Immobilized Cell System

- Immobilization Advantages
 - Provide high cell concentration
 - Reuse cell
 - Eliminate washout problem at high dilution rate and cell recovery
 - May provide favorable microenvironmental conditions for cells
 - (i.e., cell-cell contact, nutrient-product gradients, pH gradients)
 - · May improve genetic stability
 - Protect against shear damage
 - Can perform multi-step biosynthesis reactions that are not practical purified immobilized enzyme preparation.
- Disadvantages
 - Diffusional limitation are important.
 - Growth and gas evoluation may lead to significant mechanical disruption of the immobilizing matrix.

Immobilization Methods

Active immobilization of cells:

entrapment or binding of cells by physical or chemical forces

Passive Immobilization:

Biological Films

Immobilization Methods Active immobilization

Active immobilization of cells:
 entrapment or binding of cells by physical or chemical forces.

Major methods of Active Immobilization

Entrapment

Binding

Physical entrapment

Encapsulation

Hollow-fiber reactor

Physical adsorption

Covalent binding

47

Active Immobilization

- Entrapment
 - **Physical entrapment** within porous matrices is the most widely used method of cell immobilization.
 - Matrices used for cells immobilization:
 - porous polymers (agar, alginate, k-carrageenan, polyacrylamide, chitosan, gelatin, collagen)
 - should be porous enough to allow the transport of substrates and products in and out of the bead
 - porous metal screens
 - polyurethane, silica gel, polystyrene, and cellulose triacetate.

Active Immobilization

Entrapment

- Encapsulation is another method of cell entrapment.
 - Microcapsules are hollow, spherical particles bound by semipermeable membranes.
 - Cells are entrapped within the hollow capsule volume.
 - The transport of nutrients and products in and out of the capsule takes place through the capsule membrane.

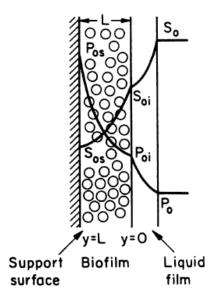
Active Immobilization

Entrapment

- Hollow-fiber reactor
 - Mass-transfer analog of the shell-and-tube heat exchanger in which the tubes are made of semipermeable membranes.
 - Cells are inoculated on the shell side and are allowed to grow in place.
 - The nutrient solution is pumped through the insides of the tubes.
 - Nutrients diffuse through the membrane and are utilized by the cells, and metabolic products diffuse back into the flowing nutrient stream.

Active Immobilization

- Binding: physical adsorption or covalent binding.
 - Physical Adsorption
 - Major advantage: direct contact between nutrient and support materials.
 - Adsorption is a simple, inexpensive method of cell immobilization.
 - However, limited cell loadings and rather weak binding forces reduce the attractiveness of this method.
 - Hydrodynamic shear around adsorbed cells should be very mild to avoid the removal of cells from support surfaces.


Active Immobilization

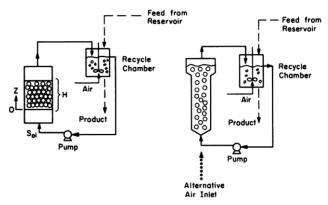
- Binding: physical adsorption or covalent binding.
 - Covalent binding
 - The most widely used method for enzyme immobilization, but it is not as widely used for cell immobilization.
 - Functional groups on cell and support material surfaces are not usually suitable for covalent binding.
 - Covalent binding forces are stronger than adsorption forces, resulting in more stable binding. However, with growing cells, large numbers of cell progeny must be lost.
 - Support materials with desired functional groups are rather limited.

Immobilization Methods Passive immobilization

- · Passive Immobilization: Biological Films
 - Biological films are the multilayer growth of cells on solid support surfaces.
 - The support material can be inert or biologically active.
 - Biofilm formation is common in natural and industrial fermentation systems, such as biological waste-water treatment and mold fermentations.
 - The interaction among cells and the binding forces between the cell and support material may be very complicated.

Schematic Representation of a Biofilm

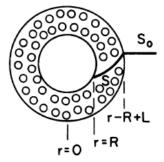
In the presence of diffusion limitation, the rate of substrate consumption or flux is expressed in terms of the effectiveness factor.

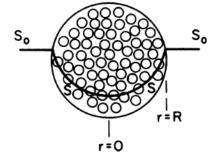

$$N_s = \eta \left(\frac{r_m S_0}{K_s + S_0} \right) L$$

 N_S = substrate flux into the biofilm (mg S/cm² h) L = biofilm thickness or the characteristic

length of the support particle ($L = V_P/A_P$) $\eta = \text{effectiveness factor}$ $r_m = \mu_m X/Y_{X/S}$ (g subs/cm³ h)

In the absence of diffusion limitations, $\eta \cong 1$ In the presence of diffusion limitations, $\eta < 1$.


Packed-bed and Fluidized-bed Biofilm or Immobilized cell Bioreactors


- When the fluid recirculation rate is high, the system approaches CFSTR behavior.
- When the fluid recirculation rate is low or even zero (some wastetreatment systems), the system must be treated as a PFR.

55

Spherical Support Particles

(a) Microbial film on inert spherical support particle

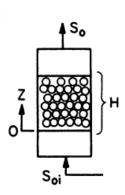
(b) Spherical microbial floc

Packed-bed with Low Fluid Recirculation

 Material balance on the rate limiting substrate over a differential element

$$-F dS_0 = N_S aA dz$$
 OR $-F \frac{dS_0}{dz} = \eta \frac{r_m S_0}{K_s + S_0} LaA$

 S_o = bulk liquid-phase substrate concentration (mg S/cm³) and is a function of height


 $F = \text{liquid nutrient flow rate (cm}^3/h)$

a = biofilm or support particle surface area per unit reactor volume (cm²/cm³),

A = cross-sectional area of the bed (cm²)

Integration yields

$$K_s \ln \frac{S_{0i}}{S_0} + (S_{0i} - S_0) = \frac{\eta r_m LaA}{F} H$$

57

Example 9.4

Glucose is converted to ethanol by immobilized *S. cerevisiae* cells entrapped in Ca-alginate beads in a packed column. The specific rate of ethanol production is $q_P = 0.2$ g ethanol/g cell-h, and the average dry-weight cell concentration in the bed is $\bar{X} = 25$ g/l bed. Assume that growth is negligible (i.e., almost all glucose is converted to ethanol) and the bead size is sufficiently small that $\eta \cong 1$. The feed flow rate is F = 400 l/h, and glucose concentration in the feed is $S_{0i} = 100$ g glucose/l. The diameter of the column is 1 m, and the product yield coefficient is

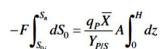
 $Y_{P/S} \approx 0.49$ g ethanol/g glucose.

- Write a material balance on the glucose concentration over a differential height of the column and integrate it to determine S = S(z) at steady state.
- b. Determine the column height for 98% glucose conversion at the exit of the column.
- c. Determine the ethanol concentration in the effluent.

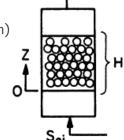
Example 9.4 – Solution

A material balance on the glucose concentration over a differential height of the column (dz) yields

$$-F dS_0 = \frac{q_P \overline{X}}{Y_{P/S}} dV = \frac{q_P \overline{X}}{Y_{P/S}} A dz$$


 S_0 = the bulk liquid-phase substrate concentration (mg S/cm³) and is a function of height ASo

F = liquid nutrient flow rate (cm³/h)


A = cross-sectional area of the bed (cm2)

dz = differential height of an element of the column (cm)

Integration yields

$$S_{0i} - S_0 = \frac{q_P \overline{X}}{Y_{P/S}} \frac{A}{F} H$$

Example 9.4 – Solution

b. Determine the column height for 98% glucose conversion at the exit of the column.

 S_0 = 0.02(100) = 2 g glucose/l. Substituting the given values into the equation $S_{0i} - S_0 = \frac{q_P \overline{X}}{Y_{res}} \frac{A}{F} H$

vields

 $(100-2) = \frac{(0.2)(25)}{0.40} \frac{(\pi/4)(10)^2}{400} H$

$$H = 49 \text{ dm} = 4.9 \text{ m}$$

Determine the ethanol concentration in the effluent.

$$P = Y_{P/S} (S_{oi} - S_{o}) = 0.49(98) = 48 g/l.$$