BIOCHEMISTRY

Analysis of Biological System

- Despite of all their complexity, an understanding of biological system can be simplified by analyzing the system at several different levels:
 - $^{\circ}$ the cell level: microbiology, cell biology;
 - the molecular level: biochemistry, molecular biology;
 - the population level: microbiology, ecology;
 - the production level: bioprocess.

- Introduction of the biological system at molecule level.
- This section is devoted mainly to the structure and functions of biological molecules.
- Contents: Cell construction
 - Protein and amino acids
 - Carbohydrates
 - Lipids, fats and steroids
 - Nucleic acids, RNA and DNA

Cell Construction

- Living cells are composed of high-molecularweight polymeric compounds such as:
 - Proteins
 - Nucleic acid
 - Polysaccharide and carbohydrate
 - Lipids and other storage materials (fats, polyhydroxbutyrate, glycogen)
 - Metabolites in the form of inorganic salt (NH⁴⁺, PO₄³⁻, K⁺, Ca²⁺, Na⁺, SO₄²⁻)
 - Metabolic intermediates (e.g. acetate)
 - vitamins

- Biopolymers constitute the major structural elements of living cells.
 - Bacterial cell wall = polysaccharide + proteins + lipids
 - Cell cytoplasm = proteins (mostly in the form of enzymes)
 - In eukaryotes, cell nucleus contains nucleic acid in the form of DNA

- <u>Proteins</u> are the most abundant organic molecules in living cells, constituting 40% -70% of their dry weight.
- Proteins are polymers built from amino acid monomers.
- <u>Amino acid</u> is any molecule that contains both carboxyl (–COOH) and amino (H₂N–) functional groups.

Amino Acids

- "R" represents a side chain specific to each amino acid.
- Amino acids are usually classified by properties of the side chain into four groups:
 - Acidic
 - Basic
 - Hydrophilic (polar)
 - Hydrophobic (nonpolar)

- α-amino acid are amino acid in which the amino and carboxylate functionalities are attached to the same carbon, the so-called α-carbon.
- They are the building blocks of proteins.

Standard Amino Acids

 There are 20 standard amino acids that are commonly found in proteins.

H	H	H	H	H
I ,0	0, 1	امر ا	1 ,0	1 ,0
H₃N* - °C - C⊚	H₃N* - °C - C⊕	H ₃ N* - °C - C @	H₃N* - °C - C ⊕	H₃N* - °C - C ⊕
0.0	0′	0,	0.	0'
(CH ₂) ₃	CH ₂	CH ₂	CH ₂	CH ₂
NH	CH,			
I I	CH ₂	l î	[]	N
C=NH ₂	c=0	~		H
1	1		он	
ŃН,	NH ₂	Phenylalanine	Tyrosine	Tryptophan
Arginine	Glutamine	(Phe / F)	(Tyr / Y)	(Trp, W)
(Arg/R)	(Gln / Q)	,	(-27	
	(GIII7 Q)	H	H	H
H		0	م ا	I /
فير ا	Н	H₃N* - °C - C ⊚	H₃N* - °C - C⊕	H ₃ N* - °C - C⊕
H ₃ N ⁺ - °C - C ⊕	l l 🔑	0,		I 20
0, (0.11)	H₃N* - °C - C ⊕	CH ₃	CH ₂	CH ₂
(CH ₂) ₄	H U		HN N	OH
NH,	Glycine	Alanine	Histidine	Serine
Lysine	(Gly / G)	(Ala / A)	(His / H)	(Ser / S)
(Lys/K)	H	Н	Н	Н
	n o	n o	n o	n o
H ₂	H ₂ N+ - °C - C (9	H ₂ N ⁺ - °C - C ⊗	H ₂ N* - *C - C (9	H ₂ N ⁺ - *C - C.0
/	1311 - 0 - 0 - 0	1311 - 0 - 0 0	Ingri - O - O O	Ingir - O - O
H ₂ C CH ₂	ĊH,	CH ₂	H-C-OH	CH ₂
	1	1 1	l	1 1
H2N C - C G	CH,	COOH	CH,	SH
Proline	1 1			
(Pro / P)	COOH			
Н	Glutamic Acid	Aspartic Acid	Threonine	Cysteine
ïο	(Glu / E)	(Asp / D)	(Thr / T)	(Cys / C)
H,N* - C - C 6	н	Н	н	Н
1 Vo	i o	l " .	l " o	م آ
CH ₂	H,N+ - C - C	H,N+ - C - C	H _s N ⁺ -°C · C @	H,N* - *C - C @
1.7	1 0	13	1 %	1 0
CH ₂	CH ₂	CH,	нс-сн,	CH
1	1		1 7	CH ₃ CH ₃
S	ĊН	ċ=0	ĊH ₂	CH₃ CH₃
	611 C		1.	
CH ₃	сн₃ сн₃	NH ₂	CH ₃	
Methionine	Leucine	Asparagine	Isoleucine	Valine
(Met/M)	(Leu / L)	(Asn / N)	(Ile / I)	(Val / V)

 An amino acid having positively and negatively charged groups, a dipolar molecule.

- The pH value at which amino acids have no net charge.
- IEP varies depending on the R group of amino acids.
- At IEP, an amino acid does not migrate under the influence of an electric field.
- Knowledge of IEP can be used in developing processes for protein purification.

Peptides

- <u>Peptide bond</u> is a chemical bond results from the condensation reaction between two amino acids.
 - The carboxyl group of one amino acid reacts with the amino group of the other amino acid, releasing a molecule of water.
 - Peptide bond is planar.

$$R \xrightarrow{O} + N - R' \longrightarrow R - C - N - R' + H_2O$$

 Peptides contain two or more amino acids linked by peptide bonds.

- Polypeptides usually contain fewer than 50 amino acids.
- Larger amino acid chains are called proteins.
 - Protein constitutes 40 70% of dry weight of cell.
 - Its molecular weight is from 6000 to several hundred thousand.
- <u>Prosthetic groups</u>: organic or inorganic components other than amino acids contained in many proteins.
- <u>Conjugated proteins</u>: proteins containing prosthetic groups.

Conjugated protein: **hemoglobin**Prosthetic groups: heme in green (4)
Amino acid units in red and yellow

Heme group: iron containing organometallic complex

- Proteins have diverse biological functions, which can be classified into:
 - Structural protein: glycoprotein, collagen, keratin
 - Catalytic protein: enzymes
 - Transport protein: hemoglobin
 - Regulatory protein: hormones (insulin, growth hormone)
 - Protective proteins: antibodies

Protein 3-D Structure

Proteins are amino acid chains that fold into unique 3-dimensional structures.

The shape into which a protein naturally folds is known as its native state, which is determined by its sequence of amino acids and interaction of groups.

Protein 3-D Structure

- Protein has three-dimensional structure at four level:
 - Primary structure: the unique linear sequence of amino acids, held together by covalent peptide bonds
 - $^{\circ}$ Secondary structure: the way the polypeptide chain is extended and is a result of H-bonding between residues. Two major types of secondary structure are α -helix and β -pleated sheet.

α-helix

β-pleated sheet

Protein 3-D Structure

- Protein has three-dimensional structure at four level:
 - Tertiary structure: the overall shape of a protein molecule and the result of interaction between R groups mainly through hydrophobic interaction.
 The tertiary structure has a profound effect on protein function.
 - Quaternary structure: the interaction between different polypeptide chains of protein.
 This structure is important to the active function of protein especially enzyme.

Protein Denaturation

- Protein can be denatured at its three dimensional structure. Protein denature could be reversible or irreversible.
- Proteins denature when they lose their threedimensional structure - their chemical conformation and thus their characteristic folded structure.
- This change is usually caused by heat, acids, bases, detergents, alcohols, heavy metal salts, reducing agents or certain chemicals such as urea.

CARBOHYDRATES

- Carbohydrates are synthesized from carbon dioxide and water through photosynthesis, (CH₂O)_n (n ≥ 3), or C_n(H₂O)_{n-1}.
- Carbohydrates play critical roles as structural and storage compounds in cells.
- Carbohydrates are classified by the number of sugar units:
 - monosaccharides
 - disaccharides
 - polysaccharides

- Monosaccharides are the simplest form of carbohydrates containing three to nine carbon atom (CH₂O)n.
- They consist of one sugar and are usually colorless, water-soluble, crystalline solids.
- Important monosaccharides include glucose,
 p-ribose and deoxyribose.

Glucose

D-Glucose as a straight chain

- Glucose (Glc) is one of the main products of photosynthesis and starts cellular respiration.
- The cell uses it as a source of energy and metabolic intermediate.
- Glucose is the source for glycolysis and citric acid cycle in metabolic pathway.
- Glc is produced commercially via the enzymatic hydrolysis of starch.

D-Ribose and Deoxyribose

 D-Ribose and deoxyribose are pentose containing five carbon ring-structure sugar molecules

- D-Ribose is a component of the ribonucleic acid (RNA) that plays central role for protein synthesis.
- Ribose is critical to living creatures. It is also a component of adenosine triphosphate (ATP).
- Deoxyribose is a component of deoxyribonucleic acid (DNA) that is important genetic material.

Disaccharides

- Formed by the condensation of two monosaccharides.
- e.g. Maltose is formed by the condensation of two glucose molecules via 1, 4-glycosidic linkage.

- Common disaccharides:
 - Sucrose (known as "table sugar", "cane sugar") = β -D-glucose + β -D-fructose
 - Lactose (milk sugar) = β -D-glucose + β -D-glactose

Polysaccharides

- Formed by the condensation of more than two monosaccharides by glycosidic bonds.
- Polysaccharides have a general formula of $C_n(H_2O)_{n-1}$ where n is usually a large number between 200 and 500.
- They are very large, often branched, molecules.
- They tend to be amorphous, insoluble in water, and have no sweet taste.
- Examples include
 - storage polysaccharides such as starch, and
 - structural polysaccharides such as chitin.