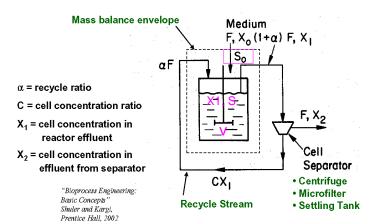
Bioreactor Design and Analysis

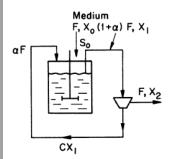
Overview of bioreactors

Modified batch and continuous reactors

Immobilized cell systems


Requirements for Cultivation Methods

- Biomass concentration which must remain high
- · Sterile conditions being maintained
- Effective agitation so that the distribution of substances in the reaction is uniform
- Heat removal
- Creation of the correct shear conditions high may damage cells, low may lead to flocculation or growth on wall and stirrer


- Microbial conversions are autocatalytic, and the rate of conversion increases with cell concentration.
- To keep the cell concentration higher than the normal steady-state level in a chemostat, cells in the effluent can be **recycled back to the reactor**.
 - To increase the cell and growth-associated product yield.
 - For low-product-value processes: e.g. waste-water treatment

Chemostat with Cell Recycle

• Cells in the effluent stream are either centrifuged, filtered, or settled in a conical tank for recycling.

• Cell mass balance ($q_p=0$, $k_d\approx 0$, $X_o=0$, Monod equation is applied): $FX_o + \alpha FCX_1 - (1+\alpha)FX_1 + V_R \mu X_1 = V_R \frac{dX_1}{dt}$

at steady - state
$$(\frac{dX_1}{dt} = 0)$$
 and sterile feed $(X_0 = 0)$

$$\alpha FCX_1 - (1+\alpha)FX_1 + V_R \mu X_1 = 0$$

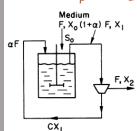
and solving for μ

$$\mu = [1 + \alpha(1 - C)]D$$
 where $\mu = \mu_{net} = \mu_g - k_d$

Since C > 1 and
$$\alpha(1-C) < 0$$
, then $\mu < D$

A chemostat can be operated at dilution rates higher than the specific growth rate when cell recycle is used.

Chemostat with Cell Recycle

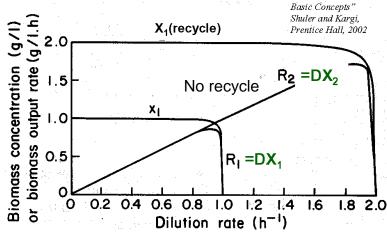

$$\mu = [1 + \alpha(1 - C)]D$$

Monod Equation,
$$\mu = \frac{\mu_{\text{max}} S}{K_s + S}$$
 when $k_d=0$

Substitute Monod Eqn. into above, solve for S

$$S = \frac{K_s D(1 + \alpha(1 - C))}{\mu_{max} - D(1 + \alpha(1 - C))}$$

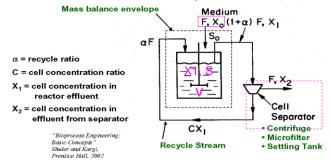
• Mass balance on growth-limiting substrate $(q_p=0, k_d \approx 0, X_o=0, Monod equation is applied):$


$$FS_0 + \alpha FS - V \frac{\mu_g X_1}{Y_{X/S}^M} - (1 + \alpha)FS = V \frac{dS}{dt}$$

At steady state, dS/dt = 0,

$$X_1 = \frac{D}{\mu_g} Y_{X/S}^M (S_0 - S)$$
Since $\mu_g^1 = [1 + \alpha(1 - C)]D$,

$$X_{1} = \frac{Y_{X/S}^{M}(S_{0} - S)}{1 + \alpha - \alpha C}, \quad X_{1} = \frac{Y_{X/S}^{M}}{[1 + \alpha(1 - C)]} [S_{0} - \frac{K_{s}D(1 + \alpha - \alpha C)}{\mu_{m} - D(1 + \alpha - \alpha C)}]$$


Chemostat with Cell Recycle

- X = biomass concentration in chemostat
- R = biomass output rate per unit volume

 μ_m =1.00 h⁻¹, S₀=2.0 g/l, Ks=0.01 g/l, Y_{X/S} = 0.5 g/g, concentration factor C=2.0 and recycle ratio α =0.5

Cell mass balance around the cell separator.

$$(1+\alpha)FX_1 = FX_2 + \alpha FCX_1 \Rightarrow X_2 = (1+\alpha)X_1 - \alpha CX_1$$

The average residence time in cell separator θ

$$\theta = \frac{V_{\text{cell separator}}}{(1+\alpha)F}$$

Example-Chemostat with Cell Recycle

Organisms are cultured in a chemostat with cell recycle.
 The system is operated under glucose limitation.

$$\begin{split} F = &100 \text{ ml/h}, \, V = 1000 \text{ ml}, \, \, S_0 = &10 \text{ g glucose/L} \\ Y_{X/S}^M = &0.5 \text{g cells/g substrate}; \mu_m = 0.2 \, h^{-1}, \\ K_S = &1 \, \text{g/L}, \, C = 1.5, \, \, \alpha = 0.7, \, X_0 = 0, \, k_d \approx 0 \end{split}$$

- a. Determine specific growth rate μ_{net} , S in the reactor effluent, cell concentration in the recycle stream (CX₁) and in the concentrator effluent (X₂)
- b. If the concentrator has a volume of 300 ml, what is the residence time in it?