LIPIDS, FATS, AND STEROIDS

- Energy storage in cell membrane and regulators of cell metabolism.
- Lipids are hydrophobic biological compounds that are <u>insoluble in water</u>, but soluble in nonpolar solvent such as benzene, chloroform and ether.
- They are present in the nonaqueous biological phase such as plasma membrane.
- Cells can alter the mix of lipids (lipoproteins and lipopolysaccharides) in their membrane
 - to compensate for changes in temperature or
 - to increase their tolerance to the presence of chemical agents such as ethanol.

- The major component in most lipids
- Made of a straight chain of hydrocarbon (hydrophobic) group, with a carboxyl group (hydrophilic) at the end.
- A typical saturated fatty acid has the form of CH₃- (CH₂)_n - COOH where (n) is typically between 12 and 20.
- Unsaturated fatty acid contain double –C=C– bond such as oleic acids:

$$CH_3 - (CH_2)_7 - HC = CH - (CH_2)_7 - COOH$$

Fats

- Lipids that can serve as biological fuelstorage molecules.
- Esters of fatty acids with glycerol

 Phospholipids such as glycerophospholipids are built on a glycerol core to which are linked two fatty acid-derived "tails" by ester linkages and one "head" group by a phosphate ester linkage.

 Phospholipids are key components to control the entry or exit of molecules in the cell membrane.

Steroids

- A lipid characterized by a carbon skeleton with four fused rings.
- Different steroids vary in the functional groups attached to these rings.
- Naturally occurring steroids are hormones that are important regulators of animal development and metabolism at very low concentrations
 (~ 10⁻⁸ M)

- **Cholesterol** is a well known steroid presents in membranes of animal tissues.
 - It is a precursor of many steroids.
- Cortisone is an anti-inflammatory used to treat rheumatoid arthritis and some skin diseases.
- Derivatives of estrogen and progesterone are used as contraceptives.

NUCLEIC ACIDS, RNA, AND DNA

- Nucleic acid is a complex, high-molecularweight biochemical macromolecule composed of nucleotide chains.
- The most common nucleic acids are:
 - Deoxyribonucleic acid (DNA) that stores and preserves genetic information
 - Ribonucleic acid (RNA) that plays a central ole in protein synthesis
- Nucleic acids are found in all living cells.

Nucleotides

- Nucleotides are the building blocks of DNA and RNA.
- Nucleotides serve as molecules to
 - store energy and
 - reducing power.

Nucleotides Components

Nucleotides Storing Energy

- Adenosine triphosphate (ATP) and guanosine triphosphate (GTP) are the major sources of energy for cell work.
 - The phosphate bonds in ATP and GTP are high-energy bonds.
 - The formation of phosphate bonds or their hydrolysis is the primary means by which cellular energy is stored or used.

- The two most common carriers of reducing power are nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP).
 - Cells store and release hydrogen atoms from biological oxidation-reduction reactions by using those nucleotide derivatives (NAD and NADP).

Nucleotides as Monomers

Nucleotides are important monomers.

• DNA and RNA are formed by the condensation of nucleotides.

 The nucleotides are linked together between the 3' and 5' carbons' successive pentose (sugar) rings by phosphodiester bonds

- Deoxyribonucleic acid (DNA) is formed by condensation of deoxyribonucleotides.
- DNA is a very large threadlike macromolecule (MW, 2x10⁹ D in E. coli).
- DNA molecules are two stranded and have a double-helical three-dimensional structure.
- The sequence of base in DNA carries genetic information.
- The sugar an phosphate groups perform structural role
- DNA contains adenine (A) and guanine (G), thymine
 (T) and cytosine (C).

Double Helical DNA Structure

- The phosphate and deoxyribose units are on the outer surface, but the bases point toward the chain center. The plane of the bases are perpendicular to the helix axis.
- The diameter of the helix is 2 nm, the helical structure repeats after ten residues on each chain, at an interval of 3.4 nm.

- The two chains are held together by hydrogen bonding between pairs of bases:
 - ∘ Adenine (A) ↔ Thymine (T) by two H-bonds
 - Guanines (G) ↔ Cytosine (C) by three H-bonds
- The sequence of bases along a DNA strand is not restricted in any way, although each strand must be complementary to the other. The precise sequence of bases carries genetic information.

DNA Replication

Regeneration of DNA from original DNA segments.

- DNA helix unzips and forms two separate strands.
- Each strand will form a new double strands.
- The two resulting double strands are identical, and each of them consists of one original and one newly synthesized strand.
 - This is called semiconservative replication.
- The base sequences of the new strand are complementary to that of the parent strand.

Ribonucleic Acid (RNA)

- Ribonucleic acid (RNA) is formed by condensation of ribonucleotides.
- RNA is a long, unbranched macromolecule and may contain 70 to several thousand nucleotides.
- RNA molecules are usually single stranded.
- RNA contains adenine (A), guanine (G), cytosine
 (C) and uracil (U).
- A ↔ U, G ↔ C are present in some double helical regions of t-RNA.

- Messenger RNA (m-RNA): synthesized on chromosome and carries genetic information to the ribosomes for protein synthesis.
 It is a large molecule and has short half-life.
- Transfer RNA (t-RNA): a relatively small and stable molecule that carries a specific amino acid from the cytoplasm to the site of protein synthesis on ribosomes.
- Ribosomal RNA (r-RNA): the major component of ribosomes, constituting nearly 65%. r-RNA is responsible for protein synthesis.
- Ribozymes: RNA molecules that have catalytic properties.

Summary of Cell Construction

Biopolymers	protein	Carbohydrates (polysaccharides)	DNA	RNA	lipids
subunit					
bonds for subunit linkage					
functions					
Characteristic three-D structure					