Ordinary Differential Equation
(ODE) Solvers

ODE Solvers

. Solves These Kinds of
* This table Problems

I.|s:cs.the odeds

initial value - Nonstiff differential Runge-Kutta

problem equations

solvers, the odell13 AT

’

kind of ode15s Stlffdlffzr:StlgiEesquatlons NDFs (BDFs)

problem you o . |

can solve, ode23t Moderate.ly stiff differential Trapezoidal

and the equations and DAEs rule
ode23s Rosenbrock

method each Stiff differential equations

solver uses ode23tb TR-BDF2
ode15i Fully implicit differential BDFs

equations

Stiffness

* A stiff system is one involving rapidly changing components
together with slowly changing ones.

* An example of a single stiff ODE is: %=—1000y+ 3000 —2000¢e™
t

whose solution if y(0)=0 is: y=3-0.998e """ —2.002¢e™

First Order ODEs

* An ordinary differential MATLAB solvers handle
equation (ODE) contains the following types of
one or more derivatives first-order ODEs:
of a dependent variable y — Explicit ODEs of the form
with respect to a single y' =f(t,y)
independent variable t, — Linearly implicit ODEs of
usually referred to as the form

o _ where M(t, y) is a matrix

* The der'vat'_/e of y with — Fully implicit ODEs of the
respect to t is denoted as form
y ', the second derivative f(t,y,v') =0 (odel5i only)

asy '/, and so on.

Initial Values

* Generally thereare many ¢ Aninitial value problem

functions y(t) that satisfy for an ODE is then
a given ODE, and

additional mformgtlon IS y' = f(t,y)
necessary to specify the

solution of interest. y(to) = Yo

* Inaninitial value
problem, the solution of
interest satisfies a specific
initial condition, that is, y
is equal to y, at a given
initial time t,.

the best function to
apply as a "first try" for
most problems

Nonstiff
Problems
odel13

Types of Solvers

ode23tb

FUIlégTEEIICIt ode15i

Stiff Problems |

Solver Syntax

* All of the ODE solver functions, except for ode15i, share the
same syntax:

[t,y] = solver(odefun,tspan,yO,options)

odefun

tspan

yO
options

Handle to a function that evaluates the system of ODEs.
The function has the form
dydt = odefun(t,y)

where t 1s a scalar, and dydt and y are column vectors.

Vector specifying the interval of integration. The
solver 1mposes the initial conditions at tspan(l), and
integrates from tspan(l) to tspan(end).

Vector of initial conditions for the problem.

Structure of optional parameters that change the
default integration properties.

Integrator Options tells you how to create the
structure and describes the properties you can specify.

Example
Van der Pol Equation (Nonstiff)

e Solve the following second order differential
equation using ode45:

2 _
yi =y1+tyiyi+y:r =0
Remember, MATLAB can one deal
with first order differential equations

=>» We need to rewrite the problem as a system
of first-order ODEs.

/

Y1 =Y
V3 = Yo — YoVt — 1

Example
Van der Pol Equation (Nonstiff)

* Now, code the system of first-order ODEs
function dydt = vdpl(t,y)
dydt=zeros(2,1)
dydt(1l) = y(2);
dydt(2) = y(2)-y(1)"2*y(2)-y(1);

* Apply a solver to the problem

>> [t,y] = ode45(@vdpl,[0,20],[2 O]);

* View the solver output

>> plot(t,y(:,1),"-",t,y(:,2),"--"),
xlabel("t"), ylabel("solution y"),
legend("y 17,y 27)

Example
Van der Pol Equation (Nonstiff)

solution y

Example
Van der Pol Equation (Stiff)

* Solve the following second order differential
equation using ode15s:

yi' —1000y;(1 +y{)+y; =0
Remember, MATLAB can one deal
with first order differential equations

=>» We need to rewrite the problem as a system of
first-order ODEs.

y{ =Y
vy = 1000y, (1 — y{) — y;

Example
Van der Pol Equation (Stiff)

* Now, code the system of first-order ODEs
function dydt = vdpl000(t,y)
dydt=zeros(2,1)
dydt(1l) = y(2);
dydt(2) = 1000*y(2)*(1-y(1)"2)-y(1);

* Apply a solver to the problem

>>[t,y] = odel5s(@vdpl000,[0,3000],[2 O0]);

* View the solver output, only fory,

>> plot(t,y(:,1),"-"), xlabel("t"),
ylabel ("solution y*©)

Evaluating the Solution
(van der Pol Equation)

* You can evaluate the approximate solution, S(x), at any
point in the interval of integration (tspan) using the
function deval and the structure sol returned by the
solver.

>> sol = ode45(@vdpl,[0 20],[2; O]);
>> XInt = 1:5;

>> Sxint = deval(sol,xint)

Sxint =

1.5081 0.3235 -1.8686 -1.7407 -0.8344
-0.7803 -1.8320 -1.0220 0.6260 1.3095

Fully Implicit ODE

* The solver odel5i solves fully implicit
differential equations of the form

fty,y)=0
* The basic syntax for odel5i is
[t,y] = odel5i1(odefun,tspan,yO,yp0,options)

ypO Vector of initial conditions for y'(ty)

Fully Implicit ODE — Example

* Solve the following second order differential
equation using odel5i:

ty? ()3 -y () +t(1+¢%)y' -ty =0
with y(1) = /3/2

* First, code your function

function res = imp(t,y,yp)
res=t*y"2*yp"3-y"3*yp 2+t*(1"2 + 1)*yp-t"2*y;
* But we need ypO and we don’t have it

decic funtion

 Computes consistent initial conditions for ode15i.

 Use the function decic as a helper to compute
a consistent initial value for ypO

* An initial guess is needed -2 let’s make it “0”

>> t0 = 1;

>> y0 = sqrt(3/72);

>> yp0 = 03

>>[y0,yp0]=decic(@imp,t0,y0,1,yp0,0);

* This will make yp0=0.8165 (check it yourself)

Fully Implicit ODE — Example

e Now we can use odel5i
>>[t,y] = odel51(@imp,[1 10],y0,yp0);

* And compare with the true solution

y =/t2 + 0.5
>> ytrue = sqrt(t.”"2 + 0.5);

* Then plot both together to compare
>> plot(t,y,t,ytrue,"0")

Fully Implicit ODE — Example

120

ynum

100 -

80

60 -

40 -

20 -

0 10 20 30 40 50 60 70 80 90 100

Exercise 1

* Use oded5 to plot the solution of the initial

value problem

cost
X = x(0) =3

* on the interval [0, 2r].

Solution — Exercise 1

* We need to encode the odefcn.
function xprime = ex1(t,x)
xXprime = cos(t)/(2*x - 2),;

e Then sove it

>>
>>
>>
>>

[t,x] = oded45(@ex1,[0,2*p1],3);
plot(t,x)

title("The solution x"=cos(t)/(2x-2))
xlabel("t"), ylabel("x")

Using 1Nl 1ne functions

* |f you do not want to save your work, the
easiest way to encode the needed odefcn is to
create the inline function

>> F = Inline("cos(t)/(2*x - 2)",°"t","x")

f =

Inline function:

f(t,x) = cos(t)/(2*x - 2)

 Then, solve it as follows:

>> [t,x] = oded5(F,[0,2*pi].3);.-

Exercise 2

* Use oded5 to solve the initial value problem

! 2
X = X2 — Xy,

4
Xy = —Xx1 — 2x1x2,

on the interval [0, 10], with initial conditions x,(0) =0
and x,(0) = 1.

Solution — Exercise 2

function xprime = F(t,x)

Xprime = zeros(2,1);

xprime(1) = x(2) - x(D"2;
xprime(2) = -x(1) - 2*x(1)*x(2);

>>[t,x] = ode45(@F,[0,10],[0;1]);
>> title("x 1"" = x 2 - x 1"2 and x 2" = -
X 1 - 2x 1x 2%)

>> xlabel("t"), ylabel("x 1 and x_2%)
>> legend("x_1","x 2%)

1.2

X1 and X2

" 2 .
X1 = X2 'X1 and X2 — -X1 '2X1x2
|

Try another plots
* X, VS. X,

>> plot(x(:,1),x(:,2))
>> xlabel("x_1%), ylabel("x _27)

"= XX

Xy =Xy

and X, = -x1-2x1x2

2
1
T

0.8 8

0.6]

0.2 i

_04 | | | | | | |
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

And 3D plot

>> plot3(t,x(:,1),x(:,2))
>> xlabel("t"), ylabel("x 1"),zlabel("x 2%)

1.5

><c\l 0.5 f ™~ \\ \
‘; x
o\ ‘
0 —
/ T

