PLOTTING

MATLAB Basics – Dr. Linda Al-Hmoud

Plotting

- MATLAB is very powerful for producing both 2D and 3D plots.
- Plots can be created and manipulated interactively or by commands.
- MATLAB offers a number of different formats for exporting plots, including EPS, PDF and JPEG, so you can easily include MATLAB plots in your reports.

- plot(x,y): the simplest and most commonly used plotting command
 - x and y are vectors containing the x and y coordinates of the data to be plotted
- Example: create a plot of $f(x) = e^{-\frac{x}{10}} \sin(x)$ >> x = 0:0.1:20;>> $y = \exp(-x/10).*\sin(x);$ >> plot(x,y), grid on, xlabel('x'), ...

 ylabel('f(x) = $e^{-x/10}$ sin(x)'), title('A simple plot')

denotes a string of text.

```
>> x = 0:0.1:20;
                                           x and y
                                           data must
                                           be the same
>> y = \exp(-x/10).*\sin(x);
                                           length
displays the grid
>> plot(x,y), grid on, xlabel('x'), ...
ylabel('f(x) = e^{-x/10} sin(x)'), title('A)
simple plot')
 number = xlabel(), ylabel(), and title() can be used
                to label the corresponding parts of the plot.
You must enclose your labels with single quotes (' ') which
```

- The plot command can be used to plot multiple sets of data on the same axes,
 - \square i.e. plot(x1,y1,x2,y2).

Example:

```
>> z = exp(-x/10).*cos(x);
>> plot(x,y,x,z)
```

legend('y vs. x','z vs. x') is used to place a legend and label the data-sets when you have multiple data-sets on one plot.

 You can specify line style and color within the plot command

$$\blacksquare$$
 e. g. plot(x1,y1,'b-',x2,y2,'r--').

This command would make the first data-set a solid blue line, and the second data-set a dashed red line.
Table 4: Colours in plots

Table	3:	Line	styles	in	plots
Table	ο.	Line	DUJ ICD	***	PIOUS

STRING SPECIFIER	LINE STYLE
_	Solid line (default)
	Dashed line
:	Dotted line
	Dash-dot line

STRING SPECIFIER	LINE COLOUR
r	Red
g	Green
b	Blue (default)
W	White
k	Black

Plot properties can also be manipulated interactively (without having to issue commands) by clicking on the Show Plot Tools icon in the Figure Window toolbar

Plot properties

- Axis limits
- Gridlines
- Line style, color and thickness
- Text font type and size,
- Legend

Built-in Plot Types

Exercise 3, Q2, page 24

□ Given the following function:

$$S = a\cos(\theta) + \sqrt{b^2 - (a\sin(\theta) - c)^2}$$

- □ Plot S (with blue dashed line 'b--') as a function of angle θ when a = 1, b = 1.5, c = 0.3, and $0 \le \theta \le 360^\circ$.
- Turn the grid on in your plot, and remember to label your axes and use a title.

MULTIPLE PLOTS & 3D PLOTTING

MATLAB Basics - Dr. Linda Al-Hmoud

Multiple Plots in One Figure Window

- subplot(2,2,1) specifies that
 - the Figure Window will be divided into 2 rows and 2 columns of plots, and
 - selects the first subplot to plot into

Example:

```
>> x = linspace(0,2*pi,50);
>> subplot(2,2,1),plot(x,sin(x)),xlabel('x'),ylabel('sin(x)');
>> subplot(2,2,2),plot(x,cos(x)),xlabel('x'),ylabel('cos(x)');
>> subplot(2,2,3),plot(x,sin(2*x)),xlabel('x'),ylabel('sin(2x)');
>> subplot(2,2,4),plot(x,cos(2*x)),xlabel('x'),ylabel('cos(2x)');
```

Multiple Plots in One Figure Window

3D Plotting using PLOT3 and SURF

Example:

```
>> t = 0:pi/50:10*pi;
>> plot3(sin(t),cos(t),t,'r.'),grid on, ...
xlabel('x'),ylabel('y'),zlabel('z'), ...
title('3D helix')
```

Exercise 4, Q1(a), page 30

- Plot the following 3D curve using the plot3 function:
 - □ Spherical helix (c = 5 and 0 ≤ t ≤ 10 π)

$$x = \sin\left(\frac{t}{2c}\right)\cos(t)$$
$$y = \sin\left(\frac{t}{2c}\right)\sin(t)$$
$$z = \cos\left(\frac{t}{2c}\right)$$