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Outline of Enzymes 

 Introduction 
◦ Features of enzyme catalysis 

 Enzyme Kinetics 
◦ Models for simple enzyme kinetics 

◦ Effect of pH and Temperature 

 Immobilized Enzyme Systems 

◦ Methods of immobilization 

◦ Diffusional limitations  

 Large-Scale Production of Enzymes 

 Medical and Industrial Utilization of Enzymes 
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What is an Enzyme? 

 An enzyme is a protein molecule that is a 
biological catalyst that catalyzes chemical 
reactions.  

 Enzymes have high molecule weight  
(15,000< mw< several million Daltons). 

 Enzymes are specific, versatile, and very 
effective biological catalyst, resulting in 
much higher reaction rates as compared to 
chemically catalyzed reactions under 
ambient conditions. 

Enzymes 

 Holoenzyme is an enzyme contains non-protein 
group. 

◦ Such non-protein group is either a cofactor such 
as metal ions, Mg, Zn, Mn, Fe 

◦ or coenzyme, such as a complex organic 
molecule, NAD, or some vitamins. 

 Apoenzyme is the protein part of holoenzyme. 

 

Holoenzyme = apoenzyme + cofactor (coenzyme) 



10/17/2016 

3 

Enzyme Nomenclature 

Enzyme is named by adding the suffix –ase to 

the end of the substrate 
that is to be converted to the 

desired product. 

Example: 

Urease 

changes urea into ammonium 
carbonate 

the reaction catalyzed 

Example: 

Alcohol dehydrogenase 

catalyzes the removal of 
hydrogen from alcohol 

Enzyme Classification 

 International Classification of Enzymes by the 
International Classification Commission in 1864. 
 

 Enzymes are substrate specific and are 
classified according to the reaction they 
catalyze. 

 
 Enzyme Nomenclature, 1992, Academic Press, San 

Diego, California, ISBN 0-12-227164-5.  
 

http://www.chem.qmul.ac.uk/iubmb/enzyme/ 
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Enzyme Classification 

 Enzymes can be classified into six main 
classes: 

1. Oxidoreductases: catalyze the oxidation and 
reduction 
Example: CH3CH2OH → CH3CHO+H+ 

 

2. Transferases: catalyze the transfer of a 
functional group (e.g. a methyl or phosphate 
group) from one molecule (called the donor) 
to another (called the acceptor).  
  A–X + B → A + B–X 

Enzyme Classification 

3. Hydrolases: catalyze the hydrolysis of a 
chemical bond. A–B + H2O → A–OH + B–H 
Example: peptide bond 

 

4. Lyases: catalyze the breaking of various 
chemical bonds by means other than 
hydrolysis and oxidation, often forming a new 
double bond or a new ring structure 
Example:CH3COCO-OH → CH3COCHO 
(dehydratase) 
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Enzyme Classification 

5. Isomerases: catalyze the interconversion of 
isomers. 
Example: - 

glucose-6-phosphate 
phosphoglucose isomerase

 fructose-6-phosphate 

 

6. Ligases: catalyze the joining of two molecules 
by forming a new chemical bond, with 
accompanying hydrolysis of ATP or other 
similar molecules 

ATP + L-tyrosine + tRNATyr ↔ AMP + diphosphate + L-tyrosyl-tRNATyr  

 

Mechanism of Enzyme Catalysis 

What is a catalyst?  

 A catalyst is a substance that accelerates the 
rate (speed) of a chemical reaction without 
itself being consumed or transformed.  

 

 It participates in reactions but is neither a 
chemical reactant nor chemical product.  

𝑆 ↔ 𝑃 
𝑆 + 𝐶 𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡 ↔ 𝑃 + 𝐶 𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡  
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Mechanism of Enzyme Catalysis 

 Catalysts provide an alternative pathway of 
lower activation energy for a reaction to 
proceed whilst remaining chemically unchanged 
themselves. 

Free energy change 

Mechanism of Enzyme Catalysis 

 Catalysts lower the activation energy of the 
reaction catalyzed by binding the substrate and 
forming an catalyst-substrate complex which 
produces the desired product. 

 

 Catalysts lower the activation energy of the 
catalyzed reaction, but does not affect free 
energy change or equilibrium constant. 
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Mechanism of Enzyme Catalysis 

 The reaction rate v is strongly affected by the 
activation energy of the reaction. 

𝑣 =  𝑘 ∗ 𝑓(𝑆) 

𝑓(𝑆) denotes the function of substrate concentration 

𝑘 is the rate constant, expressed by Arrhenius equation:  
   𝑘 = 𝐴 ∗ exp (−𝐸/𝑅𝑇)  

 𝐴 is a constant for a specific system 

 𝐸 is the activation energy  

 𝑅 is the universal gas constant 

 𝑇 is the temperature (in degrees Kelvin).  

When 𝑬 is lowered, 𝒌 is increased, and so is the 
rate. 

14 

Mechanism of Enzyme Catalysis 

 Catalysts do not affect free energy change or 
equilibrium constant of the catalyzed 
reaction. 

◦ Free energy (G) is the energy stored in the 
bonds of a chemical that can be harnesses to 
do work. 

◦ Free energy change (ΔG)  of a reaction refers 
to the change between the free energy in the 
product(s) and that in the substrate(s). 
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Mechanism of Enzyme Catalysis 

For an example, 

𝑆 ↔ 𝑃 

𝑆 + 𝐶 𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡 ↔ 𝑃 + 𝐶 𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡  

 For uncatalyzed reaction: 

 free energy change ΔG uncatalyzed = G(P) – G(S) 

 For catalyzed reaction: 

 free energy change ΔG catalyzed = G(P) – G(S)  

 Therefore,          ΔG uncatalyzed= ΔG catalyzed 

Mechanism of Enzyme Catalysis 

For an example, 
𝑆 ↔ 𝑃 

𝑆 + 𝐶 𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡 ↔ 𝑃 + 𝐶 𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡  

• Free energy change determines the reaction 
equilibrium – the maximum amounts of  the product 
could be theoretically produced. 

• Reaction equilibrium is represented by reaction 
equilibrium constant 𝐾𝑒𝑞  =  𝛾𝑝[𝑃]/ 𝛾𝑠[𝑆] 

   − Δ𝐺𝑢𝑛𝑐𝑎𝑡𝑎𝑙𝑦𝑧𝑒𝑑  =  𝑅𝑇 ln 𝐾𝑒𝑞  

[   ] represents the concentration of the compounds. 

 𝛾𝑝 and γs  activity coefficients of product and substrate, 
respectively. 
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Mechanism of Enzyme Catalysis 

 Catalysts can not increase the amounts of the 
product at reaction equilibrium. 

 
 

 Catalysts can only accelerate the reaction rate 
to reach the reaction equilibrium. 

Characteristics of Enzyme Catalysis 

• Effective to increase the rate of a reaction.  
Most cellular reactions occur about a million 
times faster than they would in the absence of 
an enzyme.  

• Specific, act with one reactant (called a 
substrate) to produce products.  

• Regulated from a state of low activity to high 
activity and vice versa. 
Some enzymes are inhibited by formed product 

• Versatile: More than 3000 enzymes are 
identified 
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Efficiency of Enzyme Catalysis 

For an example, in the reaction of decomposition 

of hydrogen peroxide H2O2, the activation energy 

E0 of the uncatalyzed reaction at 20oC is  

18 kcal/mol, whereas that for chemically 

catalyzed (Pt) and enzymatically catalyzed 

(catalase) decomposition are 13 kcal/mol (EC) and 

7 kcal/mol (EEn), respectively. 

Compare the reaction rates at these three 

different conditions.  

Enzyme catalysis is efficient! 

Assuming the reaction is first order: 
 If it takes 1 h to complete the reaction with 

enzyme,  

 it will take 1.5 x 108 hours = 6,250,000 days = 
17,100 years to complete the same reaction 
without enzyme catalysis, or 

 30,000 hours = 1250 days = 3.4 years with 
chemical catalyst! 

 

Work with your partner to prove that these 
numbers are correct! (R=1.987 cal/mol. K) 
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Specificity of Enzyme Catalysis 

 Much of the catalytic power of enzymes comes 
from their bringing substrates together in favorable 
orientations to promote the formation of the 
transition states in enzyme-substrate (𝐸𝑆) 
complexes.  

𝐸  +  𝑆 →  𝐸𝑆 →  𝐸  +  𝑃  

 The substrates are bound to a specific region of the 
enzyme called the active site.  

 Most enzymes are highly selective in the substrates 
that they bind. The catalytic specificity of enzymes 
depends in part on the specificity of binding. 

Common Features of Enzyme 

Active Sites  

 The active site of an enzyme is the region that binds 

the substrates (and the cofactor, if any). 

 It also contains the residues that directly participate 

in the making and breaking of bonds.  

These residues are called the catalytic groups.  

 The interaction of the enzyme and substrate at the 

active site promotes the formation of the transition 

state (𝐸𝑆).  
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Common Features of Enzyme 

Active Sites  
• The active site is a three-dimensional cleft formed 

by groups that come from different parts of the 
amino acid sequence. 

• The active site takes up a relatively small part of the 
total volume of an enzyme.  

 The "extra" amino acids serve as a scaffold to 
create the three-dimensional active site from 
amino acids that are far apart in the primary 
structure.  

• Substrates are bound to enzymes by multiple weak 
attractions, like van der Waals forces and hydrogen 
bonding (much weaker than covalent bonds.) 

Specificity of Enzyme Catalysis 

• The specificity of binding depends on the 

precisely defined arrangement of atoms in an 

active site.  

 The Lock-and-Key Model (Emil Fischer, 1890)  
◦ The enzyme has a fit shape before the substrate 

is bound.  

 The Induced-Fit Model (Daniel Koshland, Jr. 1958) 

◦ Enzymes are flexible and the shapes of the active 

sites can be markedly modified by the binding of 

substrate.  
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Lock-and-Key Model 

 

 

 

 

 

 

 In this model, the active site of the unbound 

enzyme is complementary in shape to the 

substrate 

 

Induced-Fit Model 

 

 

 

 

 

 In this model, the enzyme changes shape on 
substrate binding. 

 The active site forms a shape complementary to 
the substrate only after the substrate has been 
bound.   
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Regulated Enzyme Catalysis 

Example:  Glucose  → Ethanol  

Used enzymes: Hexokinase, glucose 
phosphate Isomerase, etc. 

 

 The catalysis is regulated by product 
concentration. 

◦ At high product (ethanol) concentration, the 
enzyme was deactivated when binding with 
ethanol,  the forward reaction is inhibited. 

 

Summary of Introduction 

 Enzyme classification 
 

 Enzyme have common catalytic features 

  - decrease the reaction activation energy 

  - does not affect equilibrium 
 

 Enzyme special catalytic features 

    - Efficient 

    - Specific 

    - Regulated  

    - Versatile 
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ENZYME KINETICS 

30 

Enzyme Kinetics 

 Study the rate of enzyme catalyzed 

reactions. 

 Models for enzyme kinetics 

◦ Michaelis-Menten kinetics 

◦ Inhibition kinetics 

 Effect of pH and Temperature 
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Michaelis-Menten Kinetics  

   (Saturation Kinetics) 

 This model is based on data from batch reactors 

with constant liquid volume. 

◦ Initial substrate, [𝑆0] and enzyme [𝐸0] 

concentrations are known. 

◦ An enzyme solution has a fixed number of 

active sites to which substrate can bind.  

◦ At high substrate concentrations, all these 

sites may be occupied by substrates or the 

enzyme is saturated. 

Saturation Enzyme Kinetics 
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M-M Enzyme Kinetics 

 Saturation kinetics can be obtained from a simple 
reaction scheme that involves a reversible step for 
enzyme-substrate complex formation and a 
dissociation step of the 𝐸𝑆 complex. 

𝐸 + 𝑆
𝑘1

↔
𝑘−1

𝐸𝑆
𝑘2
→ 𝐸 + 𝑃 

where the rate of product formation 𝑣 (moles/l.s,  
g/l.min) is 

𝑣 =
𝑑[𝑃]

𝑑𝑡
= 𝑘2[𝐸𝑆] 

𝑘𝑖 is the respective reaction rate constant. 

Enzyme Kinetics 

The rate of variation of ES complex is 

 

 

 

Since the enzyme is not consumed, the 
conservation equation on the enzyme yields 

][][]][[
][

211 ESkESkSEk
dt

ESd
 

][][][ 0 EESE 

][]0[][ ESEE 
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Enzyme Kinetics 

][2][1]][[1
][

ESkESkSEk
dt

ESd


][
][

2
ESk

dt

Pd
v 

][]0[][ ESEE 

How to use independent variable [𝑆] to 

represent 𝑣? 

Enzyme Kinetics 

At this point, an assumption is required to 
achieve an analytical solution.  

 

- The rapid equilibrium assumption 

   Michaelis - Menten Approach 
 

- The quasi-steady-state assumption 

 Briggs and Haldane Approach 
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Michaelis - Menten Approach 

The rapid equilibrium assumption: 
 

 Assumes a rapid equilibrium between the 
enzyme and substrate to form an 
[𝐸𝑆] complex.  
 

 

 

 EPES
k

 2𝐸 + 𝑆 
𝑘

− 1 

𝑘1 

][]][[ 11 ESkSEk 

Michaelis - Menten Approach 

][

]][[

1

1'

ES

SE

k

k
Km  

 The equilibrium constant 𝐾′𝑚 can be 
expressed by the following equation in a 
dilute system. 

 

EPES
k

 2𝐸 + 𝑆 
𝑘

− 1 

𝑘1 
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Michaelis - Menten Approach 

Then rearrange the above equation, 

 

 

 

Substituting [𝐸] in the above equation with 
enzyme mass conservation equation  

 

 

yields, 

'

]][[
][

mK

SE
ES 

][]0[][ ESEE 

'

]])[[]0([
][

mK

SESE
ES




Michaelis - Menten Approach 

[𝐸𝑆] can be expressed in terms of [𝑆], 

 

 

 

Then the rate of production formation 𝑣 can be 
expressed in terms of [𝑆], 

 

 

 

where   represents the maximum forward 
rate of reaction (e.g. moles/L-min). 

 

 

]['

]][0[
][

SmK

SE
ES




]['

][

]['

]][0[
][

][ 2

2
SmK

SmV

SmK

SEk
ESk

dt

Pd
v







]0[
2

EkmV 
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 𝐾𝑚
′  is often called the Michaelis-Menten 

constant, mol/L, mg/L. 

◦ The prime reminds us that it was derived by 
assuming rapid equilibrium in the step of 
enzyme-substrate complex formation. 

◦ Low value indicates high affinity of enzyme to the 
substrate. 

 

Michaelis - Menten Approach 

][

]][[

1

1'

ES

SE

k

k
Km  

Michaelis - Menten Approach 

 What is the value of 

𝑣 when 𝑆 = 𝐾𝑚
′ ? 

 Work with your 

partner to answer this 

question! 

 

 

 

 𝐾𝑚
′  corresponds to 

the substrate 

concentration, giving 

the half-maximal 

reaction velocity.  

 When 𝑆 = 𝐾𝑚
′ , 

 𝑣 =
1

2
𝑉𝑚 
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Michaelis - Menten Approach 

 𝑉𝑚 is maximum forward rate (e.g. mol/L-s) 

 It changes with initial enzyme concentration. 

 

 

 It is determined by the rate constant 𝑘2 of the 
product formation and the initial enzyme 
concentration. 

 But it is not affected by the substrate 
concentration. 

 The unit of 𝑘2 is determined by the unit of enzyme 
concentration. 

]0[
2

EkmV 

Briggs-Haldane Approach 

The quasi-steady-state assumption: 

 A system (batch reactor) is used in which the 
initial substrate concentration [S0] greatly 
exceeds the initial enzyme concentration 
[𝐸0].   

 Since [𝐸0] is so small,  

    𝑑[𝐸𝑆]/𝑑𝑡 ≈  0 

 It is shown that in a closed system the quasi-
steady-state hypothesis is valid after a brief 
transient if [𝑆0] >>  [𝐸0]. 
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The quasi-steady-state 

hypothesis is valid after a 

brief transient if [𝑆0] >>  [𝐸0]. 

Briggs-Haldane Approach 

 With such assumption, the equation 
representing the accumulation of [𝐸𝑆] becomes 

 

 

 

 Solving this algebraic equation yields 

 

 

0][][]][[
][

211   ESkESkSEk
dt

ESd

21

1 ]][[
][

kk

SEk
ES





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Briggs-Haldane Approach 

Substituting the enzyme mass conservation 
equation 

 

in the previous yields 

 

 

Using [𝑆] to represent [𝐸𝑆] yields 

 

 

 

][]0[][ ESEE 
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S
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Briggs-Haldane Approach 

Then the product formation rate becomes 

 

 

 

Grouping the constants results in:  

 

where 𝑉𝑚 = 𝑘2[𝐸0] same as that for rapid 

equilibrium assumption, and  

 

- When 𝑘2 ≪ 𝑘−1,  
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Comparison of the Two 

Approaches 

1

1'

k

k
mK 

][

][

SmK

SmV
v




]0[
2

EkmV 

1

21

k

kk
mK



Michaelis-Menten  

when 𝑘2 ≪ 𝑘−1,  
1

1'
k

k
KK mm



]['

][

SmK

SmV
v




]0[
2

EkmV 

Briggs-Haldane  

𝑑[𝐸𝑆]/𝑑𝑡 ≈  0 ][1]][[1 ESkSEk Assumption: 

Equation: 

Maximum 
forward  
reaction rate: 

Constant: 

 The enzyme, fumarase, has the following kinetics 
constants: 

 

 

 where k1=109 M-1s-1, k-1=4.4x104 s-1, k2 = 103 s-1 

a. What is the value of the Michaelis constant for 
this enzyme? What is the Km in BH approach? 

b. At an enzyme concentration of 10-6 M, what will 
be the initial rate of product formation at a 
substrate concentration of 10-3M? Calculate them 
using the two approaches. 

 

 

 

k1 

EP
k

ES  2E+S 
k-1 

Fumarase  



10/17/2016 

26 

Experimentally Determining Rate Parameters 

for Michaelis-Menten Type Kinetics 

 

 

 The determination of 𝑉𝑚 and 𝐾𝑚 are typically 
obtained from initial-rate experiments. 
◦ A batch reactor is charged with known initial 

concentrations of substrate [𝑆0] and enzyme [𝐸0] 
at specific conditions such as T, pH, and Ionic 
Strength. 

◦ The product or substrate concentration is plotted 
against time.  

◦ The initial slope of this curve is estimated: 
𝑣 = 𝑑[𝑃]/𝑑𝑡|𝑡=0 =  − 𝑑[𝑆]/𝑑𝑡|𝑡=0 

 

 

][

][

SmK

SmV
v




Experimentally Determining Rate Parameters 

for Michaelis-Menten Type Kinetics 

 

 

𝑣 = 𝑑[𝑃]/𝑑𝑡|𝑡=0 =  − 𝑑[𝑆]/𝑑𝑡|𝑡=0 

 

 

 

 

 

 

 The value 𝑣 depends on the values of [𝑆0] and [𝐸0]  
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SmV

mK

mVv

111


Lineweaver-Burk Plot  

 (Double-Reciprocal Plot) 

 

 

 Linearizing it in double-reciprocal form: 

 

][

][

SmK

SmV
v




SmV

mK

mVv

111


Lineweaver-Burk Plot  

 (Double-Reciprocal Plot) 

 slope = 𝐾𝑚/𝑉𝑚  

 y-intercept = 1/𝑉𝑚. 

 This plot gives good estimate of 𝑉𝑚 
but not 

necessarily on 𝐾𝑚 
 

◦ gives undue weight to  
inaccurate measurement  
made at low concentration 

◦ give insufficient weight  
to more accurate  
measurements made  

at high concentration. 
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Eadie-Hofstee Plot 

 the slope = – 𝐾𝑚 

 y-axis intercept = 𝑉𝑚 

 Can be subject to  
large error since  
both coordinates  
contain dependent  
variable 𝑣, but there  
is less bias on points  
at low [𝑆]. 

 

][S

v
mKmVv 

Hanes-Woolf (Langmuir) Plot 

 

 slope is = 1/𝑉𝑚 

 y-axis intercept  
= 𝐾𝑚/𝑉𝑚 

 better fit:  
even weighting  
of the data 

][
1][

S
mVmV

mK

v

S




10/17/2016 

29 

𝑽𝒎 = 𝒌𝟐[𝑬𝟎] 

 The unit of 𝑉𝑚 is the same as that of a reaction rate 
(moles/l-min, g/l-s) 

 The dimension of 𝑘2 must reflect the units of [𝐸0] 

◦ if enzyme is highly purified, it may be possible to 
express [𝐸0] in mol/l, g/l, then 𝑘2 is in 1/time. 

◦ if the enzyme is crude, its concentration is in units.  

 A “unit” is the amount of enzyme that gives a 
predetermined amount of catalytic activity under 
specific conditions. 
 (Textbook, Bioprocessing Engineering, M. Shuler, p.66-67) 

◦ if 𝑉𝑚 is in mmol/ml-min and [𝐸0] is in units/ml, 
then 𝑘2 should be in mmol/unit-min 

Enzyme Activity 

 Specific Activity is the number of units of 
activity per amount of total protein. 
 

 Example: A crude cell lysate might have a 
specific activity of 0.2 units/mg or ml protein 
upon which purification may increase to 10 
units/mg or ml protein. 
 

 One unit would be formation of one μmol 
product per minute at a specific pH and 
temperature with a substrate concentration 
much greater than the value of 𝐾𝑚. 
 


