MAJOR METABOLIC PATHWAYS

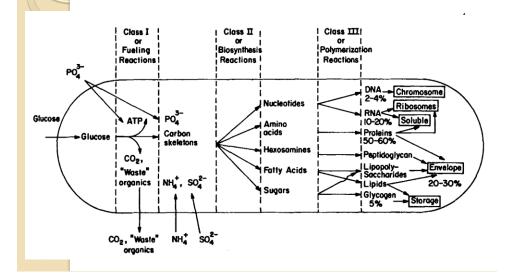
2

Outline

- Overview of metabolism pathways
 - Catabolism
 - Anabolism
- Bioenergetics
- Important metabolic pathways
 - Catabolism:
 - Glucose catabolism (aerobic pathway, anaerobic pathway)
 - Nitrogen compounds
 - Hydrocarbon
 - Anabolism:
 - Photosynthesis
 - Biosynthesis

- Metabolism: a complete set of chemical reactions that occur in living cells, allowing cells to grow and reproduce, maintain their structures, and respond to their environments.
- Major challenges in bioprocess development:
 - To select an organism that can efficiently make a given product

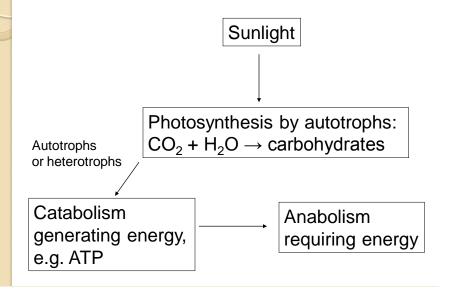
or


digest wastes in the Environment.

It is important to understand the metabolic pathways.

Metabolic Pathways

- Metabolism can be subdivided by:
 - Catabolism: The intracellular process of degrading a compound into smaller and simpler products and generating energy.
 - **Example:** Glucose to CO₂ and H₂O, protein to amino acids.
 - Anabolism: the synthesis of more complex compounds and requires energy.
 - Example: Glucose to glycogen

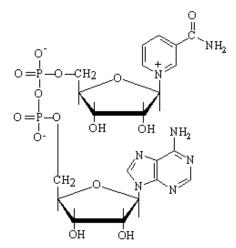


Bioenergetics

- · Living cells require energy for
 - biosynthesis,
 - transport of nutrients,
 - motility, and
 - maintenance.
- This energy is obtained from the catabolism of carbon compounds, mainly carbohydrates.
- Carbohydrates are synthesized from CO₂ and H₂O in the presence of light by photosynthesis.
- The sun is the ultimate energy source for the life processes on earth.

Bioenergetics

Bioenergetics

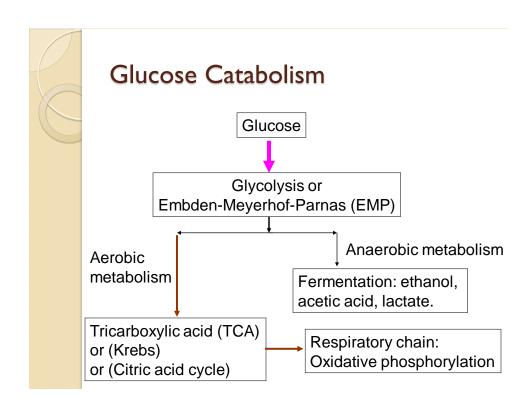

 Energy in biological systems is primarily stored and transferred via adenosine triphosphate (ATP); contains high-energy phosphate bonds.

 Other energy carrying compounds include GTP, UTP and CTP.

- Hydrogen atoms released in biological oxidation-reduction reactions are carried by nucleotide derivatives, especially by nicotinamide adenine dinucleotide (NAD+) and nicotinamide adenine dinucleotide phosphate (NADP+).
- The oxidation–reduction reaction described is readily reversible.
 - NADH can donate electrons to certain compounds and accept from others, depending on the oxidation-reduction potential of the compounds.

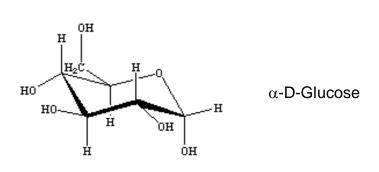
Nicotinamide Adenine Dinucleotide (NAD+)

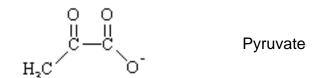
NAD undergoing Oxidation-Reduction reaction

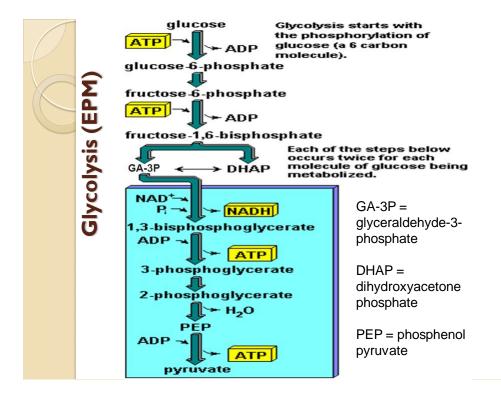

- NADH has two major functions in biological systems:
 - Reducing power: NADH and NADPH supply hydrogen atom in biosynthesis reactions.
 - Example: CO_2 fixation by autotrophic organisms $CO_2 + 4 H \rightarrow CH_2O + H_2O$
 - 2. ATP formation in respiratory metabolism:
 - NADH is a major electron (or H atom) carriers in the oxidation of fuel molecules and for ATP generation.

Glucose Catabolism

- Glucose is a major carbon and energy source for many organisms.
- Several different metabolic pathways are used by different organisms for the catabolism of glucose.
- The catabolism of glucose by glycolysis, or the Embden-Meyerhof-Parnas (EMP) pathway, is the primary pathway in many organisms.
- Other pathways include hexose monophosphate (HMP) and Entner-Doudoroff (ED) pathways.


- Aerobic catabolism of organic compounds such as glucose may be considered in three different phases:
 - I. EMP pathway for fermentation of glucose to pyruvate.
 - Krebs, tricarboxylic acid (TCA), or citric acid cycle for conversion of pyruvate to CO₂ and NADH.
 - 3. Respiratory or electron transport chain for formation of ATP by transferring electrons from NADH to an electron acceptor.

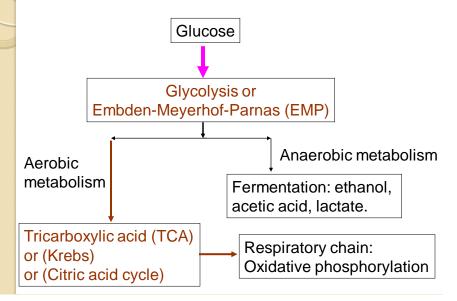




Glucose Catabolism Glycolysis

- Glycolysis = Embden-Meyerhof-Parnas (EMP)
 pathway
 - Results in breakdown of a molecule of glucose to two pyruvate molecules.
 - Each step is catalyzed by particular enzyme
 - Generating 2 ATP, 2 NADH and
 2 pyruvate (Key Metabolite).
 - Taking place in cytoplasm

Glucose Catabolism


Glycolysis

• The overall reaction in glycolysis is:

Glucose + 2ADP + 2 NAD
$$^+$$
 + 2 Pi
 \rightarrow 2 pyruvate + 2 ATP + 2 (NADH + H $^+$)

- Produce
 - Energy
 - Key metabolite: pyruvate

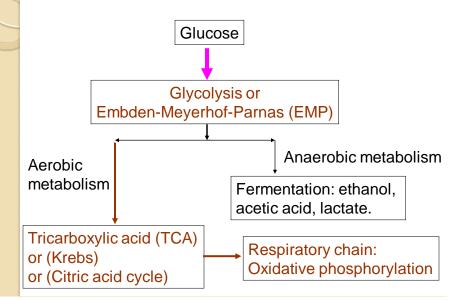
Glucose Catabolism Tricarboxylic Acid (TCA) Cycle

- Krebs Cycle = Tricarboxylic Acid (TCA) Cycle = Citric Acid Cycle
- Occurs under aerobic conditions
- Taking place
 - in mitochondria in eucaryotes
 - associated with membrane-bound enzymes in procaryotes
- Pyruvate produced in glycolysis (EMP) pathway transfers its reducing power to NAD⁺.

http://www.science.smith.edu/departments/Biology/Bio231/krebs.html krebstca.htm

 Entry into the Krebs cycle is provided by the acylation of coenyzme-A by pyruvate.

```
pyruvate + NAD<sup>+</sup> + CoA-SH
\rightarrow acetyl-CoA + CO_2 + (NADH + H^+)
```


The overall reaction of TCA cycle:

acetyl-CoA + 3 NAD⁺ + FAD + GDP+ Pi +
$$2H_2O$$

 \rightarrow CoA + 3 (NADH + H⁺) + FADH₂+ GTP + $2CO_2$

Glucose Catabolism Tricarboxylic Acid (TCA) Cycle

- Major roles of the TCA cycle
 - (1) to provide electrons (NADH) for the electron transport chain and biosynthesis
 - The reducing power (NADH + H⁺ and FADH₂) is used for biosynthesis pathway or for ATP generation through the electron transport chain.
 - (2) to supply C skeletons for amino acid synthesis
 - Intermediate products such as oxylacetate and α -ketoglutarate are used as precursors for the synthesis of certain amino acids.
 - (3) to generate energy

Glucose Catabolism

Glucose Catabolism Respiratory Chain

Respiratory Chain = Oxidative Phosphorylation "Oxidative Phosphorylation is the electron transport chain that forms ATP as electrons are transferred from NADH or FADH₂ to **oxygen** by a series of electron carriers"

- electron acceptor: oxygen (aerobic condition)
- ∘ generate ATP, H₂O
- \circ from NADH or FADH₂
- Taking place
 - o inside mitochondria in eukaryotes
 - o in cytoplasmic membrane in prokaryotes

p://www.brookscole.com/chemistry_d/templates/student_resources/shared_resources/animations/oxidative/oxidativephosphorylation.html

- Major role of Electron Transport Chain is to regenerate
 - NADs for glycolysis

•
$$\frac{1}{2}$$
O₂ + NADH + H⁺ \rightarrow H₂O + NAD⁺ and

- ATPs for biosynthesis
 - ADP + Pi \rightarrow ATP

Glucose Catabolism Oxidative Phosphorylation

• In the process of Oxidative Phosphorylation

In eukaryotes:

NADH + H⁺
$$\longrightarrow$$
 3 ATP
FADH₂ \longrightarrow 2 ATP

In prokaryotes:

NADH + H⁺
$$\leq$$
2 ATP
FADH₂ I ATP

	N	NADH	FADH₂	ATP	Total ATP ^a
Glycolysis		2	_	2	6^b
Oxidative decarboxylation of pyruvate		2	-	_	6
TCA cycle		6	2	2	24
	Total	10	2	4	36 mol ATP

In eukaryotes

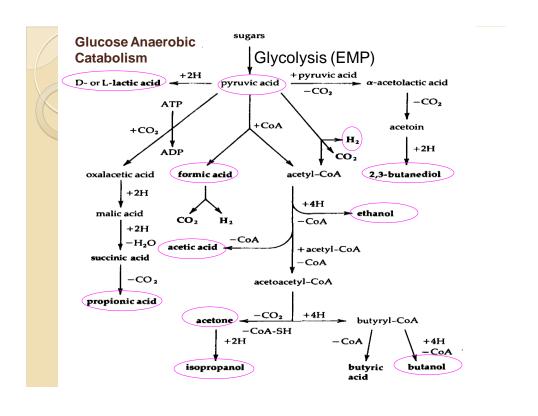
EMP Glycolysis:

2 NADH \rightarrow 2 FADH₂ \rightarrow 4 ATP

Entry of pyruvate and TCA cycle:

8 NADH \rightarrow 24 ATP

TCA cycle:


2 $FADH_2 \rightarrow 4 ATP$

Glucose Aerobic Catabolism Overall Reaction

 Overall reaction (assuming 3 ATP/NADH) of aerobic glucose catabolism in eukaryotes

Glucose + 6
$$O_2$$
 + 36 ADP + 36 Pi
 \rightarrow 6 CO_2 + 6 H_2O + 36 ATP

Glucose Glucose Glucose Glycolysis or Embden-Meyerhof-Parnas (EMP) Aerobic metabolism Fermentation: ethanol, acetic acid, lactate. Tricarboxylic acid (TCA) or (Krebs) or (Citric acid cycle) Respiratory chain: Oxidative phosphorylation

- Nitrogen compounds can be used as
 - Carbon C source
 - Nitrogen N source
 - energy source
- Proteins $\xrightarrow{+H_2O}$ peptides $\xrightarrow{ptoteases}$ amino acids
- Amino acids are converted to other amino acids or organic acids by deamination (removal of amino group).
- Deamination reaction may be oxidative, reductive, or dehydrative, depending on the

Nitrogen Compounds Catabolism

Typical oxidative deamination reaction:

$$\begin{array}{ccc} R-CH-COOH+H_2O+NAD^+ & \longrightarrow & R-C-COOH+NH_3+NADH+H^+\\ & & NH_2 \end{array}$$

- Ammonia (NH₃) released from deamination is utilized in protein and nucleic acid synthesis as a nitrogen source, and
- Organic acids (RCOCOOH) can be further oxidized for energy production (ATP), and also used in lipid synthesis.

- Transamination is another mechanism for conversion of amino acids to organic acids and other amino acids.
- A typical transamination reaction is

```
\begin{array}{c} \text{glutamic acid} + \text{oxaloacetic acid} \\ \longrightarrow \alpha\text{-keto glutaric acid} + \text{aspartic acid} \end{array}
```

 Amino acids can be used to produce proteins, other amino acids or enter TCA cycle

Nitrogen Compounds Catabolism

- Nucleic acids are utilized in producing
 - ribose/deoxyribose
 - Sugar molecules are metabolized by glycolysis and the TCA cycle, producing CO₂ and H₂O under aerobic conditions
 - phosphoric acid
 - Phosphoric acid are used in ATP, phospholipid, and nucleic acid synthesis.
 - purine/pyrimidine
 - Purines/pyrimidines are degraded into urea and acetic acid and then to ammonia and CO₂.

- Hydrocarbon: C & H
 - Aliphatic hydrocarbon (e.g. octane, C₈H₁₈, polyethylene —(HC=CH)—)
 - Aromatic hydrocarbon (e.g. naphthalene)
- Metabolism of hydrocarbon
 - Requires oxygen
 - Challenges:

- low solubility of hydrocarbons in water is a barrier to rapid metabolism
- Only few organisms (Pseudomonas, Mycobacteria) can metabolize hydrocarbons

Hydrocarbon Catabolism

- Metabolism steps of aliphatic hydrocarbons
 - Oxygenation by oxygenases
 - Converting hydrocarbon molecules to an alcohol by incorporation of oxygen into the end of the carbon skeleton.
 - The alcohol molecule is further oxidized to aldehyde and then to an organic acid which is further converted to acetyl-CoA
 - acetyl-CoA is metabolized by the TCA cycle.

- Metabolism steps of aromatic hydrocarbons
 - Oxygenation by oxygenases
 - · much slower than oxidation of aliphatic hydrocarbons
 - Cathecol is the key intermediate in the oxidation sequence and can be further broken down ultimately to acetyl-CoA or TCA cycle intermediates
 - Aerobic metabolism of benzene:

Overview of Biosynthesis

- Pentose-phosphate pathway (hexosemonophosphate pathway (HMP)):
 - provides an array of small organic compounds with three, four, five, and seven carbon atoms ($C_3 \sim C_7$)
 - These compounds are particularly important for the synthesis of ribose, purines, coenzymes, and the aromatic amino acids.
 - provide the reducing power necessary to support anabolism
 - Cells need to synthesize:
 - Amino acids and Nucleic acids (DNAs, RNAs)
 - Polysaccharides (glycan, glycogen) from glucose
 - Glucose by gluconeogenesis
 - Lipids from fatty acids