
M-FILES

M-files

• MATLAB statements can be prepared with any text
editor, and stored in a file for later use.

• MATLAB can then execute this sequence of
statements. The file is referred to as an "M-file".

• Each M-file should have a name that ends in .m.
Much of your work with MATLAB will be in creating
and refining M-files.

• It is much easier to use M-files than to enter
commands line by line at the MATLAB prompt.
Writing m-files will make you much more productive.

Why to use M-files

 Writing inside the Command Window may cause
several problems, like:
 If you wrote an order or an equation and then you

wanted to change a value of any variable, you will
have to re-write the equation again.

 If you wrote a long program contains lots of
commands and wanted to re-use this program again,
you will have to repeat each command with the same
order.

 If there is a mistake in one command in such program
you will need to re-write all the others from the
beginning.

Why to use M-files

 Writing a program inside the M-file overcomes
these problems since it works as a text editor where
you can write the whole program without run. Then
you can run the program after finishing. This gives
you the ability to change the variables values
without re-writing the whole program again.

To open new M-file

To open new M-file

OR

 use the edit command, e.g.
>> edit plotrand

 This opens a blank file named plotrand.m

M-file Naming

• M-file names as variable names:
• The first character in a M-File name must be a letter.
• Contains no signs, e.g.: * % / ? + , ………etc.
• Contains no spaces like: cubic root. You can type it

cubic_root
• Not an order or a function name, e.g.: help, sin, ode45,

………… etc.
• It is a good idea to use appropriate and memorable names

for functions.
• To avoid confusion, make sure your M-files don't have the

same name as previously defined variables, M-files or
MATLAB functions.

M-files

 M-Files can be classified into 2 categories
depending on their use:

Script Files

 A script file is a regular text file that contains a
series of MATLAB commands written just as you
would enter them in the MATLAB Command
Window.

 Statements that begin with % are considered to be
comments and are ignored by MATLAB.

Script Files

 To perform commands in a script file in MATLAB
Command Window:
Simply enter the name of the script file without

the “.m”, or
 click F5 after saving the script with a suitable name,

or
 click Save and run in the toolbar

Script Files

 Example:
>> edit areacir

 Type the following statements:

% areacir.m: example m-file to
% compute the area and circumference of
a circle

r = 2.5;
area = pi*r^2
circum=2*pi*r

Script Files

• Typing areacir at the MATLAB prompt will yield
the following MATLAB response:

>> areacir
area =

19.6349
circum =

15.7079

• which are the area and circumference of a circle of
a radius 2.5.

Script Files

• Note: Entering
>> help areacir

gives you back the text in the comment lines at the
beginning of the file:

% areacir.m: example m-file to
% compute the area and circumference of
a circle

it is very desirable to include at least some brief comment
as a header to each m-file you create.

Script Files

• MATLAB treats script files exactly as if they are
command sequences

• All variables currently in the MATLAB workspace can
be used by the script file commands

• All variables created by the script file are available
for use after the script file has been run.

• Example - examine area:
>> area
area =

19.6349

Function-files

 Function files provide extensibility to MATLAB.
 You can create new functions specific to your

problem, which will then have the same status as
other MATLAB functions.

 Function definitions are stored in files with the name
function_name.m.

Function-files

 For a function returning one variable, the first line of
a function definition must start with the command
function and can be of the form:

function Dependant_variable =
function_name(Inependent_variable1,...)

This specifies the name of the function and its input
arguments.

Function-files

• We would like to create a function called
circlarea, which calculates the area of a circle
having any given radius r.

% This function calculates the area of
% a circle. The arguments r and y
% represent the radius and the area of
% the circle, respectively.

function y = circlarea(r)
y=pi*r^2;

Function-files

• We can now invoke the function called circlarea in
the same way as we do for commonly used MATLAB
functions.

• In order to find the area of a circle with a radius
6.5, we can type the following:

>> A = circlarea (6.5)

and this is what we get:
A =

132.7323

Function-files

 If you want the function to return more than one
value, let's say two values, the first line of the
function definition must start with the word function
and can be of the form:

 function [variable1, variable2] =
function_name(Independent_variable1,...)

Function-files

• For example suppose we want to create the function
called circle, which returns the area and the perimeter
of a circle with any given radius. The M-file for this
function will be:

% This function calculates the area of a
circle and its perimeter

% The arguments r, y and p represent the
radius, the area and

% perimeter of the circle, respectively
function [y, p] = circle(r)
y = pi*r^2;
p = 2*pi*r;

Function-files

• We can now invoke the function called circle in the same
way as we do for commonly used MATLAB functions.
Therefore, in order to find the area of a circle with a
radius 6.5, and its perimeter we can type the following:

>>[Area Perim]=circle (6.5)
In this case we get
Area =

132.7323
Perim =

40.8407

Function-files

 A script file name can only be entered by itself at
the MATLAB prompt (or as a line in another script
file)

 A function can be called when needed
 Example

 if p is a variable that has been specified, you
could use circlarea in an expression such as:

>> p=2
>> differ = 100 - circlarea(p)

Summary

Script File Function File

A list of commands to be performed
with same order, easier to modified
than in Command Window.

To create a new function in MATLAB
like those already exist as: sin, cos,
sqrt,etc

Doesn't contain the command function
in the first line

Must contain the command function in
the first line

Variables are global: so you can use
the variables defined in a script file
after running into the Command
Window

Variables are local: so the variables
defined in a function file are used only
inside it and can't be used inside the
Command Window

To run: by entering the file name in the
Command Window. Or by clicking Run.

To substitute in: as any other function in
MATLAB by writing the function name &
the arguments in Parentheses

Example of a Script File

Problem:

The speed v of a falling object dropped with no initial
velocity is given as a function of time t by v = gt.

Plot v as a function of t for 0 ≤ t ≤ tf, where tf is the
final time entered by the user.

Example of a Script File

% Program falling_speed.m:
% Plots speed of a falling object.
% Created on March 1, 2004 by W. Palm
%
% Input Variable:
% tf = final time (in seconds)
%
% Output Variables:
% t = array of times at which speed is
% computed (in seconds)
% v = array of speeds (meters/second)

Example of a Script File

% Parameter Value:

g = 9.81; % Acceleration in SI units

% Input section:
tf = input(’Enter final time in seconds:’);

Example of a Script File

% Calculation section:
% Create an array of 500 time values.
t = linspace(0,tf,500);
% Compute speed values.
v = g*t;
%
% Output section:
Plot(t,v),xlabel(’t (s)’),ylabel(’v

m/s)’)

Notes on Function-files

A function may have no input arguments and no output
list.

For example, the function show_date computes and
stores the date in the variable today, and displays the
value of today.

function show_date

today = date

Examples of Function Definition Lines

1. One input, one output:
function [area_square] = square(side)

2. Brackets are optional for one input, one output:
function area_square = square(side)

3. Two inputs, one output:
function [volume_box] = box(height,width,length)

4. One input, two outputs:
function [area_circle,circumf] = circle(radius)

5. No named output: function sqplot(side)

Function Example

function [dist,vel] = drop(g,vO,t)

% Computes the distance travelled and

% the velocity of a dropped object,

% as functions of g,

% the initial velocity vO, and

% the time t.

vel = g*t + vO;

dist = 0.5*g*t.^2 + vO*t;

Function Example (continued)

1. The variable names used in the function definition
may, but need not, be used when the function is
called:

>>a = 32.2;

>>initial_speed = 10;

>>time = 5;

>>[feet_dropped,speed] = ...
drop(a,initial_speed,time)

Function Example (continued)

2. The input variables need not be assigned values outside
the function prior to the function call:
[feet_dropped,speed] = drop(32.2,10,5)

3. The inputs and outputs may be arrays:
[feet_dropped,speed]=drop(32.2,10,[0:1:5])

This function call produces the arrays feet_dropped and
speed, each with six values corresponding to the six values
of time in the array time.

