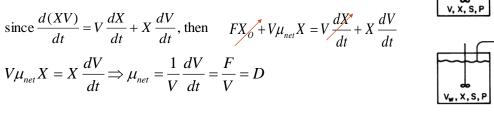
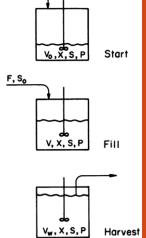
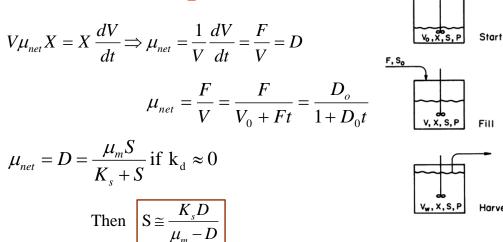

Fed-Batch Operation

- Nutrients are continuously or semi-continuously fed, while effluent is removed discontinuously.
- Usually used
 - to overcome substrate inhibition or catabolite repression by intermittent feeding of substrate by maintaining low substrate F, S concentration.
 - for production of secondary metabolites, e.g. antibiotics, lactic acid, E. Coli making proteins from recombinant DNA technology.


Fed-Batch Operation


• Analysis of fed-batch with substrate continuously fed and no output: at t=0, $V=V_0$, $X_0=0$, F is constant.

• Volume:
$$\frac{dV}{dt} = F \Rightarrow V = V_o + Ft$$


- · At quasi steady state, S added=S consumed, X, S, P concentrations are constant.
- Cell mass balance: $FX_O + V\mu_{net}X = \frac{d(XV)}{dt}$

since
$$\frac{d(XV)}{dt} = V \frac{dX}{dt} + X \frac{dV}{dt}$$
, then $FX_0 + V\mu_{net}X = V \frac{dX}{dt} + X \frac{dV}{dt}$

Fed-Batch Operation

(Monod growth model applied)

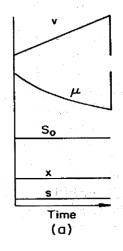
Fed-Batch Operation

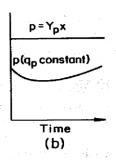
Total Biomass:
$$X_t$$
 (g cells) vs time
$$\frac{dX}{dt} = 0 \quad \text{or} \quad \frac{d\left(\frac{X_t}{V}\right)}{dt} = \frac{V\left(\frac{dX_t}{dt}\right) - X_t\left(\frac{dV}{dt}\right)}{V^2} = 0$$
 rearranging
$$\frac{dX_t}{dt} = \frac{X_t}{V} \frac{dV}{dt} = X_m F = Y_{X/S}^M S_o F \quad \text{where } S \approx 0$$
 integrating
$$X_t = X_{to} + Y_{X/S}^M S_o F t = (V_o + Ft) X_m$$
 where $X_t = X_{to}$ at $t = 0$

Fed-Batch Operation

Product Formation: total product, $P_t = PV$ (g) For many secondary products, the specific rate of product formation is a constant $= q_P$ (g product/g cells-min)

$$\frac{dP_{t}}{dt} = q_{P} X_{t} = q_{P} (V_{o} + Ft) X_{m}$$
 at t=0, P_{t} = P_{t0}


integrating,
$$P_t = P_{to} + q_p X_m (V_o + \frac{Ft}{2})t$$


or
$$P = \frac{P_{\circ}V_{\circ}}{V} + q_{P}X_{m}(\frac{V_{\circ}}{V} + \frac{Dt}{2})t$$

or
$$P = \frac{P_{\circ}V_{\circ}}{(V_{\circ} + Ft)} + q_{P}X_{m}(\frac{V_{\circ}}{(V_{\circ} + Ft)} + \frac{Ft}{2(V_{\circ} + Ft)})t$$

Fed-Batch Operation

Behavior of X, S, P, V, and μ over time at quasi steady state

"Bioprocess Engineering: Basic Concepts" Shiller and Kargi, Prentice Hall, 2002

Example: Fed- Batch Operation

In a fed-batch culture operating with intermittent addition of glucose, the value of V is given at time t = 2hr, when the system is at quasi-steady state.

$$\begin{split} F = & \frac{dV}{dt} = 200 \text{ ml/h}, V = 1000 \text{ ml}, \ S_0 = 100 \text{ g glucose/L} \\ Y_{\text{X/S}}^{\text{M}} = & 0.5 \text{ g cells/g glucose}; \mu_{\text{m}} = 0.3 \text{ h}^{-1}, \end{split}$$

$$K_S = 0.1 \,\text{g/L}, \ X_{t0} = 30 \,\text{g cells}$$

- Determine V₀.
- At t = 2 h, find S, X and X_t and P at quasi-steady state if q_p= 0.2 g product/g cells-h, P₀=0.