School of Engineering

The University of Jordan Chemical Engineering Department

-		n 4:	Engina	aring	П
0905422)	Chemical	Keacuon	Engine	cimg	

First Semester - 2019/2020

42

Quiz # 1 (Chapter 10)

76 ki Parwest

cz H6

The following reaction is carried out over a cobalt molybdenum catalyst:

$$C_2H_4+H_2\to C_2H_6$$

The following data were obtained for this reaction.

Willig data w	ere obtained for the re-	C21/4	ethon	P_H (atm)
Run	Reaction rate (mol/kg-catalyst·s)	P_E (atm)	P_{EA} (atm)	1
number	1.04	1	1	3
2	3.13	1	1	5
3	5.21	1	1	3
4	3.82	3 '	1	3
5	4.19	0.5	1	3
6	2.33	0.5	3	3
7/	2.25 0.75	0.5	5)	1
/9	0.40	0.5	15 ²	1
/9	0.10		×	The state of the s

(a) To what class of catalysts does cobalt molybdenum belong to? $3 = 8.5^{\times}$

het rogens with high more problem 10 = 1.8

(b) Determine which of the following rate laws best describes the experimental data, supporting your answer (on the back of the paper) by discussing the relevant experimental data runs:

(a.)
$$-r_E' = \frac{kP_EP_H}{1+K_{EA}P_{EA}+K_EP_E}$$

b.
$$-r_E' = \frac{kP_E P_H}{1 + K_E P_E}$$

c.
$$-r'_E = \frac{kP_E P_H}{(1 + K_E P_E)^2}$$

(c) Suggested a mechanism consistent with your chosen rate law, naming the type of chemisorption and surface reaction you are suggesting.

C2 Hy + S C2 Hy . S To adsorption

C2H4. S + H2 -> C2H6. S = surface reaction

C2H6.S = C2H6 + S \ desorption

from Run land 2 -E' XPA V from run 4 and 5 -VE' XPE from run & and 9 -YE' & PEN -16 x -