INHIBITED ENZYME KINETICS

61

Inhibited Enzyme Kinetics

- Inhibitors may bind to enzyme and reduce their activity.
- Enzyme inhibition may be reversible or irreversible.
- For reversible enzyme inhibition, there are
 - Competitive inhibition
 - <u>Uncompetitive inhibition</u>
 - Noncompetitive inhibition

- substrate analogs
- compete with substrate for the <u>active</u> site of the enzyme

$$E + S \stackrel{K'_m}{\longleftrightarrow} ES \stackrel{k_2}{\longrightarrow} P + E$$

$$\downarrow K_I$$

$$EI$$

Competitive Inhibitors (I)

Assuming rapid equilibrium and with the definitions of

$$v = \frac{d[P]}{dt} = k_2 [ES]$$

$$K_{m}' = \frac{k_{-1}}{k_{1}} = \frac{[E][S]}{[ES]}$$

$$K_I = \frac{[E][I]}{[EI]}$$

$$[E_0] = [E] + [ES] + [EI]$$

we then obtain,
$$v = \frac{V_m[S]}{K_m(1+[I]/K_I)+[S]}$$

$$v = \frac{V_m[S]}{K_{m,app} + [S]} \qquad K_{m,app} = K_m(1 + [I]/K_I)$$

When
$$[I] = 0, K'_{m,app} = K'_{m}$$
.

 V_m remains the same as that of Michaelis-Menten equation. $K'_{m,app}$ is greater than K'_m \rightarrow Net rate decreases

Competitive inhibition can be overcome by high substrate concentration

Noncompetitive Inhibitors (I)

- Not substrate analogs
- bind on <u>site other than the active sites and</u> reduce ezyme affinity to the substrate.

$$E + S \stackrel{K'_m}{\longleftarrow} ES \stackrel{k_2}{\longrightarrow} P + E$$

$$+ \qquad \qquad +$$

$$I \qquad \qquad I$$

$$\downarrow K_I \qquad \qquad \downarrow K_I$$

$$EI + S \stackrel{K'_m}{\longleftarrow} ESI$$

Noncompetitive Inhibitors (I)

Assuming:

- rapid equilibrium
- same equilibrium constants of inhibitor binding to E and ES $\longrightarrow K_I$
- same equilibrium constants of substrate binding to E and El $\begin{cases} \begin{cases} \begin{c$

$$E + S \stackrel{K'_{m}}{\longleftarrow} ES \stackrel{k_{2}}{\longrightarrow} P + E$$

$$+ \qquad \qquad + \qquad \qquad + \qquad \qquad \downarrow$$

$$I \qquad \qquad \downarrow K_{I} \qquad \qquad \downarrow K_{I} \qquad \qquad \downarrow K_{I}$$

$$EI + S \stackrel{K'_{m}}{\longleftarrow} ESI$$

$$K'_{m} = \frac{k_{-1}}{k_{1}} = \frac{[E][S]}{[ES]} = \frac{[EI][S]}{[ESI]}$$
 $K_{I} = \frac{[E][I]}{[EI]} = \frac{[ES][I]}{[ESI]}$

$$[E_0] = [E] + [ES] + [EI] + [ESI]$$

• we then obtain,
$$v = \frac{V_m[S]}{(1+[I]/K_I)(K_m + [S])}$$

$$v = \frac{V_{m,app}[S]}{K'_{m} + [S]} \qquad V_{m,app} = V_{m}/(1 + [I]/K_{I})$$

When
$$[I] = 0$$
, $V_{m,app} = V_m$.

 K_m' remains the same as in Michaelis-Menten equation. $V_{m,app}$ is less than V_m .

High substrate concentration would NOT overcome noncompetitive inhibition → other reagent need to be added to block inhibitor-enzyme binding

Uncompetitive Inhibitors (I)

- have no affinity for the enzyme itself
- bind only to the ES complex.
- · Assuming rapid equilibrium,

$$E + S \xrightarrow{K'_m} ES \xrightarrow{k_2} P + E$$

$$\downarrow I$$

$$\downarrow K_I$$

$$ESI$$

$$v = \frac{d[P]}{dt} = k_{2}[ES]$$

$$K'_{m} = \frac{k_{-1}}{k_{1}} = \frac{[E][S]}{[ES]}$$

$$E + S \stackrel{K'_{m}}{\longleftrightarrow} ES \stackrel{k_{2}}{\longleftrightarrow} P + E$$

$$\downarrow I$$

$$\downarrow K_{I}$$

$$ESI$$

$$ESI$$

$$[E_0] = [E] + [ES] + [ESI]$$

Uncompetitive Inhibitors (I)

• we then obtain,
$$v = \frac{(V_m/(1+[I]/K_I))[S]}{(K_m/(1+[I]/K_I))+[S]}$$

$$V = \frac{V_{m,app}[S]}{K'_{m},app+[S]}$$

$$V_{m,app} = V_{m}/(1+[I]/K_{I})$$

$$V_{m,app} = V_{m}/(1+[I]/K_{I})$$

$$K'_{m,app}/V_{m,app} = K'_{m}/V_{m}$$

- high substrate concentration may cause inhibition
- · bind only to the ES complex
- · Assuming rapid equilibrium,

$$E + S \xrightarrow{K'_m} ES \xrightarrow{k_2} P + E$$

$$\downarrow K_{SI}$$

$$ES_2$$

Uncompetitive Substrate Inhibitors

$$v = \frac{d[P]}{dt} = k_{2}[ES]$$

$$K'_{m} = \frac{k_{-1}}{k_{1}} = \frac{[E][S]}{[ES]}$$

$$E + S \stackrel{K'_{m}}{\Longrightarrow} ES \stackrel{k_{2}}{\Longrightarrow} P + E$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow$$

$$[E_0] = [E] + [ES] + [ES_2]$$

Uncompetitive Substrate Inhibitors

• we then obtain, $v = \frac{V_m[S]}{K_m + [S] + [S]^2 / K_{SI}}$

At low substrate concentration $[S]^2/K_{SI} \ll [S]$

$$v = \frac{V_m[S]}{K_m + [S]}$$
 Michaelis-Menten Equation

At high substrate concentration $K_m << [S]$

$$v = \frac{V_m}{1 + [S]/K_{SI}}$$

 The substrate concentration resulting in the maximum reaction rate can be determined by setting dv/d[S] = 0:

$$dv/d[S] = d(\frac{V_m[S]}{K_m' + [S] + [S]^2 / K_{SI}})/d[S] = 0$$

$$[S]_{max} = (K_m' K_{SI})^{1/2}$$

Inhibition Estimation

- Product formation rate v vs. [S]: does v has a peak?
 - YES → Substrate Inhibition
 - get $[S]_{max}$ from v vs. [S] plot
 - at low substrate concentration, obtain V_m and K_m^\prime graphically
 - calculate KI through $[S]_{\text{max}} = (K'_m K_{SI})^{1/2}$
 - NO → examine the data with and without inhibitors in 1/v vs. 1/[S] plot (Lineweaver-Burk Plot).

Estimation of Inhibited Enzyme Kinetics

- Determine the type of inhibition.
- Determine the parameters for Michaelis-Menten equation without inhibition.
- Determine the parameter of K₁ for inhibited kinetics.