

Cell Nutrients

- Cell's composition differs greatly from its environment.
- A cell must selectively remove desirable compounds from its extracellular environment and retain other compounds within itself.
- Semipermeable membrane is the key to this selectivity.

Organism	Composition (%) Dry Weight			Typical Population	Typical Dry	
	Protein	Nucleic Acid	Lipid	in Culture (cells/L)	Weight of the Culture (g/L)	Comments
Viruses	50-90	50-50	<1	$10^{11} - 10^{12}$	0.005^{a}	Viruses with a lipoprotein sheath may contain 25% lipid
Bacteria	40-70	13–34	10–15	2×10^{11} -2×10^{12}	0.2-29	PHB content may reach 90%
Filamentous fungi	10-25	1–3	2–7		30-50	Some Aspergillus and Penicillium sp. contain 50% lipid
Yeast	40-50	4–10	1–6	$1 - 4 \times 10^{11}$	10-50	Some <i>Rhodotorula</i> and <i>Candida</i> sp Contain 50% lipid
Small unicellular algae	10-60 (50)	1–5 (3)	4–80 (10)	$4-8 \times 10^{10}$	4-9	Numbers in () are commonly found values but the composition varies with the growth conditions
Mammalian cells ^b	60	5	16	109-1011		Mammalian cells are about three magnitudes bigger than <i>E. coli</i> in volume

Intracellular composition if cells varies depending on the **type and age** of cells, and the composition of **nutrient media**.

138

Cell Nutrients

- Nutrients required by cells can be classified in two categories:
 - Macronutrients are needed in concentrations larger than 10⁻⁴ M.
 C, N, O, H, S, P, Mg²⁺, and K⁺.
 - Micronutrients are needed in concentrations less than 10⁻⁴ M.
 - Mo²⁺, Zn²⁺, Cu²⁺, Mn²⁺, Ca²⁺, Na⁺, vitamins, growth hormones and metabolic precursors.

MACRONUTRIENTS C, N, O, H, S, P, MG²⁺, K⁺

140

Macronutrients Carbon

- Carbon compounds are the major sources of cellular carbon and energy.
- Microorganisms are classified in two categories on the bases of their carbon sources:
 - Heterotrophs use organic carbon sources such as carbohydrates, lipid, hydrocarbon as a carbon and energy source.
 - Autotrophs can use carbon dioxide as a carbon source. They can form carbohydrate through light or chemical oxidation.

Carbon sources:

- In industrial fermentation, the most common carbon sources are molasses (sucrose), starch (glucose, dextrin), corn syrup, and waste sulfite liquor (glucose).
- In laboratory fermentations, glucose, sucrose and fructose are the most common carbon sources.
- Ethanol, methanol and methane also constitute cheap carbon sources for some fermentations.

142

Macronutrients Carbon

Fermentation:

- In aerobic fermentations, about 50% of substrate carbon is incorporated into cell mass and about 50% of it is used as energy sources.
- In anaerobic fermentation, a large fraction of substrate carbon is converted to products and a smaller fraction is converted to cell mass (less than 30%).

Macronutrients Nitrogen

- Nitrogen compounds are important sources for synthesizing proteins and nucleic acid.
- Nitrogen constitutes 10% to 14% of cell dry weight.
- The most commonly used nitrogen sources are:
 - ammonia (NH₃) or ammonium (NH₄⁺) salts such as ammonium chloride, sulfate, and nitrate
 - protein, peptides, and amino acids
 - urea may also be used as a source by some microorganissms

144

Macronutrients Nitrogen

- In industrial fermentation, commonly used nitrogen sources are
 - soya meal
 - yeast extract
 - distillers solubles
 - cottonseed extract
 - dried blood
 - corn steep liquor

- Oxygen constitutes about 20% of the cell dry weight.
- Molecular oxygen is required as terminal electron acceptor in the aerobic metabolism of carbon compounds.
- Gaseous oxygen is introduced into growth media by sparging air or by surface aeration.
- Improving the mass transfer of oxygen in a bioreactor is a challenge in reactor control.

Macronutrients

Hydrogen: 8% of dry cell weight

- Major source: carbon compounds such as carbohydrates.
- Some bacteria can utilize hydrogen as an energy source!

Sulfur: 1% of cell dry weight

- present in protein and some coenzymes.
- Sources:
 - Sulfate salts (e.g. (NH₄)₂SO₄
 - Sulfur containing amino acids
- some autotrophs can use S⁰ and S²⁺ as energy sources.

Phosphorus constitutes 3% of cell dry weight.

- Present in nucleic acids and in the cell wall of some gram-positive bacteria
- A key element in the regulation of cell metabolism
- Sources:
 - Inorganic phosphates (most common).
 - Organic phosphates such as glycerophosphates
- The phosphate level should be less than 1 mM for the formation of many secondary metabolites such as antibiotics.

148

Macronutrients

Potassium:

- a cofactor for some enzyme and is required in carbohydrate metabolism.
 - cofactor: any of various organic or inorganic substances necessary to the function of an enzyme.
- Source: potassium phosphates.

Magnesium:

- a cofactor for some enzyme and is present in cell walls and membranes.
- Ribosomes specifically requires Mg²⁺.
- Sources: Magnesium sulfate or chloride

MICRONUTRIENTS MO²⁺, ZN²⁺, CU²⁺, MN²⁺, CA²⁺, NA⁺, VITAMINS, GROWTH HORMONES

AND METABOLIC PRECURSORS

150

Micronutrients

- Micronutrients could be classified into the following categories (required less than 10⁻⁴ M):
 - Most widely needed trace elements.
 - Trace elements needed under specific growth conditions .
 - Trace elements that are rarely required.

- Most widely needed elements are Fe, Zn and Mn. Such elements are:
 - important cofactors for some enzyme
 - play regulatory role in fermentation processes and metabolisms
 - Play a role in excretion of primary metabolites
- 2. Trace elements needed under specific growth conditions are Cu, Co, Mo, Ca, Na, Cl, Ni, and Se.
 - For example, copper is present in certain respiratory-chain components and enzymes.

Micronutrients

- 3. Trace elements that are rarely required are B, Al, Si, Cr, V, Sn, Be, F, Ti, Ga, Ge, Br, Zr, W, Li and I.
 - These elements are required in concentrations of less than 10⁻⁶ M and are toxic at high concentration.

- Growth factor is also micronutrient.
- Growth factor stimulates the growth and synthesis of some metabolites.
- Vitamin, hormones and amino acids are major growth factors.
- They are required in concentrations of less than 10⁻⁶M.

Growth Media

- There are two major types of growth medium:
 - Defined media
 contain specific amounts of pure chemical
 compounds with known chemical compositions
 - Complex media
 contain natural compounds whose chemical
 composition is not exactly known

specific amounts with known compositions

• Examples:

Glucose (30g/L), (NH₄)₂HPO₄ (6g/L),
 NH₄Cl (1.32 g/L), MgSO₄.7H₂O (0.6 g/L),
 CaCl₂ (0.05 g/L), KH₂PO₄ (10.0 g/L)

Advantage:

- Results are more reproducible
- The operator has better control of the fermentation.
- Product recovery and purification processes are easier and cheaper than complex media.

156

Complex Growth Media

- natural compounds whose chemical composition is not exactly known
- Example:
 - yeast extract, peptone, molasses or corn steep liquor.
- Usually can provide necessary growth factor, vitamins, hormones, and trace elements resulting in *higher cell yields* compared to defined medium
- Often *cheaper* than defined medium
- More complex separation