Catalysis – continue (Adsorption resistance controlling)

For the catalytic reaction

$$A + B \Leftrightarrow C$$

We will have four main intermediate steps; adsorption of A and B by the surface of the catalyst, surface reaction of both adsorbed A and B, and desorption of the produced C from the surface of the catalyst.

This class we will consider the adsorption of A is the controlling step:

Adsorption (controlling)

$$A + X \leftrightarrow A * X$$
$$B + X \leftrightarrow B * X$$

Surface Reaction

$$A * X + B * X \leftrightarrow C * X + X$$

Desorption

$$C * X \leftrightarrow C + X$$

The rate of reaction for controlling step (Adsorption of A) is

$$-r_{Ads.A} = k_{Af} \left(C_A C_v - \frac{C_{A*X}}{K_A} \right)$$

But the surface concentration for B and C were developed previously as

$$C_{B*X} = K_B C_B C_v$$

$$C_{C*X} = K_C C_C C_v$$

But from the surface reaction step we have:

$$K_{S} = \frac{C_{C*X}C_{v}}{C_{A*X} C_{B*X}} \qquad C_{A*X} = \frac{C_{C*X}C_{v}}{K_{S} C_{B*X}} = \frac{K_{C}C_{C}C_{v} C_{v}}{K_{S}K_{B}C_{B}C_{v}} = \frac{K_{C}C_{C}C_{v}}{K_{S}K_{B}C_{B}}$$

The site balance is

$$C_{T} = C_{A*X} + C_{B*X} + C_{C*X} + C_{v}$$
or
$$C_{T} = \frac{K_{C}C_{C}C_{v}}{K_{S}K_{B}C_{B}} + K_{B}C_{B}C_{v} + K_{C}C_{C}C_{v} + C_{v}$$

$$C_{T} = C_{v}\left(\frac{K_{C}C_{C}}{K_{S}K_{B}C_{B}} + K_{B}C_{B} + K_{C}C_{C} + 1\right)$$

$$C_{v} = \frac{C_{T}}{\left(\frac{K_{C}C_{C}}{K_{S}K_{B}C_{B}} + K_{B}C_{B} + K_{C}C_{C} + 1\right)}$$

$$-r_{Ads.A} = k_{Af} \left(C_A C_v - \frac{C_{A*X}}{K_A} \right) = k_{Af} \left(C_A C_v - \frac{\frac{K_C C_C C_v}{K_S K_B C_B}}{K_A} \right) = k_{Af} C_v \left(C_A - \frac{K_C}{K_A K_S K_B} \frac{C_C}{C_B} \right)$$

$$-r_{Ads.A} = k_{Af}C_v \left(C_A - \frac{\kappa_C}{\kappa_A \kappa_S \kappa_B} \frac{c_C}{c_B}\right) \qquad C_v = \frac{c_T}{\left(\frac{\kappa_C c_C}{\kappa_S \kappa_B c_B} + \kappa_B c_B + \kappa_C c_C + 1\right)}$$

$$-r_{Ads.A} = k_{Af} \frac{c_T}{\left(\frac{K_C C_C}{K_S K_B C_B} + K_B C_B + K_C C_C + 1\right)} \left(C_A - \frac{K_C}{K_A K_S K_B} \frac{C_C}{C_B}\right)$$

or
$$-r_{Ads.A} = k_{Af}C_T \frac{\left(C_A - \frac{K_C}{K_A K_S K_B} \frac{C_C}{C_B}\right)}{\left(\frac{K_C C_C}{K_S K_B C_B} + K_B C_B + K_C C_C + 1\right)}$$

Catalysis – continue (Desorption resistance controlling)

$$A + X \leftrightarrow A * X$$
$$B + X \leftrightarrow B * X$$

Surface Reaction

$$A * X + B * X \leftrightarrow C * X + X$$

Desorption (controlling)

$$C * X \leftrightarrow C + X$$

The rate of reaction for controlling step (Desorption of C) is

$$-r_{Des.C} = k_{cf} \left(C_{C*X} - \frac{C_C C_v}{K_C} \right)$$

But the surface concentration for A and B were developed previously as

$$C_{B*X} = K_B C_B C_v$$

$$C_{A*X} = K_A C_A C_v$$

And the surface equilibrium reaction

$$K_S = \frac{C_{C*X}C_{v}}{C_{A*X}C_{B*X}}$$

Re-arrange to get

$$C_{C*X} = \frac{K_S C_{A*X} C_{B*X}}{C_v}$$

$$C_{C*X} = \frac{K_S K_A C_A C_v K_B C_B C_v}{C_v}$$

$$C_{B*X} = K_B C_B C_v$$
$$C_{A*X} = K_A C_A C_v$$

or
$$C_{C*X} = K_S K_A K_B C_A C_B C_v$$

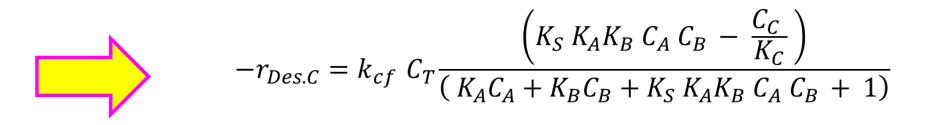
$$-r_{Des.C} = k_{cf} \left(K_S K_A K_B C_A C_B C_v - \frac{C_C C_v}{K_C} \right)$$

$$-r_{Des.C} = k_{cf} C_v \left(K_S K_A K_B C_A C_B - \frac{C_C}{K_C} \right)$$

The site balance is

$$C_{C*X} = K_S K_A K_B C_A C_B C_v$$

$$C_{T} = C_{A*X} + C_{B*X} + C_{C*X} + C_{v}$$
or
$$C_{T} = K_{A}C_{A}C_{v} + K_{B}C_{B}C_{v} + K_{S}K_{A}K_{B}C_{A}C_{B}C_{v} + C_{v}$$


$$C_{T} = C_{v}(K_{A}C_{A} + K_{B}C_{B} + K_{S}K_{A}K_{B}C_{A}C_{B} + 1)$$

$$C_v = \frac{c_T}{(K_A C_A + K_B C_B + K_S K_A K_B C_A C_B + 1)}$$

Substitute the vacant site in the rate equation

$$-r_{Des.C} = k_{cf} C_{v} \left(K_{S} K_{A} K_{B} C_{A} C_{B} - \frac{C_{C}}{K_{C}} \right)$$

$$-r_{Des.C} = k_{cf} \frac{C_{T}}{(K_{A} C_{A} + K_{B} C_{B} + K_{S} K_{A} K_{B} C_{A} C_{B} + 1)} \left(K_{S} K_{A} K_{B} C_{A} C_{B} - \frac{C_{C}}{K_{C}} \right)$$

Conclusion

- If the denominator in the rate expression is raised to a power of 2 and contains the expressions $K_A C_A$, $K_B C_B$, and $K_C C_C$, then the controlling step is surface reaction of type I
- If the denominator contains only $K_A C_A$ and $K_C C_C$, then the controlling step is surface reaction of type II where B is reacted in gas phase with adsorbed A
- If the denominator contains a fraction of concentration of a species with respect to other species such as $\frac{C_C}{C_B}$, then adsorption of the remaining species is controlling, here the remaining species is A
- If the denominator contains multiplication of concentration of more than one species such as C_A C_B , then a desorption step of the remaining species is controlling. Here the desorption step of the missing species C is the controlling.