be used to make 
the subtraction from (A) possible. The idea of solving 
eigenvalue problem is to find the values of λ (the 
eigenvalues) and the corresponding u (the eigenvectors) 
that satisfy the equation above. 

How to find solutions to system of ODEs
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Eigenvalues can be found by setting the determinant of 
(A – λI) to zero i.e. | A – λI | = 0 (characteristic equation) 
and find the values of (λ).
Here we may have three cases:
a) Distinct values (λ)
b) Repeated values of (λ)
c) Complex conjugate values of (λ) 

How to find solutions to system of ODEs
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How to find solutions to system of ODEs

a) Distinct values (λ)

After finding the eigenvalues (λ) and the corresponding 
eigenvectors (u) the solutions will be:

h1 = u1e
λ1x and h2 = u2e

λ2x

The general solution is given by:

y = c1u1e
λ1x + c2u2e

λ2x
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How to find solutions to system of ODEs

a) Distinct values (λ)

Example 1:
Solve the following ODE’s to find y1(x) and y2(x):
y1‘ = y2,                 y1(0) = 1
y2‘ = y1,                 y2(0) = 1

Example 2:
Solve the following ODE’s to find y1(x) and y2(x):
y1‘ = -3y1 + y2

y2‘ = y1 – 3y2



Section 4.3  p11

How to find solutions to system of ODEs

a) Distinct values (λ)

Example 3:
Solve the following ODE’s to find y1(x) and y2(x):
y1‘ = y1 + y2

y2‘ = 4y1 + y2

Example 4:
Solve the following ODE’s to find y1(x) and y2(x):
y1‘ = 2y1 + 3y2

y2‘ = 2y1 + y2
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In case we have repeated Eigenvalues (i.e. λ1, = λ2 = λ), the 
first solution (h1) can be found as we did in the distinct 
eigenvalue 
(i.e. h1 = u1e

λx). However, for the second solution to be 
linearly independent from the first one we use the 
following format (proof is available in different textbooks):
h2 = u1xeλx + Peλx

Taking the derivative of h2 and equate it with (y’) we obtain 
(A – λI)P = u1

Solving for P we can then find h2. the general solution will 
then be:
y = c1u1e

λx + c2(u1xeλx + Peλx)

How to find solutions to system of ODEs

b) Repeated values of (λ)



Section 4.3  p13

How to find solutions to system of ODEs

b) Repeated values of (λ)

Example 5:
Solve the following ODE’s to find y1(x) and y2(x):
y1‘ = 3y1 - 18y2

y2‘ = 2y1 - 9y2

Example 6:
Solve the following ODE’s to find y1(x) and y2(x):
y1‘ = 4y1 + y2

y2‘ = -y1 + 2y2
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How to find solutions to system of ODEs

c) Complex conjugate values of (λ) 

If eigenvalues happen to be complex conjugates (λ1 = α + iβ) 
and (λ2 = α - iβ) we can proceed as in the case of distinct 
eigenvalues and find the corresponding eigenvectors, which 
will have complex entries as well. The solutions will be:

h1 = u1e
(α + iβ)x and h2 = u2e

(α - iβ)x

The general solution is given by:

y = c1u1e
(α + iβ)x + c2u2e

(α - iβ)x



How to find solutions to system of ODEs

c) Complex conjugate values of (λ) 
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For example in the following set of first order ODEs:
y1‘ = 6y1 - y2 , y2‘ = 5y1 + 4y2

We find that eigenvalue are complex conjugates (λ1 = 5 + 2i) 
and (λ2 = 5 - 2i). Eigenvector corresponding to the first 
eigenvalue can be found by solving:
(1-2i)u1 – u2 = 0
5u1 – (1+2i)u2 = 0 Note that the second equation is simply (1+2i) times the first one. Try it!

Solving gives 

u1 =

In the same way we can obtain the second eigenvector as

u2 =
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How to find solutions to system of ODEs

c) Complex conjugate values of (λ) 

The general solution is then given by:

y = c1                  e
(5 + 2i)x + c2 e(5 - 2i)x

To write this solution in terms of real functions the procedure 
is easy. 
Note that the second eigenvector is a conjugate of the first 
one, so we can use only one of them to rewrite the solution 
in terms of real functions.
Let us take the first eigenvalue (λ1 = 5 + 2i) with its eigenvector 



Section 4.3  p17

How to find solutions to system of ODEs

c) Complex conjugate values of (λ) 

The procedure is as follows:
1- write the eigenvector as a summation of two vectors:

u1 B1 B2

Were u1 is the eigenvector, B1 is the real part of the 
eigenvector, and B2 is the imaginary part of the eigenvector.
2- the first solution (h1) in terms of real functions can then be 

written as:       h1 = [    cos 2x - sin 2x]e5x

3- the second solution (h1) in terms of real functions can then 
be written as:  h2 = [      cos 2x +     sin 2x]e5x
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How to find solutions to system of ODEs

c) Complex conjugate values of (λ) 

In general, let λ1 = α + βi be a complex eigenvalue of the 
coefficient matrix A in a homogeneous system of first order 
ODEs, and let B1 and B2 denote the real and imaginary 
column vectors of its eigenvector. Then the solutions to the 
system can be written as follows:

h1 = [B1 cos βx – B2 sin βx]eαx

h2 = [B2 cos βx + B1 sin βx]eαx

This gives linearly independent solutions to the system. 
The general solution is then written as:

y = c1 [B1 cos βx – B2 sin βx]eαx + c2 [B2 cos βx + B1 sin βx]eαx
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How to find solutions to system of ODEs

c) Complex conjugate values of (λ) 

Example 7:
Solve the following ODE’s to find y1(x) and y2(x) expressed in 
real functions:
y1‘ = 2y1 + 8y2 , y1(0) = 2
y2‘ = -y1 - 2y2 , y2(0) = -1
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Nonhomogeneous 

Linear Systems of ODEs



In this section, we discuss methods for solving 
nonhomogeneous linear systems of ODEs

y’ = A(x)y + g(x)                   (1)
where the vector g(x) is not identically zero. From a general 
solution yh(x) of the homogeneous system: 

y’ = A(x)y                             (2)
a particular solution yp(x) of (1) can be obtained, and we get 
a general solution of (1),

y = yh + yp.

Section 4.6  p21
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• Methods we used in finding the particular solution to 
solve a non-homogeneous second order ODE include the 
Undetermined Coefficients and the Variation of 
Parameters.

• Of the two methods, Variation of Parameters is the more 
powerful technique, which will be the focus of this 
section. 

• As we did in finding the solution of a single non-
homogeneous second order ODE, the solution of the 
homogeneous part is used in finding the particular 
solution of the non-homogeneous part of the system of 
ODEs. 
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Method of Variation of Parameters

This method can be applied to nonhomogeneous linear 
systems (1) [i.e.  y’ = A(x)y + g(x)] 

If h1, h2, …, hn is a fundamental set of solutions of the 
homogeneous system (2) [i.e. y’ = A(x)y] on an interval I, then 
its general solution on the interval is the linear combination 

yh = c1h1 + c2h2 + … + cnhn,  or:
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Method of Variation of Parameters

The last matrix is recognized as the product of an n x n matrix 
with an n x 1. in other words, the general solution can be 
written as the product 

yh = H(x)C,
Where C is the n x 1 column vector of arbitrary constants (c1, c2, 
…, cn), and H(x) is the n x n matrix whose columns consist of 
entries of the solution vectors of the system (2) y’ = A(x)y, i.e.

The matrix H(x) is called a fundamental matrix of the system
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In the discussion that follows, we need to use two properties 
of a fundamental matrix:
1. a fundamental matrix H(x) is nonsingular, so it has an 

inverse (proof is available in many textbooks).
2. If H(x) is a fundamental matrix of a system (2) y’ = A(x)y, 

then: 
H’(x) = AH(x).                        (3)

Method of Variation of Parameters
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Analogous to what was done in solving a single 
nonhomogeneous second order ODE, we ask whether it is 
possible to replace the matrix of constants C in [yh = H(x)C] by 
a column matrix of functions U(x) = [u1(x), u2(x), … un(x)]T, so 
that:

yp = H(x)U(x)                        (4)
Is a particular solution of the nonhomogeneous system (1):

y’ = A(x)y + g(x).
Substituting yp into (1) we optain:
H(x)U’(x) + H’(x)U(x) = AH(x)U(x) + g(x).
If we use equation (3) to replace H’(x) we obtain:
H(x)U’(x) + AH(x)U(x) = AH(x)U(x) + g(x), and so:
H(x)U’(x) = g(x)

Method of Variation of Parameters



Section 4.6  p27

H(x)U’(x) = g(x)
It follows that U’(x) is given by:
U’(x) = H-1(x)g(x) and so U(x) = ∫ H-1(x)g(x) dx

Since yp = H(x)U(x), we conclude that a particular solution of 
system (1) is given by:

yp = H(x) ∫ H-1(x)g(x) dx (5)

Thus the general solution of nonhomogeneous system of linear 
first order ODEs [y’ = A(x)y + g(x) ]  is given by:

y = H(x)C + H(x) ∫ H-1(x)g(x) dx

Method of Variation of Parameters
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Example: 
Find the general solution of the nonhomogeneous system:
y1‘ = -3y1 + y2 + 3x 
y2‘ = 2y1 - 4y2 + e-x

Example: 
Find the general solution of the nonhomogeneous system:
y1‘ = 3y1 - 5y2 + e-x/2 

y2‘ = 0.75y1 - y2 - e-x/2

Method of Variation of Parameters


