Cells Growth in Continuous Culture

- Continuous culture: fresh nutrient medium is continually supplied to a well-stirred culture and products and cells are simultaneously withdrawn.
- At steady state, concentrations of cells, products and substrates are constant.
- In batch culture: the culture environment changes continually.
 Growth, product formation and substrate utilization terminate after a certain time interval.

Ideal Chemostat

- Same as perfectly mixed continuous-flow, stirred-tank reactor (CFSTR).
 - Control elements: pH, dissolved oxygen, temperature
 - Fresh sterile medium is fed to the completely mixed and aerated (if required) reactor.
 - Suspension is removed at the same rate.
 - Liquid volume in the reactor is kept constar

Cell Growth in Ideal Chemostat

$$FX_0 - FX + V_R \mu_g X - V_R k_d X = V_R \frac{dX}{dt}$$

 $\label{eq:Fisher} F \ is the \ volumetric \ flow rate \ of \ nutrient \ solution \ (I/h);$

V_R is the culture volume (I) (constant);

X is the cell concentration (g/l);

P is the extracellular product (g/l);

 μ_g and k_d are growth rate and endogenous rate constant, respectively (h-1).

Subscript o denotes the parameters at the feed medium.

Cell Growth in Ideal Chemostat

Usually, the feed media are sterile, $\chi_0 = 0$

If the system is at steady state, dX/dt = 0 and Monod equation applied

If the endogenous metabolism or death rate is negligible compared to the growth rate $(k_d << \mu_g), k_d \approx 0$

$$FX_0 - FX + V_R \mu_g X - V_R k_d X = V_R \frac{dX}{dt}$$

$$\Rightarrow \mu_g = D = \frac{\mu_m S}{K_S + S}$$

Where $D = F/V_R$ = dilution rate = reciprocal of residence time

Cell Growth in Ideal Chemostat

$$\mu_g = D = \frac{\mu_m S}{K_S + S}$$
 \Rightarrow $S = \frac{K_S D}{\mu_m - D}$

$$S = \frac{K_S D}{\mu_m - D}$$

A material balance on the limiting substrate in the absence of endogenous metabolism yields

$$FS_0 - FS - V_R \mu_g X \frac{1}{Y_{X/S}} - V_R q_p X \frac{1}{Y_{p/S}} = V_R \frac{dS}{dt}$$

 q_p is the specific rate of extracellular product formation (g P/g cells-h)

 $Y_{P/S}^{M}$ is the product yield coefficient (g P/g S). $Y_{X/S}^{M}$ is the cell yield coefficient (g cell/g S), superscript M <=> maximum value of the yield coefficient

Cell Growth in Ideal Chemostat

• When extracellular product formation is negligible and the system is at steady state (dS/dt = 0), 0

$$FS_0 - FS - V_R \mu_g X \frac{1}{\frac{1}{Y_{K/S}}} - V_R q_p X \frac{1}{\frac{1}{Y_{p/S}}} = V_R \frac{dS}{dt}$$

And $\mu_g = D$ at steady state if $k_d = 0$,

$$X = Y_{X/S}^M(S_0 - S)$$

$$X = Y_{X/S}^{M}(S_0 - \frac{K_S D}{\mu_m - D})$$

Cell Productivity = DX

Cell Growth in Ideal Chemostat

Washed out:

If D is set at a value greater than μ_m (D > μ_m), the culture cannot reproduce quickly enough to maintain itself.

$$\mu_g = D = \frac{\mu_m S}{K_s + S}$$

Determination of Monod Parameters

• In Chemostat: μ_q =D, varying D obtains D~S

$$\mu_g = D = \frac{\mu_m S}{K_S + S} \implies S = \frac{K_S D}{\mu_m - D}$$

$$\frac{1}{S} = \frac{\mu_m}{K_S} \frac{1}{D} - \frac{1}{K_S} \text{ (Lineweaver - Burk)}$$

 <u>Chemostat technique</u>: reliable, constant environment, operation may be difficult.

Determination of Monod Parameters

• In Batch: X, S, t \rightarrow lnX ~ t , get μ_m (slope) from data in exponential phase.

$$\ln \frac{X}{X_0} = \mu_{net} t \approx \mu_m t$$

$$\frac{1}{X} \frac{dX}{dt} = \mu_g = \frac{\mu_m S}{K_S + S}, \quad k_d \approx 0$$

$$\frac{1}{\mu_g} = \frac{K_S}{\mu_m} \frac{1}{S} + \frac{1}{\mu_m} \text{(Lineweaver-Burk)}$$

$$\frac{S}{\mu_g} = \frac{K_S}{\mu_m} + \frac{S}{\mu_m} \text{(Hanes-Woolf)}$$

Problem 6.13 (Shuler-Kargi)

• Pseudomonas putida with $\mu_m = 0.5 \text{ h}^{-1}$ is cultivated in a continuous culture under aerobic conditions where $D = 0.28 \text{ h}^{-1}$. The carbon and energy source in the feed is lactose with a concentration of $S_0 = 2 \text{ g/l}$. The effluent lactose concentration is desired to be S = 0.1 g/l. If the growth rate is limited by oxygen transfer, by using the following information:

$$Y_{X/S}^{M} = 0.45gX/gS$$
, $Y_{X/O_2}^{M} = 0.25gX/gO_2$ and $C^* = 8mg/1$

- a. Determine the steady-state biomass concentration (X) and the specific rate of oxygen consumption (q_{Ω_2}).
- b. What should be the oxygen-transfer coefficient $(k_l a)$ in order to overcome oxygen transfer limitation (i.e., $C_l = 2 \text{ mg/l}$)?