Conversion of Chemical Energy

Combustion Theory and Practice

Conversion of Chemical energy

	Chemical Reaction	$kg O_2/kg$	ΔH	Tignition	Characterstics			
	32/4.032	fuel	combustion	,°C				
/lwt	$2H_2 + O_2 \rightarrow 2H_2O$: 4.032 kg 32 kg 36.032 kg ch	7.94	286,470 kJ/kg mol H ₂	582	Rapid reaction			
	$S+O_2\rightarrow SO_2$	0.998	296,774 kJ/kg mol S	243	In between			
	$2C+O_2\rightarrow 2CO$		110,380 kJ/kg mol C					
	$2CO+O_2\rightarrow 2CO_2$		283,180					
			kJ/kg mol CO					
	C(0)	2.66	393,560	407	Slow reaction			
	$C+O_2 \rightarrow CO_2$	2.00	kJ/kg mol C	107	DIOW Teaction			

Dissoc	iation	reactions		
take	place	at	high	
temp.				

$$O_2 \rightarrow 2O$$

$$N_2 \rightarrow 2N$$

$$2CO_2 \rightarrow 2CO + O_2$$

$$N_2 + O_2 \rightarrow 2NO$$

$$N_2 + 2O_2 \rightarrow 2NO_2$$

These reactions are endothermic.

NO_X causes
atmospheric
Pollution
Temp. must be
kept low to
minimize
dissociation

- Theoretical (Stoichiometric) air-fuel ratio is the minimum air requirement for the complete fuel combustion.
- The basis of A/F \sim volumetric or gravimetric or mole ratio, based on "as burned" fuel analysis.
- A/F ratio can be determined by making O₂ balance on the combustible reactants.

Note: Derivations based on mass balance calculations ~ See Principle course

$$(\frac{A}{F})_{\text{Theo.}} = \frac{2.66C + 7.94H_2 + 0.998S - O_2}{0.232 \text{ (kg O}_2 / kg air)}$$
 (kg O2 / kg fuel)

Where C, H₂, S, and O₂ as burned mass fraction fuel analysis. To convert to as daf basis.

$$\left(\frac{A}{F}\right)_{\text{Theo}} = \frac{2.66C + 7.94H_2 + 0.998S - 0_2}{0.232}(1 - M - A)$$

Where C, H₂, S, and O₂ as dry-ash-free basis. {Ultimate analysis}

• For gaseous and liquid fuels, it is preferable to work with molar quantities rather than mass fraction

Let Z is the number of atoms of a given element in a mole of fuel.

For examples;
$$C_8H_{18}$$
, $Z_C=8$, $Z_H=18$
 50% CH_4 , 40% C_2H_6 , 5% H_2S , 5% O_2
 $Z_C=0.5(1)+0.4(2)=1.3$
 $Z_H=0.5(4)+0.4(6)+0.05(2)=4.5$
 $Z_S=0.05(1)=0.05$
 $Z_0=0.05(2)=0.1$

Note the effective chemical formula of the gas mixture is $C_{1.3}H_{4.5}O_{0.1}S_{0.05}$

Therefore,

$$(\frac{A}{F})_{\text{Theo, mol}} = \frac{Z_C + \frac{Z_H}{4} + Z_S - Z_O}{0.21}$$

$$(\frac{A}{F})_{\text{Theo, mass}} = \frac{28.97(\frac{A}{F})_{\text{Theo, mol}}}{\text{Mwt of fuel}}$$
//

Combustion Process

Actual combustion process

Good combustion

How can we express the amount of air for any combustion process?

There are two ways:

1. Dilution coefficient,
$$DC = \frac{(A/F)_{act}}{(A/F)_{theo}}$$
 ///
2.% excess air = $\frac{(A/F)_{act} - (A/F)_{theo}}{(A/F)_{theo}} \times 100$ ////
= $(DC-1)100$ ////

Estimation of actual Air-to-Fuel ratio (A/F)_{act}

- (A/F)_{act} is estimated from an experimental measurements of the gaseous components of the flue gas.
- Experimental measurements are:
 - GC analyzer 'Gas Chromatography'
 - 2. Orsat flue-gas analyzer
 - 3. Other techniques

How to get the (A/F)_{act} for solid fuel?

- In addition to gaseous analysis, <u>refuse</u> <u>analysis is required.</u>
- Refuse analysis concerns with the experimental determination of the HHV value of the refuse.
- Refuse analysis has two ways of expressing:
 - 1. the amount of energy per unit mass of refuse kJ/kg or Btu/lb
 - 2. mass fraction of unburned carbon or percent combustible in refuse.

Note: Refuse means the substance which remains in combustor after combustion.

Percent combustible in the refuse

$$R = A + C_r$$

R: mass of refuse collected per unit mass of coal burned.

C_r: mass of unburned carbon in the refuse per unit mass of coal burned.

```
% combustible = 100 (HHV)_{refuse} / (HHV)_{carbon}
= 100 (HHV)_{refuse} / 32778 SI units
= 100 (HHV)_{refuse} / 14093 British
units
```


Preheating & Mixing Common for Gaseous and vaporized liquid

No preheating and mixing

Common for solid and liquid fuels

Premixed flame

- Fuel and O₂ are mixed and heated before ignition
- O₂ has a good opportunity to react with hydrocarbons to form hyroxylates. Hence, these hydroxylates are converted into aldehydes. Finally, aldehydes are burned to give CO₂ and H₂O.
- The flame formed in this case is blue or non-luminous flame.
- Example: Bunsen burner or gas stove burner

Un-premixed flame

- In this type, premixing dose not take place.
- Time of mixing of fuel and oxidant is very short.
- Heating of fuel and air is rapid.
- As a result the hydrocarbons are cracked into lighter compounds and into carbon and hydrogen.
- Combustion takes place between the elements of C and H₂.
- In general, C yields a yellow flame and H₂ yields invisible flame. Both of them yield a luminous flame or yellow flame.
- Example: the type of mechanism is predominant in solid combustion and liquid fuel

The concept of orsat analysis

Summary Mechanism of combustion

