

- Immobilized enzyme system normally includes
 - insoluble immobilized enzyme
 - soluble substrate, or product
- They are heterogeneous systems

Diffusional Limitation in Immobilized Enzyme Systems

- In immobilized enzyme systems,
 the overall production rate is determined by
 - liquid film mass transfer (external diffusion)
 substrate, product
 - intraparticle mass transfer (internal diffusion)
 substrate, product in porous supports
 - enzyme catalysis reaction

$$E + S \rightleftharpoons ES \xrightarrow{k_2} P + E$$

Assume the enzyme catalyzed reaction rate follows Michaelis-Menten type kinetics.

Ss: substrate concentration at the surface; Sb: substrate concentration in bulk solution.

Diffusion Effects in Surface-bound Enzymes on Nonporous Support Materials

Assume:

- Enzyme are evenly distributed on the surface of a nonporous support material.
- All enzyme molecules are equally active.
- Substrate diffuses through a thin liquid film surrounding the support surface to reach the reactive surface.

Liquid Film Thickness, L

No intraparticle diffusion

-The process of immobilization has not altered the enzyme structure and the intrinsic parameters (V_m, K_m) .

To determine the significant effect of external diffusion resistance on the rate of enzyme catalytic reaction rate: **Damköhler numbers** (Da)

$$Da = \frac{\text{maximum rate of reaction}}{\text{maximum rate of diffusion}} = \frac{V_m'}{k_L[S_b]}$$

 V_{m} ' = the maximum reaction rate per unit of external surface area (e.g. g/cm²-s)

 k_L = the liquid mass transfer coefficient (cm/s)

 $[S_b]$ = the substrate concentration in bulk solution (g/cm³)

Diffusion Effects in Surface-bound Enzymes on Nonporous Support Materials

$$Da = \frac{\text{maximum rate of reaction}}{\text{maximum rate of diffusion}} = \frac{V_m'}{k_L[S_b]}$$

When

Da >> 1, the external diffusion rate is limiting;

Da << 1, the reaction rate is limiting;

Da \approx 1, the external diffusion and reaction resistances are comparable.

The external diffusion rate J_{S} (g/cm²-s):

$$J_{s} = k_{L}([S_{b}] - [S_{s}])$$

 k_L is the liquid mass transfer coefficient (cm/s).

If the product formation rate is:

$$v' = \frac{V_m'[S_s]}{K_m + [S_s]}$$

 V_{m} ' is the maximum reaction rate per unit surface area (g/cm²-s).

Diffusion Effects in Surface-bound Enzymes on Nonporous Support Materials $E + S \rightleftharpoons ES \xrightarrow{k_2} P + E$

At steady state, the reaction rate is equal to the external diffusion rate:

$$J_s = k_L([S_b] - [S_s]) = \frac{V_m'[S_s]}{K_m + [S_s]}$$

With the equation and known S_b , K_L , V_m or K_m , to determine numerically or graphically:

- The substrate concentration at the surface.
- The reaction rate.

Graphical solution for reaction rate per unit of surface area for enzyme immobilized on a non-porous support

Diffusion Effects in Surface-bound Enzymes on Nonporous Support Materials

When the system is strongly external diffusion (liquid film mass-transfer) limited, [Ss]≈0, the overall reaction rate is equal to the rate:

$$v = k_L[S_b]$$
 $Da >> 1$

The system behaves as pseudo first order.

The rate is a linear function of bulk substrate concentration.

To increase the overall reaction rate with external diffusion limitation

$$Da = \frac{\text{maximum rate of reaction}}{\text{maximum rate of diffusion}} = \frac{V_m'}{k_L[S_b]}$$

- -Increase ______.
- -Increase _

The liquid film mass transfer coefficient k_{L}

$$k_L \approx 0.6 \times \left(\frac{D_{AB}^{2/3}}{v^{1/6}}\right) \times \left(\frac{U^{1/2}}{d_p 1/2}\right)$$

(H. Fogler, Elements of Chemical Reaction Engineering 1999, p705)

 $D_{AB}=$ mass diffusivity of the substrate in the liquid phase, a function of temperature and pressure (m²/s)

 $\nu =$ kinematic viscosity (m²/s), a function of temperature.

U =free-system liquid velocity

(velocity of the fluid flowing past the particle) (m/s).

 d_p = size of immobilized enzyme particle (m).

At specific T and P, increasing U and decreasing d_p increase the liquid film mass transfer coefficient and thus the external diffusion rate.

Diffusion Effects in Surface-bound Enzymes on Nonporous Support Materials

When the system is strongly reaction limited,

$$[S_b] \approx [S_s]$$

and the overall reaction rate is equal to the rate:

$$v = \frac{V_m'[S_b]}{K_{m,ann} + [S_b]} \qquad Da << 1$$

where

$$K_{m,app} = K_m \left\{ 1 + \frac{V_m'}{k_L([S_b] + K_m)} \right\}$$

 $K_{m,app}$ is increased.

It is a function of mixing speed and S_b .

Diffusion Effects in Enzymes Immobilized in a Porous Matrix

- Substrate diffuses through the tortuous pathway within the porous support to reach the enzyme.
- Substrate reacts with enzyme on the pore surface.

Ex. Spherical support particles sr

Diffusion Effects in Enzymes Immobilized in a Porous Matrix

- Assume:
 - Enzyme is uniformly distributed in a spherical support particle.
 - The reaction kinetics follows Michaelis-Menten kinetics.
 - There is no external diffusion limitation.

Under internal diffusion limitations, the rate per unit volume is expressed in terms of the effectiveness factor as follows:

 $r_{s} = \eta \frac{V_{m}[S_{s}]}{K_{m} + [S_{s}]}$

 η = effectiveness factor.

 $V_{\scriptscriptstyle m}^{\scriptscriptstyle "}$ = maximum velocity per volume of the support.

 $K_m = M-M \text{ constant.}$

 $[S_s]$ = substrate concentration on the surface of the support.

 $\eta = \frac{\text{reaction} \text{rate with intrapart} \hat{\mathbf{c}} \text{ le diffusion}}{\eta}$ reactionrate without diffusion limitation

 η < 1 the rate is <u>diffusion limited</u>.

 $\eta = 1$ the rate is <u>reaction rate limited</u>.

$$\eta = \frac{3}{\phi} \left[\frac{1}{\tanh \phi} - \frac{1}{\phi} \right]$$

$$\phi = R \sqrt{\frac{V_m''/K_m}{D_e}}$$
 =Thiele modulus

 $D_e =$ effective diffusivity of substrate within the porous matrix

122

Relationship of effectiveness factor with the size of immobilized enzyme particle and enzyme loading

Diffusion Effects in Enzymes Immobilized in a Porous Matrix

•	At specific conditions (T, P) for a fixed system, to
	increase the intra-particle mass transfer rate:
	the size of immobilized enzyme
	particle
	the porosity or specific surface area
	of the particle